1
|
Yang H, Chen X, Chen J, Dong Y, Huang Y, Qin L, Tan J, Yi W. The pathogenesis and targeted therapies of intervertebral disc degeneration induced by cartilage endplate inflammation. Front Cell Dev Biol 2024; 12:1492870. [PMID: 39687521 PMCID: PMC11647014 DOI: 10.3389/fcell.2024.1492870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, where degeneration and death of nucleus pulposus cells within the intervertebral disc (IVD) can be obviously revealed. This degeneration can result in an imbalance in the extracellular matrix due to the loss of proteoglycans and water content, which can further lead to catabolic and anabolic dysfunction of the IVD. Recently, the dysfunction of cartilage endplate (CEP) during aging has drawn large attention due to its essential functions in contributing nutrient exchange and maintaining IVD homeostasis. Furthermore, the inflammation and disturbed homeostasis of CEP not only accelerate the degradation of nucleus pulposus extracellular matrix, but also exacerbate IVDD by causing nucleus pulposus cell death through other pathological factors. Here in this review, we summarized the possible pathological factors and the underlying mechanisms of the CEP inflammation-induced IVDD, including exosomes degeneration, CEP calcification, ferroptosis, mechanical changes, and cell senescence. Besides, changes of miRNAs, pain-related neural reflex arc and pathways associated with CEP inflammation-induced IVDD are also reviewed. In addition, new strategies specifically designed for CEP inflammation-induced IVDD are also discussed in the last section. We hope this paper can not only offer some new insights for advancing novel strategies for treating IVDD, but also serve as a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Hantao Yang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Xuandu Chen
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jun Chen
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Yansong Dong
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Yafang Huang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Lei Qin
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tan
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Weihong Yi
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Yan L, Li D, Li S, Jiao Li J, Du G, Liu H, Zhang J, Li X, Fan Z, Jiu J, Li R, Kong N, Liu W, Du Y, Wang B. Exosomes derived from 3D-cultured MSCs alleviate knee osteoarthritis by promoting M2 macrophage polarization through miR-365a-5p and inhibiting TLR2/Myd88/NF-κB pathway. CHEMICAL ENGINEERING JOURNAL 2024; 497:154432. [DOI: 10.1016/j.cej.2024.154432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
4
|
Jiang C, Liu Y, Zhao W, Yang Y, Ren Z, Wang X, Hao D, Du H, Yin S. microRNA-365 attenuated intervertebral disc degeneration through modulating nucleus pulposus cell apoptosis and extracellular matrix degradation by targeting EFNA3. J Cell Mol Med 2024; 28:e18054. [PMID: 38009813 PMCID: PMC10826450 DOI: 10.1111/jcmm.18054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Youjun Liu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weigong Zhao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yimin Yang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhiwei Ren
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Wang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Dingjun Hao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Heng Du
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Si Yin
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
5
|
Zheng Q, Wang CD, Shao S, Wu MF, Dou QB, Wang QW, Sun LY. Intermittent cyclic mechanical compression promotes endplate chondrocytes degeneration by disturbing Nrf2/PINK1 signaling pathway-dependent mitophagy. Hum Cell 2023; 36:1978-1990. [PMID: 37535221 DOI: 10.1007/s13577-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
An abnormal mechanical load is a pivotal inducer of endplate cartilage degeneration, which subsequently promotes intervertebral disc degeneration. Our previous study indicated that intermittent cyclic mechanical compression (ICMC) promotes endplate chondrocyte degeneration, but the mechanism underlying this effect is unclear. In this study, we investigated PTEN-induced kinase 1(PINK1) dependent mitophagy during ICMC-induced endplate chondrocyte degeneration. Furthermore, we determined whether NF-E2-related factor 2 (Nrf2) activation correlated with PINK1-dependent mitophagy regulation and increased oxidation resistance of endplate chondrocytes under ICMC application. First, we generated a mechanical compression-induced endplate chondrocyte degeneration model in vitro and in vivo. ICMC was found to promote endplate chondrocyte extracellular matrix degradation. PINK1-mediated mitophagy was suppressed in the ICMC-stimulated endplate chondrocytes, while increased mitochondrial reactive oxygen species generation suggested that mitophagy is involved in the protective effect of mechanical strain on endplate chondrocytes. Moreover, Nrf2 expression, interaction with Kelch-like ECH-associated protein (Keap1), and nuclear translocation were inhibited by ICMC. Nrf2 overexpression inhibited reactive oxygen species production and reversed ICMC-induced endplate chondrocyte degeneration. Transfection with PINK1 shRNA abolished this effect and partially blocked Nrf2-induced mitophagy. Our findings suggested that ICMC could inhibit the Nrf2/PINK1 signaling pathway to reduce the mitophagy levels which significantly promote oxidative stress and thereby endplate chondrocyte degeneration. Therapeutic regulation of the Nrf2/PINK1 signaling pathway may be an efficient anabolic strategy for inhibiting this process.
