1
|
Xu S, Zhu Y, Wang P, Qi S, Shu B. Derazantinib Inhibits the Bioactivity of Keloid Fibroblasts via FGFR Signaling. Biomedicines 2023; 11:3220. [PMID: 38137441 PMCID: PMC10741236 DOI: 10.3390/biomedicines11123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Keloids are common benign cutaneous pathological fibrous proliferation diseases, which are difficult to cure and easily recur. Studies have shown that fibroblast growth factor receptor-1 (FGFR1) was enhanced in pathological fibrous proliferation diseases, such as cirrhosis and idiopathic pulmonary fibrosis (IPF), suggesting the FGFR1 pathway has potential for keloid treatment. Derazantinib is a selective FGFR inhibitor with antiproliferative activity in in vitro and in vivo models. The present study determined the effects of derazantinib on human keloid fibroblasts (KFs). Cell viability assay, migration assay, invasion assay, immunofluorescence staining, quantitative polymerase chain reaction, Western blot analysis, HE staining, Masson staining, and immunohistochemical analysis were used to analyze the KFs and keloid xenografts. In this study, we found that derazantinib inhibited the proliferation, migration, invasion, and collagen production of KFs in vitro. The transcription and expression of plasminogen activator inhibitor-1 (PAI-1), which is closely related to collagen deposition and tissue fibrosis, was significantly inhibited. Also, derazantinib inhibited the expression of FGFR1 and PAI-1 and reduced the weight of the implanted keloid from the xenograft mice model. These findings suggest that derazantinib may be a potent therapy for keloids via FGFR signaling.
Collapse
Affiliation(s)
- Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Yongkang Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518025, China
| | - Peng Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Shaohai Qi
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Bin Shu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| |
Collapse
|
2
|
Weissová K, Fafílek B, Radaszkiewicz T, Celiker C, Macháčková P, Čechová T, Šebestíková J, Hampl A, Bryja V, Krejčí P, Bárta T. LuminoCell: a versatile and affordable platform for real-time monitoring of luciferase-based reporters. Life Sci Alliance 2022; 5:e202201421. [PMID: 35440493 PMCID: PMC9018015 DOI: 10.26508/lsa.202201421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Luciferase reporter assays represent a simple and sensitive experimental system in cell and molecular biology to study multiple biological processes. However, the application of these assays is often limited by the costs of conventional luminometer instruments and the versatility of their use in different experimental conditions. Therefore, we aimed to develop a small, affordable luminometer allowing continuous measurement of luciferase activity, designed for inclusion into various kinds of tissue culture incubators. Here, we introduce LuminoCell-an open-source platform for the construction of an affordable, sensitive, and portable luminometer capable of real-time monitoring in-cell luciferase activity. The LuminoCell costs $40, requires less than 1 h to assemble, and it is capable of performing real-time sensitive detection of both magnitude and duration of the activity of major signalling pathways in cell cultures, including receptor tyrosine kinases (EGF and FGF), WNT/β-catenin, and NF-κB. In addition, we show that the LuminoCell is suitable to be used in cytotoxicity assays as well as for monitoring periodic circadian gene expression.
Collapse
Affiliation(s)
- Kamila Weissová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Bohumil Fafílek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Macháčková
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Tamara Čechová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jana Šebestíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Krejčí
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tomáš Bárta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Expanding horizons of achondroplasia treatment: current options and future developments. Osteoarthritis Cartilage 2022; 30:535-544. [PMID: 34864168 DOI: 10.1016/j.joca.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Activating mutations in the FGFR3 receptor tyrosine kinase lead to most prevalent form of genetic dwarfism in humans, the achondroplasia. Many features of the complex function of FGFR3 in growing skeleton were characterized, which facilitated identification of therapy targets, and drove progress toward treatment. In August 2021, the vosoritide was approved for treatment of achondroplasia, which is based on a stable variant of the C-natriuretic peptide. Other drugs may soon follow, as several conceptually different inhibitors of FGFR3 signaling progress through clinical trials. Here, we review the current achondroplasia therapeutics, describe their mechanisms, and illuminate motivations leading to their development. We also discuss perspectives of curing achondroplasia, and options for repurposing achondroplasia drugs for dwarfing conditions unrelated to FGFR3.
