1
|
Kaneguchi A, Okahara R, Masuhara N, Doi Y, Yamaoka K, Ozawa J. The effects of short-term non-weightbearing and immobilization after anterior cruciate ligament reconstruction on articular cartilage: Long-term observation after reloading and remobilization. Tissue Cell 2025; 92:102628. [PMID: 39608270 DOI: 10.1016/j.tice.2024.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
Non-weightbearing or immobilization after anterior cruciate ligament (ACL) reconstruction accelerates cartilage degeneration. However, it is unclear whether these adverse effects are reversed by reloading or remobilization. Moreover, it is unknown whether the combination of non-weightbearing and immobilization after ACL reconstruction has synergistic effects on cartilage degeneration. We aimed to determine 1) the long-term effects of reloading or remobilization following short-term non-weightbearing or immobilization after ACL reconstruction on cartilage degeneration and 2) the combined effects of non-weightbearing and immobilization on cartilage degeneration. We divided ACL-reconstructed rats into four groups: no intervention, non-weightbearing, joint immobilization, and non-weightbearing plus immobilization. Non-weightbearing and immobilization were performed for 2 weeks, after which all rats were reared without intervention. Untreated rats were used as controls. At 2, 4, or 12 weeks after starting the experiment, cartilage degeneration in the anterior, middle, and posterior regions of the medial tibial plateau was histologically assessed. Two weeks of non-weightbearing or immobilization after ACL reconstruction facilitated cartilage degeneration in the middle and posterior regions compared to those with no intervention. Cartilage degeneration was not reversed by 10 weeks of reloading or remobilization. Compared with non-weightbearing alone, combination of non-weightbearing and immobilization improved cartilage degeneration in the middle region, but worsened it in the posterior region. Cartilage degeneration induced by 2 weeks of non-weightbearing or immobilization after ACL reconstruction was not reversed by reloading or remobilization. Thus, to reduce cartilage degeneration, non-weightbearing and immobilization should be avoided after ACL reconstruction, even for short-term.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Ryo Okahara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanami Masuhara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Yoshika Doi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Xie B, Ma H, Yang F, Chen H, Guo Y, Zhang H, Li T, Huang X, Zhao Y, Li X, Du J. Development and evaluation of 3D composite scaffolds with piezoelectricity and biofactor synergy for enhanced articular cartilage regeneration. J Mater Chem B 2024; 12:10416-10433. [PMID: 39291892 DOI: 10.1039/d4tb01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The inability of articular cartilage to self-repair following injuries frequently precipitates osteoarthritis, profoundly affecting patients' quality of life. Given the limitations inherent in current clinical interventions, an urgent need exists for more effective cartilage regeneration methodologies. Previous studies have underscored the potential of electrical stimulation in cartilage repair, thus motivating the investigation of innovative strategies. The present study introduces a three-dimensional scaffold fabricated through a composite technique that leverages the synergy between piezoelectricity and biofactors to enhance cartilage repair. This scaffold is composed of polylactic acid (PLLA) and barium titanate (BT) for piezoelectric stimulation and at the bottom with a collagen-coated layer infused with fibroblast growth factor-18 (FGF-18) for biofactor delivery. Designed to emulate the properties of natural cartilage, the scaffold enables controlled generation of piezoelectric charges and the sustained release of biofactors. In vitro tests confirm that the scaffold promotes chondrocyte proliferation, matrix hyperplasia, cellular migration, and the expression of genes associated with cartilage formation. Moreover, in vivo studies on rabbits have illustrated its efficacy in catalyzing the in situ regeneration of articular cartilage defects and remodeling the extracellular matrix. This innovative approach offers significant potential for enhancing cartilage repair and holds profound implications for regenerative medicine.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
- Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| | - Hebin Ma
- Medical School of the PLA General Hospital, Beijing 100853, China
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Fengyuan Yang
- Graduate School of Medicine, China Medical University, Shenyang 110122, China
| | - Hongguang Chen
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Ya'nan Guo
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Hongxing Zhang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Tengfei Li
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
- Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
- Graduate School of Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Roy M, Das D, Bhikshavarthi Math SA, Dwidmuthe S, Tiwari V. Surgical Triumph Over Huge Nontraumatic Myositis Ossificans of the Gluteal Region in an Epileptic Patient With History of Stroke: A Case Report. Cureus 2024; 16:e60294. [PMID: 38872661 PMCID: PMC11170311 DOI: 10.7759/cureus.60294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Myositis ossificans (MO) is a benign condition where bone forms within muscles due to increased activity of the periarticular tissues. Trauma is the most common cause. Nontraumatic MO is exceedingly rare. We present a rare instance of nontraumatic MO affecting the hip in a 32-year-old patient. The patient had a known case of seizure disorder and also had a history of a cerebrovascular accident (CVA). Despite the absence of trauma or known predisposing factors, the patient developed a sizable mass in the left hip, causing pain and restricted range of motion (ROM). Surgical excision of the mass was successful, resulting in complete removal and subsequent improvement in hip function and pain relief during postoperative recovery. Histopathological examination confirmed the diagnosis of MO. The patient's ROM normalized, and there were no signs of recurrence at the one-year follow-up. This case highlights the importance of recognizing MO in hip pain cases without trauma. Timely surgery through the approach described effectively removes the mass, preventing recurrence without compromising vital structures. It showcases a successful multidisciplinary approach for rare musculoskeletal conditions, offering valuable insights into similar cases.