Collapse
Affiliation(s)
- Quan Zheng
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Chuan-Dong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Song Shao
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Ming-Fan Wu
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Qiang-Bing Dou
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China
| | - Qi-Wei Wang
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China.
| | - Liang-Ye Sun
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, 237001, Anhui, China.
| |
Collapse
|
6
|
Zhang J, He L, Li Q, Gao J, Zhang E, Feng H. EGR1 knockdown confers protection against ferroptosis and ameliorates intervertebral disc cartilage degeneration by inactivating the MAP3K14/NF-κB axis. Genomics 2023; 115:110683. [PMID: 37453477 DOI: 10.1016/j.ygeno.2023.110683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study explored whether EGR1-MAP3K14-NF-κB axis regulated ferroptosis and IVD cartilage generation. EGR1 and MAP3K14 expression levels were determined in CEP tissues of IVDD patients and intermittent cyclic mechanical tension (ICMT)-treated CEP cells. After EGR1 and MAP3K14 were altered in ICMT-treated CEP cells, the expression levels of degeneration- and ferroptosis-related proteins were measured. Binding relationship between EGR1 and MAP3K14 was evaluated. Additionally, the impacts of EFR1 knockdown on ferroptosis and cartilage degeneration in vivo were analyzed. EGR1 and MAP3K14 were overexpressed in clinical samples and cell models of IVDD. In IVDD cell models, EGR1 knockdown reduced ferroptosis and cartilage degeneration, which was reversed by MAP3K14 overexpression or Erastin treatment. NF-κB pathway inhibition nullified these effects of sh-EGR1 + oe-MAP3K14 treatment. EGR1 knockdown inhibited ferroptosis and relieved CEP degeneration via MAP3K14-NF-κB axis inactivation in vivo. Collectively, our findings highlighted that EGR1 promoted ferroptosis and IVD cartilage degeneration through MAP3K14-NF-κB axis.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China
| | - Liming He
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China
| | - Qiang Li
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China
| | - Jian Gao
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China
| | - Erlei Zhang
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China
| | - Haoyu Feng
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China.
| |
Collapse
|
7
|
Yang Y, Wang Z, Xu Y, Liu X, Sun Y, Li W. Knockdown of lncRNA H19 alleviates ox-LDL-induced HCAECs inflammation and injury by mediating miR-20a-5p/HDAC4 axis. Inflamm Res 2022; 71:1109-1121. [PMID: 35854140 DOI: 10.1007/s00011-022-01604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Coronary artery disease (CAD) seriously disturbs the life of people. LncRNA H19 is reported to promote the progression of CAD; Nevertheless, the detailed mechanism by which H19 modulates CAD development is unclear. METHODS Clinical samples of CAD patients were collected, meanwhile we established in vitro and in vivo models of CAD by treating HCAECs with ox-LDL and feeding ApoE-/- mice with high fat diets (HFD). MTT assay was adopted to assess the cell viability. Transwell detection was applied to test the migration, and apoptosis was tested by flow cytometry. The levels of inflammatory cytokines were examined by ELISA. The relation among H19, miR-20a-5p and HDAC4 was explored by dual luciferase reporter and RIP assay. RESULTS H19 and HDAC4 levels were elevated, while miR-20a-5p was reduced in plasma of CAD patients and ox-LDL-treated HCAECs. ox-LDL increased H19 level and induced apoptosis and inflammation in HCAECs, while silencing of H19 rescued this phenomenon. In addition, the level of H19 was negatively correlated with miR-20a-5p, and miR-20a-5p inhibitor restored the effect of H19 silencing on HCAECs function. HDAC4 was the downstream mRNA of miR-20a-5p, and miR-20a-5p upregulation reversed ox-LDL-induced HCAECs injury through targeting HDAC4. Furthermore, H19 silencing significantly alleviated the coronary atherosclerotic plaques and inhibited the inflammatory responses in vivo. CONCLUSIONS We proved that knockdown of H19 alleviated ox-LDL-induced HCAECs injury via miR-20a-5p/HDAC4 axis, which might provide a new tactics against CAD.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Zhaofei Wang
- Department of Cardiology, Changsha First Hospital, Changsha, 410010, Hunan Province, People's Republic of China
| | - Ying Xu
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Xiaofang Liu
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Yehai Sun
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Wei Li
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China.