Collapse
|
4
|
Zou Y, Lin H, Chen W, Chang L, Cai S, Lu YG, Xu L. Abnormal eruption of teeth in relation to FGFR1 heterozygote mutation: a rare case of osteoglophonic dysplasia with 4-year follow-up. BMC Oral Health 2022; 22:36. [PMID: 35148738 PMCID: PMC8832749 DOI: 10.1186/s12903-022-02069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background We report a case and its 4-year follow-up of Osteoglophonic dysplasia (OD), a rare disease that disturbs both skeletal and dental development, which is usually caused by heterozygous FGFR1 mutations. Case presentation This article presents a case where a 6-year-old male patient suffered dysregulation of tooth eruption and was diagnosed with osteogenic dysplasia from a fibroblast growth factor receptor 1 (FGFR1) heterozygote mutation. However, the number of teeth is within the normal range, and their roots are well developed. Several interventions were implemented with varying degrees of results. The details of the 4-year follow-up showed that the signs of OD were more pronounced, including dwarfism, frontal bossing, delayed skeletal maturation, anteverted nares, micrognathia, and prominent ears, but the patient’s impacted teeth and edentulous jaws remained unchanged.
Conclusions FGFR1 heterozygote mutation and OD present significant difficulty for teeth eruption and subsequent intervention. Further measures ought to be taken in recognizing various symptoms presented by the patient. This case supports the significance of careful inquiry, comprehensive physical examination and correct diagnosis as indispensable steps for clinical practice in patients with unerupted teeth. Additionally, the detailed case and its 4-year follow-up length may provide new insights into osteogenic dysplasia and patients with impacted teeth while encouraging further exploration in treatment methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02069-6.
Collapse
Affiliation(s)
- Yuchun Zou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics and Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hanyu Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics and Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Weijia Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics and Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin Chang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics and Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Senxin Cai
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics and Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China. .,Department of Preventive Dentistry, Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| | - Linyu Xu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research, Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China. .,Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics and Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China. .,Department of Orthodontics, Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, Krejci P. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med 2021; 13:13/592/eaba4226. [PMID: 33952673 DOI: 10.1126/scitranslmed.aba4226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 01/04/2023]
Abstract
Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias.
Collapse
Affiliation(s)
- Takeshi Kimura
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | | | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Kie Yasuda
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | | | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Regina Gomolkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Silvie Belaskova
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,First Department of Internal Medicine-Cardioangiology, St. Anne's University Hospital, Masaryk University, 65691 Brno, Czech Republic
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN)-LABRET, University of Málaga, IBIMA-BIONAND, 29071 Málaga, Spain
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN)-LABRET, University of Málaga, IBIMA-BIONAND, 29071 Málaga, Spain
| | | | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Josef Kaiser
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yoshikazu Nakamura
- RIBOMIC Inc., Tokyo 108-0071, Japan. .,Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
6
|
Su X, Liu Z, Yue L, Wu X, Wei W, Que H, Ye T, Luo Y, Zhang Y. Design, synthesis and biological evaluation of 1 H-pyrrolo[2,3- b]pyridine derivatives as potent fibroblast growth factor receptor inhibitors. RSC Adv 2021; 11:20651-20661. [PMID: 35479379 PMCID: PMC9033946 DOI: 10.1039/d1ra02660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Abnormal activation of FGFR signaling pathway plays an essential role in various types of tumors. Therefore, targeting FGFRs represents an attractive strategy for cancer therapy. Herein, we report a series of 1H-pyrrolo[2,3-b]pyridine derivatives with potent activities against FGFR1, 2, and 3. Among them, compound 4h exhibited potent FGFR inhibitory activity (FGFR1–4 IC50 values of 7, 9, 25 and 712 nM, respectively). In vitro, 4h inhibited breast cancer 4T1 cell proliferation and induced its apoptosis. In addition, 4h also significantly inhibited the migration and invasion of 4T1 cells. Furthermore, 4h with low molecular weight would be an appealing lead compound which was beneficial to the subsequent optimization. In general, this research has been developing a class of 1H-pyrrolo[2,3-b]pyridine derivatives targeting FGFR with development prospects. Discovery of a new class of 1H- pyrrorole [2,3-b]pyridine FGFR inhibitors with high ligand efficiency.![]()
Collapse
Affiliation(s)
- Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Zhihao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Yi Luo
- Department of Orthopedics, West China Hospital of Sichuan University Wai Nan Guo Xue Xiang 37# 610041 Chengdu Sichuan China
| | - Yiwen Zhang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
7
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
8
|
Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med 2020; 52:1178-1184. [PMID: 32788656 PMCID: PMC8080656 DOI: 10.1038/s12276-020-0471-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Lim Shin
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Ferreira LC, Dantas Junior JH. Report of a Father With Congenital Bilateral Absence of the Vas Deferens Fathering a Child With Beare–Stevenson Syndrome. Front Genet 2020; 11:104. [PMID: 32158469 PMCID: PMC7052335 DOI: 10.3389/fgene.2020.00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leonardo C. Ferreira
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence: Leonardo C. Ferreira,
| | - José H. Dantas Junior
- University Hospital Onofre Lopes, Urologic Unit, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
10
|
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020; 21:E912. [PMID: 32019244 PMCID: PMC7037207 DOI: 10.3390/ijms21030912] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.