Collapse
Affiliation(s)
- Mainak Roy
- Orthopaedics, All India Institute of Medical Sciences, Nagpur, IND
| | - Deepanjan Das
- Orthopaedics, All India Institute of Medical Sciences, Nagpur, IND
| | | | - Samir Dwidmuthe
- Orthopaedics, All India Institute of Medical Sciences, Nagpur, IND
| | - Vivek Tiwari
- Department of Orthopaedics, Apollo Sage Hospital, Bhopal, IND
| |
Collapse
|
4
|
Kaneguchi A, Kanehara M, Yamaoka K, Umehara T, Ozawa J. Effects of sex differences on osteoarthritic changes after anterior cruciate ligament reconstruction in rats. Acta Histochem 2024; 126:152172. [PMID: 38943867 DOI: 10.1016/j.acthis.2024.152172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The prevalence of primary osteoarthritis is higher in females than males. However, it remains unclear if there are sex differences in the incidence of post-traumatic osteoarthritis after anterior cruciate ligament (ACL) reconstruction. In this study, we aimed to investigate the effects of sex on osteoarthritic changes after ACL reconstruction using an animal model. Rats were divided into the following four groups: male control, male ACL reconstruction, female control, and female ACL reconstruction. ACL reconstruction surgery was performed on the right knees of rats in the ACL reconstruction groups, while rats in the control groups did not undergo knee surgery. At 1, 4, and 12 weeks after surgery, cartilage degeneration in the medial tibial plateau and osteophyte formation in the proximal tibia were histologically assessed. After ACL reconstruction, an increase in the Mankin score, cartilage fissures, and osteophyte formation were detected within 12 weeks in both male and female rats, with similar degrees of these changes between males and females. However, changes in cartilage thickness and chondrocyte density after ACL reconstruction differed between males and females. Cartilage thickening was observed in male rats but not in female rats. The increase in chondrocyte density in the anterior region was detected in both males and females but was more pronounced in female rats. In conclusion, osteoarthritic changes were observed after ACL reconstruction in both male and female rats, but differences in changes in cartilage thickness and chondrocyte density were observed between males and females.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Marina Kanehara
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
5
|
Campbell TM, Laneuville O, Trudel G. Association of Knee Osteoarthritis and Flexion Contracture With Localized Tibial Articular Cartilage Loss: Data From the Osteoarthritis Initiative. J Rheumatol 2024; 51:285-290. [PMID: 38101919 DOI: 10.3899/jrheum.2023-0743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To evaluate whether a knee flexion contracture (FC) was associated with localized tibial articular cartilage loss over a 1-year period using Osteoarthritis Initiative quantitative data. METHODS Five hundred seventy-eight participants from a previously established nested case-control study of people with radiographic knee OA with or without progression, based on radiographs and symptoms, had their knee range of extension measured at baseline and received magnetic resonance imaging (MRI) at baseline and 1 year. The tibial articular cartilage of the medial and lateral condyles was segmented into anterior, center, and posterior regions. We tested for associations between knee FC (defined as lack of extension to 0°), and localized changes in tibial articular cartilage thickness or percent of denuded bone (0 mm thickness) after 1 year relative to baseline using ANOVA, controlling for baseline MRI outcomes and clinical factors. RESULTS Knee FC was associated with denuded bone in the medial condyle center (β 0.44, 95% CI 0.02-0.86) and preserved cartilage thickness in the medial condyle posterior (β 0.01, 95% CI 0.002-0.03) regions. CONCLUSION Knee FC unloading the tibial center region and loading the posterior region was associated with localized articular cartilage loss centrally and preserved articular cartilage posteriorly. These findings are consistent with knee FC negatively affecting unloaded tibial articular cartilage.
Collapse
Affiliation(s)
- T Mark Campbell
- T.M. Campbell, MD, MSc, Department of Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital, and Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, and Department of Medicine, Division of Physical Medicine and Rehabilitation, The Ottawa Hospital;
| | - Odette Laneuville
- O. Laneuville, PhD, Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, and Department of Biology, University of Ottawa
| | - Guy Trudel
- G. Trudel, MD, MSc, Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, and Department of Medicine, Division of Physical Medicine and Rehabilitation, The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Campbell TM, Westby M, Ghogomu ET, Fournier J, Ghaedi BB, Welch V. Stretching, Bracing, and Devices for the Treatment of Osteoarthritis-Associated Joint Contractures in Nonoperated Joints: A Systematic Review and Meta-Analysis. Sports Health 2023; 15:867-877. [PMID: 36691685 PMCID: PMC10606959 DOI: 10.1177/19417381221147281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CONTEXT Many patients with osteoarthritis (OA) develop range of motion (ROM) restrictions in their affected joints (contractures), associated with worse outcomes and rising healthcare costs. Effective treatment guidance for lost ROM in OA-affected joints is lacking. OBJECTIVE A systematic review and meta-analysis evaluating the effectiveness of stretching and/or bracing protocols on native (nonoperated) joint ROM in the setting of radiographically diagnosed OA. DATA SOURCES Seven databases, English-language. STUDY SELECTION Studies including participants with radiographically diagnosed OA in any native joint evaluating the effect of stretching or bracing on ROM. STUDY DESIGN Systematic review and meta-analysis. LEVEL OF EVIDENCE Level 2. DATA EXTRACTION Two reviewers independently screened articles for inclusion and assessed risk of bias in included trials. Primary outcomes were ROM, pain, and adverse events (AEs). RESULTS We identified 6284 articles. A total of 9 randomized controlled trials, all evaluating the knee, met eligibility criteria. For stretching, 3 pooled studies reported total ROM, which improved by mean difference (MD) of 9.3° (95% CI 5.0°,13.5°) versus controls. Two pooled studies showed improved knee flexion ROM (MD 10.8° [7.3°,14.2°]) versus controls. Five studies were pooled for knee extension with mean improvement 9.1° [3.4°,14.8°] versus controls. Seven pooled studies showed reduced pain (standardized MD 1.9 [1.2,2.6]). One study reported improved knee extension of 3.7° [2.9°,4.5°] with use of a device. No studies used orthoses. One study reported on AEs, with none noted. Performance bias was present in all included studies, and only 3 studies clearly reported blinding of outcome assessors. Strength of evidence for primary outcomes was considered moderate. CONCLUSION There was moderate-quality evidence that stretching is an effective strategy for improving knee total, flexion and extension ROM, and pain. Our findings suggest that stretching to regain joint ROM in OA is not futile and that stretching appears to be an appropriate conservative intervention to improve patient outcomes as part of a comprehensive knee OA treatment plan before arthroplasty.