| |
Collapse
|
8
|
Neuroprotection of Bone Marrow-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicle-Enclosed miR-410 Correlates with HDAC4 Knockdown in Hypoxic-Ischemic Brain Damage. Neurochem Res 2022; 47:3150-3166. [PMID: 36028735 DOI: 10.1007/s11064-022-03670-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
Evidence exists reporting that miR-410 may rescue neurological deficits, neuronal injury, and neuronal apoptosis after experimental hypoxic ischemia. This study aimed to explore the mechanism by which miR-410 transferred by bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) may alleviate hypoxic-ischemic brain damage (HIBD) in newborn mice. BMSCs were isolated from total bone marrow cells of femur and tibia of newborn mice, and primary neurons were extracted from the cerebral cortex of newborn mice within 24 h of birth. EVs were extracted from BMSCs transfected with the mimic or inhibitor of miR-410. Primary neurons were subjected to hypoxia and treated with overexpression (oe)-HDAC4, small interfering RNA (siRNA)-β-catenin, or Wnt pathway inhibitor and/or EV (miR-410 mimic) or EV (miR-410 inhibitor). A neonatal mouse HIBD model was established and treated with EVs. When BMSC-EVs were endocytosed by primary neurons, miR-410 was upregulated, neuronal viability was elevated, and apoptosis was inhibited. miR-410 in BMSC-EVs targeted HDAC4, thus increasing neuronal viability and reducing apoptosis. Conversely, overexpression of HDAC4 activated the Wnt pathway and enhanced the nuclear translocation of β-catenin. Treatment with miR-410-containing BMSC-EVs improved learning and memory abilities of HIBD mice while attenuating apoptosis by inactivating the Wnt pathway via targeting HDAC4. Taken together, the findings suggest that miR-410 delivered by BMSC-EVs alleviates HIBD by inhibiting HDAC4-dependent Wnt pathway activation.
Collapse
|
9
|
Mechanical Cues Regulate Histone Modifications and Cell Behavior. Stem Cells Int 2022; 2022:9179111. [PMID: 35599845 PMCID: PMC9117061 DOI: 10.1155/2022/9179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Change of biophysical factors in tissue microenvironment is an important step in a chronic disease development process. A mechanical and biochemical factor from cell living microniche can regulate cell epigenetic decoration and, therefore, further induce change of gene expression. In this review, we will emphasize the mechanism that biophysical microenvironment manipulates cell behavior including gene expression and protein decoration, through modifying histone amino acid residue modification. The influence given by different mechanical forces, including mechanical stretch, substrate surface stiffness, and shear stress, on cell fate and behavior during chronic disease development including tumorigenesis will also be teased out. Overall, the recent work summarized in this review culminates on the hypothesis that a mechanical factor stimulates the modification on histone which could facilitate disease detection and potential therapeutic target.
Collapse
|
10
|
Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1271-1280. [PMID: 35486489 PMCID: PMC9251272 DOI: 10.1111/os.13254] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD) causes a variety of signs and symptoms, such as low back pain (LBP), intervertebral disc herniation, and spinal stenosis, which contribute to high social and economic costs. IDD results from many factors, including genetic factors, aging, mechanical injury, malnutrition, and so on. The pathological changes of IDD are mainly composed of the senescence and apoptosis of nucleus pulposus cells (NPCs), the progressive degeneration of extracellular matrix (ECM), the fibrosis of annulus fibrosus (AF), and the inflammatory response. At present, IDD can be treated by conservative treatment and surgical treatment based on patients' symptoms. However, all of these can only release the pain but cannot reverse IDD and reconstruct the mechanical function of the spine. The latest research is moving towards the field of biotherapy. Mesenchymal stem cells (MSCs) are regard as the potential therapy of IDD because of their ability to self-renew and differentiate into a variety of tissues. Moreover, the non-coding RNAs (ncRNAs) are found to regulate many vital processes in IDD. There have been many successes in the in vitro and animal studies of using biotherapy to treat IDD, but how to transform the experimental data to real therapy which can apply to humans is still a challenge. This article mainly reviews the treatment strategies and research progress of IDD and indicates that there are many problems that need to be solved if the new biotherapy is to be applied to clinical treatment of IDD. This will provide reference and guidance for clinical treatment and research direction of IDD.