Collapse
Affiliation(s)
- Alexander Sieberath
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| |
Collapse
|
11
|
Wordsworth P. The influence of genetics in musculoskeletal diseases: A personal review of progress over 40 years. Int J Rheum Dis 2019; 22:1797-1802. [PMID: 31650700 DOI: 10.1111/1756-185x.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Diseases, Botnar Research Centre, University of Oxford Institute of Musculoskeletal Sciences, Oxford, Headington, UK
| |
Collapse
|
12
|
Wang J, Liu S, Li J, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des 2019; 94:1740-1749. [PMID: 31260189 DOI: 10.1111/cbdd.13588] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor (FGF) family members are important regulators of cell growth, proliferation, differentiation, and regeneration. The abnormal expression of certain FGF family members can cause skeletal diseases, including achondroplasia, craniosynostosis syndrome, osteoarthritis, and Kashin-Beck disease. Accumulating evidence shows that FGFs play a crucial role in the growth and proliferation of bone and in the pathogenesis of certain bone-related diseases. Here, we review the involvement of FGFs in bone-related processes and diseases; FGF1 in the differentiation of human bone marrow mesenchymal stem cells and fracture repair; FGF2, FGF9, and FGF18 in osteoarthritis; FGF6 in bone and muscle injury; FGF8 in osteoarthritis and Kashin-Beck disease; and FGF21 and FGF23 on bone regulation. These findings indicate that FGFs are targets for novel therapeutic interventions for bone-related diseases.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhi Yi
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
13
|
The first Korean case report with scaphocephaly as the initial sign of X-linked hypophosphatemic rickets. Childs Nerv Syst 2019; 35:1045-1049. [PMID: 30613854 DOI: 10.1007/s00381-018-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION X-linked hypophosphatemic rickets (XLH) can occasionally cause premature fusion of cranial sutures through an increased level of fibroblast growth factor 23 (FGF-23), which leads to the dysregulation of phosphate and vitamin D metabolism. Secondary craniosynostosis has long been considered to present late after XLH has already been diagnosed either clinically or genetically. CASE PRESENTATION We present observations of a male infant showing sagittal synostosis as the first sign of XLH. Our patient did not show any other skeletal deformities except macrocephaly with a long head shape. There is a family history of genetically unconfirmed hypophosphatemic rickets in his mother. Direct sequencing by genomic polymerase chain reaction revealed that the patient has a large deletion comprising exons 1-3 of the phosphate regulating endopeptidase homolog X-linked (PHEX) gene. CONCLUSION Our observations suggest that craniosynostosis secondary to rickets can develop in early infancy. Careful monitoring of head shape and growth is therefore critical for early detection of craniosynostosis in XLH.
Collapse
|
14
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
15
|
Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 ( FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017; 13:1479-1488. [PMID: 29230096 PMCID: PMC5723914 DOI: 10.7150/ijbs.22373] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Craniosynostosis results from the premature fusion of cranial sutures, with an incidence of 1 in 2,100-2,500 live births. The majority of cases are non-syndromic and involve single suture fusion, whereas syndromic cases often involve complex multiple suture fusion. The fibroblast growth factor receptor 2 (FGFR2) gene is perhaps the most extensively studied gene that is mutated in various craniosynostotic syndromes including Crouzon, Apert, Pfeiffer, Antley-Bixler, Beare-Stevenson cutis gyrata, Jackson-Weiss, Bent Bone Dysplasia, and Seathre-Chotzen-like syndromes. The majority of these mutations are missense mutations that result in constitutive activation of the receptor and downstream molecular pathways. Treatment involves a multidisciplinary approach with ultimate surgical fixation of the cranial deformity to prevent further sequelae. Understanding the molecular mechanisms has allowed for the investigation of different therapeutic agents that can potentially be used to prevent the disorders. Further research efforts are need to better understand screening and effective methods of early intervention and prevention. Herein, the authors provide a comprehensive update on FGFR2-related syndromic craniosynostosis.
Collapse
Affiliation(s)
- Saïd C. Azoury
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Vivek Shukla
- TGIB, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|