Collapse
Affiliation(s)
- T. Mark Campbell
- Department of Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Bone and Joint Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- The Ottawa Hospital, Department of Medicine, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Marie Westby
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | - John Fournier
- University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Vivian Welch
- University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Kaneguchi A, Yamaoka K, Ozawa J. The effects of the amount of weight bearing on articular cartilage early after ACL reconstruction in rats. Connect Tissue Res 2023; 64:186-204. [PMID: 36334016 DOI: 10.1080/03008207.2022.2141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Osteoarthritis that develops after anterior cruciate ligament (ACL) reconstruction is a critical issue. We examined the effects of the amount of weight bearing early after ACL reconstruction on articular cartilage. MATERIALS AND METHODS Rats were divided into groups according to the treatment received: untreated control, ACL reconstruction (ACLR), ACL reconstruction plus hindlimb unloading (ACLR + HU), and ACL reconstruction plus morphine administration (ACLR + M). ACL reconstruction was performed on the right knee throughout the groups. To assess the amount of weight bearing, one-hindlimb standing time ratio (STR; operated side/contralateral side) during treadmill locomotion was evaluated during the experimental period. At day 7 or 14 post-surgery, cartilage degeneration of the medial tibial plateau was histologically assessed. RESULTS In the ACLR group, reduction in weight bearing characterized by significantly reduced STR was observed between day 1 and 7. Reduction in weight bearing was partially attenuated by morphine administration. Compared with the control group, the ACLR group exhibited an increased Mankin score that was accompanied by increased cyclooxygenase-2 expression in the anterior region. In the ACLR + HU group, Mankin scores were significantly higher in the middle and posterior regions, and cartilage thickness in these regions was significantly thinner than those in the ACLR group. In the ACLR + M group, although chondrocyte density in the anterior region was increased, all other parameters were not significantly different from those in the ACLR group. CONCLUSIONS Our results suggest that early weight bearing after ACL reconstruction is important to reduce cartilage degeneration.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| |
Collapse
|
8
|
Anserine bursa palpation tenderness is a risk factor for knee osteoarthritis progression and arthroplasty: data from the Osteoarthritis Initiative. Clin Rheumatol 2023; 42:519-527. [PMID: 36372850 DOI: 10.1007/s10067-022-06429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Anserine bursa pain (ABP) is defined as the presence of palpation tenderness medially below the joint line, which is 2 cm from the tibial tuberosity. This study aimed to determine a link between ABP and three knee outcomes: frequent pain, joint space narrowing (JSN) progression, and total knee arthroplasty (TKA). METHODS Participants from the Osteoarthritis Initiative cohort were included in this study. Frequent ABP was defined as presenting thrice at four-time points. The Chi-square test and binary logistic regression analyses examined the associations between ABP and the three knee outcomes. Furthermore, Cox Proportional Hazards Model explored the association between ABP and TKA. RESULTS Baseline ABP was linked to a higher risk of frequent pain (odds ratio (OR): 2.28, 95% confidence interval (CI): 1.76-2.97, P < 0 .001) and TKA (OR: 1.54, 95% CI 1.01-2.36, P = 0 .044) after adjusting for gender, baseline age, body mass index (BMI), and Kellgren-Lawrence (KL) grade. In the frequent ABP group from baseline to the 4-year follow-up (≥ 3 of four-time points), frequent pain (OR: 3.14, 95% CI: 2.34-4.22, P < 0 .001) and TKA (OR: 1.79, 95% CI: 1.11-2.90, P = 0 .017) had a high association with ABP after adjusting for gender, baseline age, BMI, and KL grade. CONCLUSION This study highlights the association between ABP and knee outcomes; therefore, clinicians should pay closer attention during the physical examination, especially in middle-aged and older female patients. Moreover, understanding ABP cause aids in better diagnosis and treatment. Key Points • This is the first study to identify an association between anserine bursa palpation tenderness and symptomatic knee osteoarthritis. • As opposed to most studies, which focus on intra-articular symptoms and signs, this study focused on extra-articular symptoms and signs. • Clinically, anserine bursa palpation tenderness can be utilized to determine patients at risk for the progression of knee osteoarthritis, thereby aiding in providing early therapeutic intervention.
Collapse
|
9
|
Talar OsteoPeriostic grafting from the Iliac Crest (TOPIC) for lateral osteochondral lesions of the talus: operative technique. OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE 2023; 35:82-91. [PMID: 36622413 PMCID: PMC10076387 DOI: 10.1007/s00064-022-00789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 11/21/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To provide a natural scaffold, good quality cells, and growth factors to facilitate replacement of the complete osteochondral unit with matching talar curvature for large osteochondral lesions of the lateral talar dome. INDICATIONS Symptomatic primary and non-primary lateral osteochondral lesions of the talus not responding to conservative treatment. The anterior-posterior or medial-lateral diameter should exceed 10 mm on computed tomography (CT) for primary lesions; for secondary lesions, there are no size limitations. CONTRAINDICATIONS Tibiotalar osteoarthritis grade III, malignancy, active infectious ankle joint pathology, and hemophilic or other diffuse arthropathy. SURGICAL TECHNIQUE Anterolateral arthrotomy is performed after which the Anterior TaloFibular Ligament (ATFL) is disinserted from the fibula. Additional exposure is achieved by placing a Hintermann distractor subluxating the talus ventrally. Thereafter, the osteochondral lesion is excised in toto from the talar dome. The recipient site is micro-drilled in order to disrupt subchondral bone vessels. Thereafter, the autograft is harvested from the ipsilateral iliac crest with an oscillating saw, after which the graft is adjusted to an exactly fitting shape to match the extracted lateral osteochondral defect and the talar morphology as well as curvature. The graft is implanted with a press-fit technique after which the ATFL is re-inserted followed by potential augmentation with an InternalBrace™ (Arthrex, Naples, FL, USA). POSTOPERATIVE MANAGEMENT Non-weightbearing cast for 6 weeks, followed by another 6 weeks with a walking boot. After 12 weeks, a computed tomography (CT) scan is performed to assess consolidation of the inserted autograft. The patient is referred to a physiotherapist.
Collapse
|
10
|
Kaneguchi A, Ozawa J, Yamaoka K. Effects of Joint Immobilization and Treadmill Exercise on Articular Cartilage After ACL Reconstruction in Rats. Orthop J Sports Med 2022; 10:23259671221123543. [PMID: 36276424 PMCID: PMC9580101 DOI: 10.1177/23259671221123543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background: The development of osteoarthritis after anterior cruciate ligament (ACL) reconstruction (ACLR) is an important issue. However, the appropriate rehabilitation protocol to prevent cartilage degeneration due to postoperative osteoarthritis is unclear. Purpose: To examine the effects of joint immobilization and treadmill exercise on articular cartilage after ACLR. Study Design: Controlled laboratory study. Methods: A total of 55 rats received unilateral knee ACL transection and reconstruction surgery using tail tendon autografts. After surgery, rats were reared without intervention, with joint immobilization, or with daily treadmill exercise (12 m/minute, 60 minutes/day, 6 days/week). Treadmill exercise was initiated at 3 or 14 days postoperatively. After 2 weeks of immobilization, the fixation device was removed from some of the immobilized rats, and the knee was allowed to move freely for 2 weeks. Untreated, age-matched rats (n = 8) were used as controls. At 2 or 4 weeks after starting the experiment, cartilage degeneration in the medial tibial plateau was histologically assessed using a modified Mankin score, cartilage thickness, chondrocyte density, and immunohistochemistry for cyclooxygenase-2 (COX-2) in the anterior, middle, and posterior regions. Results: After ACLR, cartilage degeneration in the anterior region characterized by increased Mankin score, accompanied with increased COX-2 expression, was detected. Joint immobilization after ACLR facilitated cartilage degeneration, which is detected by histological changes such as reductions in cartilage thickness, chondrocyte density, and high Mankin scores. Enhanced COX-2 expression in all degenerated cartilage regions was also detected. It was found that 2 weeks of remobilization could not restore cartilage degeneration induced by 2 weeks of immobilization after ACLR. Treadmill exercise after ACLR did not affect most articular cartilage parameters, regardless of the timing of exercise. Conclusion: Our results indicated that (1) immobilization after ACLR accelerates cartilage degeneration, even when applied only for 2 weeks, and (2) mild exercise during early phases after ACLR does not facilitate cartilage degeneration. Clinical Relevance: To reduce cartilage degeneration, periods of joint immobilization after ACLR should be minimized. Mild exercise during the early phases after ACLR will not negatively affect articular cartilage.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.,Junya Ozawa, PT, PhD, Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan ()
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
11
|
Joint Cartilage in Long-Duration Spaceflight. Biomedicines 2022; 10:biomedicines10061356. [PMID: 35740378 PMCID: PMC9220015 DOI: 10.3390/biomedicines10061356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current literature available on joint cartilage alterations in long-duration spaceflight. Evidence from spaceflight participants is currently limited to serum biomarker data in only a few astronauts. Findings from analogue model research, such as bed rest studies, as well as data from animal and cell research in real microgravity indicate that unloading and radiation exposure are associated with joint degeneration in terms of cartilage thinning and changes in cartilage composition. It is currently unknown how much the individual cartilage regions in the different joints of the human body will be affected on long-term missions beyond the Low Earth Orbit. Given the fact that, apart from total joint replacement or joint resurfacing, currently no treatment exists for late-stage osteoarthritis, countermeasures might be needed to avoid cartilage damage during long-duration missions. To plan countermeasures, it is important to know if and how joint cartilage and the adjacent structures, such as the subchondral bone, are affected by long-term unloading, reloading, and radiation. The use of countermeasures that put either load and shear, or other stimuli on the joints, shields them from radiation or helps by supporting cartilage physiology, or by removing oxidative stress possibly help to avoid OA in later life following long-duration space missions. There is a high demand for research on the efficacy of such countermeasures to judge their suitability for their implementation in long-duration missions.