Collapse
Affiliation(s)
- Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shuo Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Na
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
11
|
Xiao L, Hu B, Ding B, Zhao Q, Liu C, Öner FC, Xu H. N(6)-methyladenosine RNA methyltransferase like 3 inhibits extracellular matrix synthesis of endplate chondrocytes by downregulating sex-determining region Y-Box transcription factor 9 expression under tension. Osteoarthritis Cartilage 2022; 30:613-625. [PMID: 35007741 DOI: 10.1016/j.joca.2022.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tension stimulation is an important inducer of endplate cartilage degeneration, but the specific regulatory mechanism remains unclear. This study was the first to reveal the mechanism by which methyltransferase-like 3 (METTL3)-mediated N(6)-methyladenosine (m6A) modification affected the extracellular matrix anabolism by tension-induced endplate chondrocytes. METHOD We examined the differences in METTL3 expression and m6A methylation levels in human endplate chondrocytes and human cartilage endplate tissues under in vitro tension. The effect on endplate cartilage degeneration was evaluated by manipulating m6A methylation mediated by METTL3 in vivo and in vitro. The effect of METTL3-mediated m6A methylation on the stability of sex-determining region Y-box transcription factor 9 (SOX9) gene expression was determined experimentally. RESULTS METTL3 expression and m6A methylation levels were significantly increased in degenerative human endplate cartilage tissue. Similarly, tension stimulation inhibited the ability of human endplate chondrocytes to synthesize extracellular matrix, which was accompanied by an increase in METTL3-mediated m6A methylation. The ability of endplate chondrocytes to resist tension was significantly enhanced by inhibiting METTL3 expression and subsequently downregulating m6A methylation in vitro and in vivo, thereby reducing intervertebral disc degeneration. Furthermore, METTL3 mediated SOX9 RNA methylation and disrupted SOX9 mRNA stability, thereby inhibiting the gene expression of the downstream collagen type II alpha 1 chain. CONCLUSION Tension stimulation downregulated SOX9 expression through METTL3-mediated m6A methylation, thereby inhibiting the synthesis of extracellular matrix in endplate chondrocytes.
Collapse
Affiliation(s)
- L Xiao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - B Hu
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241001, China
| | - B Ding
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241001, China
| | - Q Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - C Liu
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - F C Öner
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan, 1003508, Netherlands.
| | - H Xu
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241001, China.
| |
Collapse
|
12
|
Yang F, Wang J, Chen Z, Yang Y, Zhang W, Guo S, Yang Q. Role of microRNAs in intervertebral disc degeneration (Review). Exp Ther Med 2021; 22:860. [PMID: 34178133 PMCID: PMC8220656 DOI: 10.3892/etm.2021.10292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
The incidence of lower back pain caused by intervertebral disc degeneration (IDD) is gradually increasing. IDD not only affects the quality of life of the patients, but also poses a major socioeconomic burden. There is currently no optimal method for delaying or reversing IDD, mainly due to its unknown pathogenesis. MicroRNAs (miRNAs/miRs) participate in the development of a number of diseases, including IDD. Abnormal expression of miRNAs in the intervertebral disc is implicated in various pathological processes underlying the development of IDD, including nucleus pulposus (NP) cell (NPC) proliferation, NPC apoptosis, extracellular matrix remodeling, inflammation and cartilaginous endplate changes, among others. The focus of the present review was the advances in research on the involvement of miRNAs in the mechanism underlying IDD. Further research is expected to identify markers for early diagnosis of IDD and new targets for delaying or reversing IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jizu Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhixin Chen
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yuping Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wenhui Zhang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shifang Guo
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qingshan Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
13
|
Xiao L, Gong D, Liang L, Liang A, Liang H, Xu X, Teng H. Inhibition of HDAC4 by GSK3β leads to downregulation of KLF5 and ASK1 and prevents the progression of intravertebral disc degeneration. Clin Epigenetics 2021; 13:53. [PMID: 33691773 PMCID: PMC7948391 DOI: 10.1186/s13148-021-01005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a major cause of lower back pain. This study aimed at exploring the effects of histone deacetylase 4 (HDAC4) and its upstream and downstream signaling molecules on IDD development. METHODS A murine IDD model was established by inducing a needle puncture injury to the vertebrate, whereupon we isolated and transfected of nucleus pulposus (NP) cells. Disc height index (DHI) of the mice was determined by X-ray tomography, while the pain experienced by the IDD mice was evaluated by mechanical and thermal sensitivity tests. Next, the interaction between GSK3β and HDAC4 as well as that between HDAC4 and KLF5 acetylation was assessed by co-immunoprecipitation, while the promoter region binding was