Collapse
|
12
|
Hegde A, Mane PP, Shetty CB, Thakkar SA. Neurogenic heterotopic ossificans of hips in a case of expanded dengue syndrome following critical illness polyneuropathy. BMJ Case Rep 2022; 15:e246186. [PMID: 35264380 PMCID: PMC8915274 DOI: 10.1136/bcr-2021-246186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2022] [Indexed: 11/04/2022] Open
Abstract
We present a case of 71-year-old man with bilateral hip neurogenic heterotopic ossificans following critical illness polyneuropathy as a complication of expanded dengue syndrome. His left hip was stiff and showed a circumferential ossific mass. After initial medical management, the patient underwent excision of ossific mass using posterior approach. For adequate excision, femoral head and neck were resected and a hybrid total hip arthroplasty was performed. The patient was followed up for 2 years and showed good clinical outcome without recurrence of heterotopic ossification. This case highlights the rare aetiology of neurogenic heterotopic ossification which is critical illness polyneuropathy following expanded dengue syndrome. It highlights that adequate resection and a total hip arthroplasty can be a viable option in selected cases of circumferential heterotopic ossification in old individuals.
Collapse
Affiliation(s)
- Atmananda Hegde
- Orthopaedics, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, India
| | - Prajwal Prabhudev Mane
- Orthopaedics, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, India
| | - Chethan B Shetty
- Orthopaedics, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, India
| | - Samarth Ajay Thakkar
- Orthopaedics, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, India
| |
Collapse
|
13
|
Liu Y, Dzidotor G, Le TT, Vinikoor T, Morgan K, Curry EJ, Das R, McClinton A, Eisenberg E, Apuzzo LN, Tran KTM, Prasad P, Flanagan TJ, Lee SW, Kan HM, Chorsi MT, Lo KWH, Laurencin CT, Nguyen TD. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med 2022; 14:eabi7282. [PMID: 35020409 DOI: 10.1126/scitranslmed.abi7282] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
More than 32.5 million American adults suffer from osteoarthritis, and current treatments including pain medicines and anti-inflammatory drugs only alleviate symptoms but do not cure the disease. Here, we have demonstrated that a biodegradable piezoelectric poly(L-lactic acid) (PLLA) nanofiber scaffold under applied force or joint load could act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. The PLLA scaffold under applied force or joint load generated a controllable piezoelectric charge, which promoted extracellular protein adsorption, facilitated cell migration or recruitment, induced endogenous TGF-β via calcium signaling pathway, and improved chondrogenesis and cartilage regeneration both in vitro and in vivo. Rabbits with critical-sized osteochondral defects receiving the piezoelectric scaffold and exercise treatment experienced hyaline-cartilage regeneration and completely healed cartilage with abundant chondrocytes and type II collagen after 1 to 2 months of exercise (2 to 3 months after surgery including 1 month of recovery before exercise), whereas rabbits treated with nonpiezoelectric scaffold and exercise treatment had unfilled defect and limited healing. The approach of combining biodegradable piezoelectric tissue scaffolds with controlled mechanical activation (via physical exercise) may therefore be useful for the treatment of osteoarthritis and is potentially applicable to regenerating other injured tissues.
Collapse
Affiliation(s)
- Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Godwin Dzidotor
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kristin Morgan
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Eli J Curry
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Aneesah McClinton
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ellen Eisenberg
- Division of Oral and Maxillofacial Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT 06030, USA
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Lorraine N Apuzzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Khanh T M Tran
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Pooja Prasad
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Tyler J Flanagan
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Seok-Woo Lee
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Meysam T Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kevin W H Lo
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Li Z, Xu G, Wang C, Wang Q, Liu C, Guo T, Wu L, Cao D. Variation characteristics of stress distribution in the subchondral bone of the knee joint of judo athletes with long-term stress changes. Front Endocrinol (Lausanne) 2022; 13:1082799. [PMID: 36778597 PMCID: PMC9909959 DOI: 10.3389/fendo.2022.1082799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To investigate the distribution of bone density in the subchondral bone tissue of the knee joint due to the mechanical stress load generated by judo, the bone tissue volume of different densities and the bone remodeling characteristics of the subchondral bone of the knee joint. METHODS CT imaging data of the knee joint were collected from 15 healthy individuals as controls and 15 elite judo athletes. Firstly, they were processed by the CTOAM technique, and secondly, the distribution pattern of high-density areas of the knee joint was localized using nine anatomical regions. In addition, three tomographic images were selected in the sagittal, coronal, and axial 2D image windows to observe the distribution of different densities of bone tissue. Finally, the percentage of bone tissue volume (%BTV) and bone remodeling trend of bone tissues with different densities were determined. RESULTS In this study, high-density areas were found in the 4th, 5th, and 6th regions of the articular surface of the distal femur and the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th and 8th regions of the tibial plateau in judo athletes; the distribution of high-density areas on the articular surface of the distal femur in control subjects was similar with judo athletes, and high-density areas were mainly found in the 4th and 5th regions of the tibial plateau. The %BTV of low (401-500HU in the distal femur; 301-400 HU and 401-500HU in the tibial plateau), moderate, and high bone density was higher in judo athletes than in controls in the subchondral bone of the distal femur and tibial plateau (P< 0.05). CONCLUSION The history of compressive stresses, struck stresses, soft tissue tension and pull, self-gravity and intra-articular stress loading generated by the lower limb exercise technique of judo leads to specific forms of stress distribution and bone tissue remodeling in the subchondral bone tissue within the distal femur and tibia plateau.
Collapse
Affiliation(s)
- Zhiqiang Li
- School of Physical Education, North University of China, Taiyuan, China
| | - Guanghua Xu
- School of Physical Education, North University of China, Taiyuan, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chengjun Wang
- School of Physical Education, North University of China, Taiyuan, China
| | - Qiuyuan Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caiping Liu
- School of Physical Education, North University of China, Taiyuan, China
| | - Tingting Guo
- Ergonomics and Functional Clothing Laboratory, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Lijun Wu
- School of Physical Education, Shanxi University, Taiyuan, China
- *Correspondence: Diankang Cao, ; Lijun Wu,
| | - Diankang Cao
- School of Physical Education, North University of China, Taiyuan, China
- *Correspondence: Diankang Cao, ; Lijun Wu,
| |
Collapse
|
15
|
Logerstedt DS, Ebert JR, MacLeod TD, Heiderscheit BC, Gabbett TJ, Eckenrode BJ. Effects of and Response to Mechanical Loading on the Knee. Sports Med 2021; 52:201-235. [PMID: 34669175 DOI: 10.1007/s40279-021-01579-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Mechanical loading to the knee joint results in a differential response based on the local capacity of the tissues (ligament, tendon, meniscus, cartilage, and bone) and how those tissues subsequently adapt to that load at the molecular and cellular level. Participation in cutting, pivoting, and jumping sports predisposes the knee to the risk of injury. In this narrative review, we describe different mechanisms of loading that can result in excessive loads to the knee, leading to ligamentous, musculotendinous, meniscal, and chondral injuries or maladaptations. Following injury (or surgery) to structures around the knee, the primary goal of rehabilitation is to maximize the patient's response to exercise at the current level of function, while minimizing the risk of re-injury to the healing tissue. Clinicians should have a clear understanding of the specific injured tissue(s), and rehabilitation should be driven by knowledge of tissue-healing constraints, knee complex and lower extremity biomechanics, neuromuscular physiology, task-specific activities involving weight-bearing and non-weight-bearing conditions, and training principles. We provide a practical application for prescribing loading progressions of exercises, functional activities, and mobility tasks based on their mechanical load profile to knee-specific structures during the rehabilitation process. Various loading interventions can be used by clinicians to produce physical stress to address body function, physical impairments, activity limitations, and participation restrictions. By modifying the mechanical load elements, clinicians can alter the tissue adaptations, facilitate motor learning, and resolve corresponding physical impairments. Providing different loads that create variable tensile, compressive, and shear deformation on the tissue through mechanotransduction and specificity can promote the appropriate stress adaptations to increase tissue capacity and injury tolerance. Tools for monitoring rehabilitation training loads to the knee are proposed to assess the reactivity of the knee joint to mechanical loading to monitor excessive mechanical loads and facilitate optimal rehabilitation.
Collapse
Affiliation(s)
- David S Logerstedt
- Department of Physical Therapy, University of the Sciences in Philadelphia, Philadelphia, PA, USA.
| | - Jay R Ebert
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia.,Orthopaedic Research Foundation of Western Australia, Perth, WA, Australia.,Perth Orthopaedic and Sports Medicine Research Institute, Perth, WA, Australia
| | - Toran D MacLeod
- Department of Physical Therapy, Sacramento State University, Sacramento, CA, USA
| | - Bryan C Heiderscheit
- Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, QLD, Australia.,Centre for Health Research, University of Southern Queensland, Ipswich, QLD, Australia
| | - Brian J Eckenrode
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| |
Collapse
|
16
|
Kerkhoffs GMMJ, Altink JN, Stufkens SAS, Dahmen J. Talar OsteoPeriostic grafting from the Iliac Crest (TOPIC) for large medial talar osteochondral defects : Operative technique. OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE 2021; 33:160-169. [PMID: 32902691 PMCID: PMC8041673 DOI: 10.1007/s00064-020-00673-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Provision of a natural scaffold, good quality cells, and growth factors in order to facilitate the replacement of the complete osteochondral unit with matching talar curvature for large medial primary and secondary osteochondral defects of the talus. INDICATIONS Symptomatic primary and secondary medial osteochondral defects of the talus not responding to conservative treatment; anterior-posterior or medial-lateral diameter >10 mm on computed tomography (CT); closed distal tibial physis in young patients. CONTRAINDICATIONS Tibiotalar osteoarthritis grade III; multiple osteochondral defects on the medial, central, and lateral talar dome; malignancy; active infectious ankle joint pathology. SURGICAL TECHNIQUE A medial distal tibial osteotomy is performed, after which the osteochondral defect is excised in toto from the talar dome. The recipient site is microdrilled in order to disrupt subchondral bone vessels. Then, the autograft is harvested from the ipsilateral iliac crest with an oscillating saw, after which the graft is adjusted to an exact fitting shape to match the extracted osteochondral defect and the talar morphology as well as curvature. The graft is implanted with a press-fit technique after which the osteotomy is reduced with two 3.5 mm lag screws and the incision layers are closed. In cases of a large osteotomy, an additional third tubular buttress plate is added, or a third screw at the apex of the osteotomy. POSTOPERATIVE MANAGEMENT Non-weight bearing cast for 6 weeks, followed by another 6 weeks with a walking boot. After 12 weeks, a CT scan is performed to assess consolidation of the osteotomy and the inserted autograft. The patient is referred to a physiotherapist. RESULTS Ten cases underwent the TOPIC procedure, and at 1 year follow-up all clinical scores improved. Radiological outcomes showed consolidation of all osteotomies and all inserted grafts showed consolidation. Complications included one spina iliaca anterior avulsion and one hypaesthesia of the saphenous nerve; in two patients the fixation screws of the medial malleolar osteotomy were removed.
Collapse
Affiliation(s)
- G. M. M. J. Kerkhoffs
- Amsterdam UMC, Location AMC, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc International Olympic Committee (IOC) Research Center, Amsterdam, The Netherlands
| | - J. N. Altink
- Amsterdam UMC, Location AMC, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc International Olympic Committee (IOC) Research Center, Amsterdam, The Netherlands
| | - S. A. S. Stufkens
- Amsterdam UMC, Location AMC, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc International Olympic Committee (IOC) Research Center, Amsterdam, The Netherlands
| | - J. Dahmen
- Amsterdam UMC, Location AMC, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc International Olympic Committee (IOC) Research Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Campbell TM, McGonagle D. Flexion contracture is a risk factor for knee osteoarthritis incidence, progression and earlier arthroplasty: Data from the Osteoarthritis Initiative. Ann Phys Rehabil Med 2021; 64:101439. [PMID: 33065299 DOI: 10.1016/j.rehab.2020.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Knee joint osteoarthritis (OA) is often accompanied by flexion contracture (FC), but the impact of FC on important outcomes across the spectrum of OA, such as the incidence, progression and need for total knee arthroplasty (TKA), is not well established. OBJECTIVE We evaluated whether the presence and/or severity of knee FC were risk factors for worse OA clinical outcomes, radiographic incidence and progression as well as time to TKA. METHODS We evaluated longitudinal 9-year data from the Osteoarthritis Initiative (OAI) database for 3 sub-cohorts: at-risk of knee OA (n=3284), radiographically established knee OA (n=1390), and low-risk controls (n=122). We classified knee FC as none, mild, moderate or severe based on knee extension at enrolment. Knee OA outcomes were extracted from the database. RESULTS FC was present in 32.4% of knees. Participants with FC had increased knee OA incidence with joint space narrowing in the definition (corrected odds ratio 1.31 [95% confidence interval (CI) 1.04-1.64]). The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores for pain, stiffness and function were worse with than without FC at nearly all times (p<0.001). Effect estimates were significant for all 3 WOMAC sub-scales comparing FC to no FC (pain: 0.15 [95% CI 0.02-0.28], stiffness: 0.11 [0.05-0.18], function: 0.49 [0.05-0.93]). Individuals with knee FC had higher Kellgren and Lawrence grade (effect size 0.31 [95% CI 0.25-0.37]) and were more likely to undergo TKA (corrected odds ratio 1.37 [95% CI 1.10-1.71]) than those without FC. All outcomes were worse with increasing FC severity. CONCLUSION The presence of knee FC at enrolment was a risk factor for radiographic OA incidence including joint space narrowing, worse clinical outcomes, radiographic progression and the need for early TKA. Treatment of knee FC may represent an option across the OA spectrum. Further research is needed to evaluate the pathophysiology, joint structure alterations and longitudinal impact of treating FC in individuals with knee OA.
Collapse
Affiliation(s)
- T Mark Campbell
- Department of Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital-Ottawa, 43 Bruyère St, K1N 5C8 Ontario, ON, Canada.
| | - Dennis McGonagle
- University of Leeds and NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, UK.
| |
Collapse
|
18
|
Watanabe M, Campbell TM, Reilly K, Uhthoff HK, Laneuville O, Trudel G. Bone replaces unloaded articular cartilage during knee immobilization. A longitudinal study in the rat. Bone 2021; 142:115694. [PMID: 33069921 DOI: 10.1016/j.bone.2020.115694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Joint immobility results in deleterious changes such as capsule shortening, bone loss and articular cartilage damage. Immobilization of rat knees in flexion for 32 weeks resulted in the distinctive feature of well-established replacement of articular cartilage by bone. Determining the time of onset of bone replacement is critical for the prevention of this likely irreversible complication of joint immobilization. OBJECTIVES To determine the onset and progression of bone replacement in the anterior tibial articular cartilage following knee immobilization in flexion. METHODS One hundred forty-nine adult male Sprague-Dawley rats were used. The experimental groups had one knee immobilized at 135°of flexion for durations of 2, 4, 8, 16 or 32 weeks and were compared to age-matched controls. The knees were evaluated histologically for the presence and cross-sectional area of bone within the articular cartilage of the tibia. Distance between the anterior aspect of the tibia and intact articular cartilage and cross-sectional bone area of the tibial epiphysis were also measured. RESULT Bone replacement in the articular cartilage was observed in 14%, 75%, 95%, 100% and 100% of knees after 2, 4, 8, 16 and 32 weeks of immobilization, respectively. No bone replacement was seen in the control knees. The mean area of bone replacement increased from 0.004 ± 0.007 mm2 after 2 weeks to 0.041 ± 0.036 mm2; 0.085 ± 0.077 mm2; 0.092 ± 0.056 mm2 and 0.107 ± 0.051 mm2 after 4, 8, 16 and 32 weeks of immobilization, respectively, (p < 0.001) largely restricted to the anterior tibial articular cartilage. Mean distance to intact articular cartilage increased from 0.89 ± 0.69 mm at 2 weeks to 1.10 ± 0.35 mm; 1.65 ± 0.77 mm; 1.48 ± 0.63 mm; and 1.78 ± 0.58 mm after 4, 8, 16 and 32 weeks of immobilization, respectively (p = 0.001). Epiphyseal bone cross-sectional area was significantly reduced following 4, 8, and 16 weeks of immobilization compare to controls (all 3 p < 0.05). CONCLUSION Knee immobilization in flexion resulted in bone replacement in the anterior tibial articular cartilage that began after 2 weeks and was prevalent after 4 weeks of immobilization. The bone replacement progressed in an anterior-to-posterior direction and stopped at the area of contact between tibia and femur. These findings stress the importance of mobility to maintain joint health.
Collapse
Affiliation(s)
- Masanori Watanabe
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Faculty of Rehabilitation Science, Nagoya Gakuin University, 3-1-17 Taiho, Atsuta-ku, Nagoya, Aichi 456-0062, Japan.
| | - T Mark Campbell
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital, 43 Bruyere St. Room, 240D, Ottawa, ON K1N 5C8, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Katherine Reilly
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Hans K Uhthoff
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Odette Laneuville
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N6N5, Canada.
| | - Guy Trudel
- Bone and Joint Research Laboratory, Division of Physical and Rehabilitation Medicine, Department of Medicine, Ottawa Hospital Research Institute, 505 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
19
|
Campbell TM, Ramsay T, Trudel G. Knee Flexion Contractures Are Associated with Worse Pain, Stiffness, and Function in Patients with Knee Osteoarthritis: Data from the Osteoarthritis Initiative. PM R 2020; 13:954-961. [DOI: 10.1002/pmrj.12497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Affiliation(s)
- T Mark Campbell
- Department of Physical Medicine and Rehabilitation Elisabeth Bruyère Hospital Ottawa ON Canada
| | - Tim Ramsay
- Ottawa Hospital Research Institute Ottawa ON Canada
| | - Guy Trudel
- Department of Medicine, Division of Physical and Rehabilitation Medicine The Ottawa Hospital Ottawa ON Canada
| |
Collapse
|
20
|
Zhou H, Trudel G, Alexeev K, Laneuville O. Reversibility of marrow adipose accumulation and reduction of trabecular bone in the epiphysis of the proximal tibia. Acta Histochem 2020; 122:151604. [PMID: 33066832 DOI: 10.1016/j.acthis.2020.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Mechanical stimuli play an important role in the homeostasis of trabecular bone and marrow adipose tissue, particularly for the weight-bearing skeleton. Prolonged immobilization and disuse have been shown to reduce trabecular bone content and increase marrow adipose tissue in the bones of lower limb joints such as the knee. However, details on the temporal response of this relationship to prolonged immobilization and its reversibility is limited. Forty rats had one knee immobilized at 45° of flexion for 2, 4, 8, or 16 weeks and subsequently remobilized for 0 or 8 weeks. The contralateral knees were used as controls. Histomorphometric measures of trabecular bone and marrow adipose tissue (MAT) areas were conducted in the epiphysis of the proximal tibia. Knee immobilization for 4, 8, and 16 weeks significantly reduced trabecular bone area by -0.125, -0.139, and -0.161 mm2/mm2, respectively, with corresponding 95 % CIs of [-0.012, -0.239], [-0.006, -0.273], and [-0.101, -0.221]. MAT area significantly increased at 2 and 16 weeks by +0.008 and +0.027 mm2/mm2, respectively, with 95 % CIs of [0.014, 0.002] and [0.039, 0.016]. Remobilization for 8 weeks restored trabecular bone area compared to the contralateral knee and the magnitude of change was significantly greater for 8 and 16 weeks of immobilization with effect sizes of 1.69 and 1.86, respectively. The difference in MAT area between immobilized and contralateral knees were eliminated with remobilization. These results characterize the temporal response of trabecular bone and MAT in the epiphysis of the proximal tibia to joint immobilization and remobilization.
Collapse
|
21
|
Ding Z, Cong S, Xie Y, Feng S, Chen S, Chen J. Location of the Suture Anchor in Hill-Sachs Lesion Could Influence Glenohumeral Cartilage Quality and Limit Range of Motion After Arthroscopic Bankart Repair and Remplissage. Am J Sports Med 2020; 48:2628-2637. [PMID: 32804547 DOI: 10.1177/0363546520945723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND No study has reported clinical evidence for cartilage change in the glenohumeral joint or the cause of loss in range of motion (ROM) after arthroscopic Bankart repair with remplissage technique (BR). PURPOSE To investigate the postoperative features of glenohumeral joint cartilage, ROM, and anchor placement for remplissage at a minimum of 2 years of follow-up after BR and to analyze the correlations. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS A total of 21 patients who underwent BR received follow-up for a minimum of 2 years. At both preoperative assessment and final follow-up, passive shoulder ROM, Oxford Shoulder Instability Score, Simple Shoulder Test score, and Single Assessment Numerical Evaluation score were assessed. All patients underwent 3.0-T magnetic resonance imaging (MRI) examination at final follow-up. The clinical outcomes, glenohumeral cartilage or Hill-Sachs lesion-related MRI parameters, and their potential correlations were analyzed. RESULTS The mean follow-up was 55.0 months (range, 24-119 months). Compared with preoperative assessment, all functional scores significantly improved (P < .001). At the final follow-up, a significant ROM loss (>15°) of external rotation (ER) at the side (ER0) was found in 12 patients, among whom 8 patients had significant ROM loss of ER at 90° of abduction as well. Further, 12 patients with decreased ER had significantly higher signal intensity of cartilage on the anterior, middle, and posterior humeral head (anterior, P = .002; middle, P < .001; posterior, P < .001) than 9 patients with normal ER. The ratio of the width of the remplissage anchor to the diameter of the humeral head (w:d ratio) was significantly greater (P = .031) in the decreased ER group than in the normal ER group. Correlation analysis showed that signal intensity on the posterior humeral head and ER0 loss (ΔER0) had a significantly positive correlation (r = 0.516; P = .034), while the w:d ratio and ΔER0 had a significantly positive correlation (r = 0.519; P = .039). CONCLUSION At a minimum of 2 years of follow-up, patients who underwent BR showed significant clinical improvement compared with preoperative assessment, except for limitations in ER. The glenohumeral cartilage degeneration (higher signal intensity) after BR had a significantly positive correlation with the postoperative ER loss, which was found to be associated with a relatively medial placement of the remplissage anchor.
Collapse
Affiliation(s)
- Zheci Ding
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Shuang Cong
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Yuxue Xie
- Department of Radiology, Huashan Hospital, Shanghai, China
| | - Sijia Feng
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| |
Collapse
|
22
|
Dehail P, Gaudreault N, Zhou H, Cressot V, Martineau A, Kirouac-Laplante J, Trudel G. Joint contractures and acquired deforming hypertonia in older people: Which determinants? Ann Phys Rehabil Med 2019; 62:435-441. [DOI: 10.1016/j.rehab.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023]
|
23
|
Roberts HM, Law RJ, Thom JM. The time course and mechanisms of change in biomarkers of joint metabolism in response to acute exercise and chronic training in physiologic and pathological conditions. Eur J Appl Physiol 2019; 119:2401-2420. [PMID: 31650307 PMCID: PMC6858392 DOI: 10.1007/s00421-019-04232-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The benefits of exercise across the lifespan and for a wide spectrum of health and diseases are well known. However, there remains less clarity as to the effects of both acute and chronic exercise on joint health. Serum biomarkers of joint metabolism are sensitive to change and have the potential to differentiate between normal and adverse adaptations to acute and chronic load. Therefore, the primary objective of this review is to evaluate how serum biomarkers can inform our understanding of how exercise affects joint metabolism. METHODS A comprehensive literature search was completed to identify joint biomarkers previously used to investigate acute and chronic exercise training. RESULTS Identified biomarkers included those related to joint cartilage, bone, synovium, synovial fluid, and inflammation. However, current research has largely focused on the response of serum cartilage oligomeric matrix protein (COMP) to acute loading in healthy young individuals. Studies demonstrate how acute loading transiently increases serum COMP (i.e., cartilage metabolism), which is mostly dependent on the duration of exercise. This response does not appear to be associated with any lasting deleterious changes, cartilage degradation, or osteoarthritis. CONCLUSION Several promising biomarkers for assessing joint metabolism exist and may in future enhance our understanding of the physiological response to acute and chronic exercise. Defining 'normal' and 'abnormal' biomarker responses to exercise and methodological standardisation would greatly improve the potential of research in this area to understand mechanisms and inform practice.
Collapse
Affiliation(s)
- Harry M Roberts
- School of Biosciences and Medicine, University of Surrey, The Leggett Building, Daphne Jackson Road, Guildford, GU2 7WG, UK.
| | - Rebecca-Jane Law
- North Wales Centre for Primary Care Research, School of Health Sciences, Bangor University, Bangor, UK
| | - Jeanette M Thom
- School of Medical Sciences, University of New South Wales, Sydney, Australia.,School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
24
|
Campbell TM, Ghaedi BB, Ghogomu ET, Westby M, Welch VA. Effectiveness of stretching and bracing for the treatment of osteoarthritis-associated joint contractures prior to joint replacement: a systematic review protocol. BMJ Open 2019; 9:e028177. [PMID: 31366647 PMCID: PMC6678023 DOI: 10.1136/bmjopen-2018-028177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Many patients with osteoarthritis (OA) develop restrictions in passive range of motion (ROM) of their affected joints (called contractures), leading to increased pain and reduced function. Effective treatment to reverse OA-associated contractures is lacking. Our aim is to evaluate the effectiveness of stretching and bracing on native (non-operated) joint contractures in people with radiographically diagnosed OA. METHODS AND ANALYSIS We will search the following databases without time restriction: Cochrane Library (CENTRAL, Database of Abstracts of Reviews of Effects, Health Technology Assessment Database), MEDLINE, Embase, CINAHL, SCI-EXPANDED (ISI Web of Knowledge) and PEDro. Other sources will include WHO International Clinical Trials Registry Platform, reference lists of included studies, relevant systematic reviews and textbooks. We will include randomised controlled trials (RCTs), controlled clinical trials, controlled before-and-after studies, cohort studies and case-control studies that include participants ≥18 years of age with radiographic evidence of OA. Participants with inflammatory arthropathies or those that have undergone joint arthroplasty will be excluded. Interventions will include therapist-administered or patient-administered stretching, use of an orthosis (static or dynamic), use of serial casting and/or adjunctive modalities. Outcomes will include joint ROM (active and passive), pain (rest and/or activity related), stiffness, activity limitations, participation restrictions, quality of life and adverse events. Studies will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Study inclusion, data extraction and quality assessment will be performed independently by two reviewers. Risk of bias will be assessed using appropriate tools for each study design. Data synthesis will be performed using Cochrane Review Manager software. If sufficient data are available, meta-analysis will be conducted. We will summarise the quality of evidence using Grading of Recommendations Assessment, and the effect size of interventions for RCT and non-RCT studies. ETHICS AND DISSEMINATION Ethics approval not required because individual patient data are not included. Findings will be disseminated in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42019127244.
Collapse
Affiliation(s)
- T Mark Campbell
- Physical Medicine and Rehabilitation, Elisabeth-Bruyère Hospital, Ottawa, Ontario, Canada
| | - Bahareh Bahram Ghaedi
- Physical Medicine and Rehabilitation, Bruyère Research Institute, Ottawa, Ontario, Canada
| | | | - Marie Westby
- Centre for Hip Health and Mobility, Vancouver, British Columbia, Canada
| | - Vivian A Welch
- Methods Centre, Bruyère Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1021-1035. [PMID: 30678893 DOI: 10.1016/j.msec.2019.01.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/26/2018] [Accepted: 01/12/2019] [Indexed: 01/19/2023]
Abstract
Defects in bones can be caused by a plethora of reasons, such as trauma or illness, and in many cases, it poses challenges to the current treatment approaches for bone repair. With increasing demand of bone bioengineering in tissue transplant, there is a need to source for sustainable solutions to induce bone regeneration. Polymeric biomaterials have been identified as a promising approach due to its excellent biocompatibility and controllable biodegradability. Specifically, poly(ethylene glycol) (PEG) is one of the most commonly investigated polymer for use in bio-related application due to its bioinertness and versatility. Furthermore, the hydrophilic nature enables it to be incorporated with hydrophobic but biodegradable polymers like, polylactide (PLA) and polycaprolactone (PCL), to create an amphiphilic polymer. This article reviews the recent synthetic strategies available for the construction of PEG conjugated polymeric system, analysis of PEG influence on the material properties, and provides an overview of its application in bone engineering.
Collapse
|
26
|
Endowing iPSC-Derived MSCs with Angiogenic and Keratinogenic Differentiation Potential: A Promising Cell Source for Skin Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8459503. [PMID: 30302340 PMCID: PMC6158941 DOI: 10.1155/2018/8459503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/23/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell-based therapy for skin regeneration. Aiming to establish human iPSCs as a potential cell source for skin tissue engineering, we expect to obtain an epidermal-like cell line with angiogenic and keratinogenic differentiation potential via inducing iPSC-derived mesenchymal stem cells (iPSC-MSCs) with basic fibroblast growth factor (bFGF) and/or keratinocyte growth factor (KGF). The results show that iPSC-MSCs were successfully induced with a positive FGFR/KGFR expression on the cell surface. BFGF/KGF induction could significantly increase the expression of vascularization marker CD31 and keratinization marker CK10, respectively, while when combined together, although CD31 and CK10 were still positively expressed, their expressions were lower than that of the single induction group, suggesting that the effects of the two growth factors interfered with each other. This cell line with angiogenic and keratinogenic differentiation potential provides a promising new source of cells for the construction of well vascularized and keratinized tissue engineered skin, furthermore establishing an effective strategy for iPSC-based therapy in skin tissue engineering.
Collapse
|
27
|
Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2018; 14:674-681. [DOI: 10.1038/s41584-018-0073-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Lin Y, Li T, Xiong Y, Li J, Fu W. [Research progress of rehabilitation after autologous chondrocyte implantation on knee]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:758-763. [PMID: 29905057 PMCID: PMC8414014 DOI: 10.7507/1002-1892.201801034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/30/2018] [Indexed: 02/05/2023]
Abstract
Objective To summarize the research progress of rehabilitation after autologous chondrocyte implantation (ACI). Methods The literature related to basic science and clinical practice about rehabilitation after ACI in recent years was searched, selected, and analyzed. Results Based on the included literature, the progress of the graft maturation consists of proliferation phase (0-6 weeks), transition phase (6-12 weeks), remodeling phase (12-26 weeks), and maturation phase (26 weeks-2 years). To achieve early protection, stimulate the maturation, and promote the graft-bone integrity, rehabilitation protocol ought to be based on the biomechanical properties at different phases. Weight-bearing program, range of motion (ROM), and options or facilities of exercise are importance when considering a rehabilitation program. Conclusion It has been proved that the patients need a program with an increasingly progressive weight-bearing and ROM in principles of rehabilitation after ACI. Specific facilities can be taken at a certain phase. Evidences extracted in the present work are rather low and the high-quality and controlled trials still need to improve the rehabilitation protocol.
Collapse
Affiliation(s)
- Yipeng Lin
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Tao Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yan Xiong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jian Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Weili Fu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
29
|
Yoon BH, Park IK, Sung YB. Ankylosing Neurogenic Myositis Ossificans of the Hip: A Case Series and Review of Literature. Hip Pelvis 2018; 30:86-91. [PMID: 29896457 PMCID: PMC5990535 DOI: 10.5371/hp.2018.30.2.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose Neurogenic myositis ossificans (NMO) in patients with traumatic spinal cord or brain injuries can cause severe joint ankylosis or compromise neurovascularture. The purpose of this study was to evaluate the clinical and radiological outcomes of and review considerations relevant to surgical resection of NMO of the hip joint. Materials and Methods Six patients (9 hips) underwent periarticular NMO resection between 2015 and 2017. The medical records of these patients were retrospectively reviewed. Preoperative computed tomography including angiography was performed to determine osteoma location and size. Improvement in hip motion allowing sitting was considered the sole indicator of a successful surgery. The anterior approach was used in all patients. The ranges of motion (ROM) before and after surgery were compared. Results The mean time from accident to surgery was 3.6 years. Average ROM improved from 24.3°(flexion and extension) to 98.5°(flexion and extension) after surgery, and improvement was maintained at the last follow-up. No commom complications (e.g., deep infection, severe hematoma, deep vein thrombosis) occurred in any patient. Improvement in ROM in one hip in which surgical resection was performed 10 years after the accident was not satisfactory owing to the pathologic changes in the joint. Conclusion Surgical excision of periarticular NMO of the hip joint can yield satisfactory results, provided that appropriate preoperative evaluation is performed. Early surgical intervention yields satisfactory results and may prevent the development of intra-articular pathology.
Collapse
Affiliation(s)
- Byung-Ho Yoon
- Department of Orthopaedic Surgery, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - In Keun Park
- Department of Orthopaedic Surgery, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Yerl-Bo Sung
- Department of Orthopaedic Surgery, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|