assessed identified by chromatin immunoprecipitation. By staining methods with TUNEL, Safranin O fast green, and hematoxylin and eosin, the NP cell apoptosis, degradation of extracellular matrix, and morphology of intervertebral disc tissues were measured. Furthermore, mRNA and protein expressions of GSK3β, HDAC4, KLF5, and ASK1, as well as the extent of HDAC4 phosphorylation, were determined by RT-qPCR and Western blotting. RESULTS GSK3β was identified to be downregulated in the intervertebral disc tissues obtained from IDD mice, while HDAC4, KLF5, and ASK1 were upregulated. HDAC4 silencing alleviated IDD symptoms. It was also found that GSK3β promoted the phosphorylation of HDAC4 to increase its degradation, while HDAC4 promoted ASK1 expression through upregulating the expression of KLF5. In IDD mice, GSK3β overexpression resulted in increased DHI, inhibition of NP cell apoptosis, alleviation of disc degeneration, and promoted mechanical and thermal pain thresholds. However, HDAC4 overexpression reversed these effects by promoting ASK1 expression. CONCLUSION Based on the key findings of the current study, we conclude that GSK3β can promote degradation of HDAC4, which lead to an overall downregulation of the downstream KLF5/ASK1 axis, thereby alleviating the development of IDD.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dongping Gong
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Loufeng Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Anwei Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Huaxin Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiayi Xu
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hongli Teng
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
14
|
He Y, Makarczyk MJ, Lin H. Role of mitochondria in mediating chondrocyte response to mechanical stimuli. Life Sci 2020; 263:118602. [PMID: 33086121 PMCID: PMC7736591 DOI: 10.1016/j.lfs.2020.118602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
As the most common form of arthritis, osteoarthritis (OA) has become a major cause of severe joint pain, physical disability, and quality of life impairment in the affected population. To date, precise pathogenesis of OA has not been fully clarified, which leads to significant obstacles in developing efficacious treatments such as failures in finding disease-modifying OA drugs (DMOADs) in the last decades. Given that diarthrodial joints primarily display the weight-bearing and movement-supporting function, it is not surprising that mechanical stress represents one of the major risk factors for OA. However, the inner connection between mechanical stress and OA onset/progression has yet to be explored. Mitochondrion, a widespread organelle involved in complex biological regulation processes such as adenosine triphosphate (ATP) synthesis and cellular metabolism, is believed to have a controlling role in the survival and function implement of chondrocytes, the singular cell type within cartilage. Mitochondrial dysfunction has also been observed in osteoarthritic chondrocytes. In this review, we systemically summarize mitochondrial alterations in chondrocytes during OA progression and discuss our recent progress in understanding the potential role of mitochondria in mediating mechanical stress-associated osteoarthritic alterations of chondrocytes. In particular, we propose the potential signaling pathways that may regulate this process, which provide new views and therapeutic targets for the prevention and treatment of mechanical stress-associated OA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Meagan J Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
15
|
Song Y, Soto J, Li S. Mechanical regulation of histone modifications and cell plasticity. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100872. [PMID: 33214755 PMCID: PMC7671577 DOI: 10.1016/j.cossms.2020.100872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cell plasticity is important in development and tissue remodeling. Cells can sense physical and chemical cues from their local microenvironment and transduce the signals into the nucleus to regulate the epigenetic state and gene expression, resulting in a change in cell phenotype. In this review, we highlight the role of mechanical cues in regulating stem cell differentiation and cell reprogramming through the modulation of histone modifications. The effects of various mechanical cues, including matrix stiffness, mechanical stretch, and shear stress, on cell fate during tissue regeneration and remodeling will be discussed. Taken together, recent work demonstrates that the alterations in histone modifications by mechanical stimuli can facilitate epigenetic changes during cell phenotypic switching, which has potential applications in the development of biomaterials and bioreactors for cell engineering.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Guo HY, Guo MK, Wan ZY, Song F, Wang HQ. Emerging evidence on noncoding-RNA regulatory machinery in intervertebral disc degeneration: a narrative review. Arthritis Res Ther 2020; 22:270. [PMID: 33198793 PMCID: PMC7667735 DOI: 10.1186/s13075-020-02353-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the most common cause of low-back pain. Accumulating evidence indicates that the expression profiling of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are different between intervertebral disc tissues obtained from healthy individuals and patients with IDD. However, the roles of ncRNAs in IDD are still unclear until now. In this review, we summarize the studies concerning ncRNA interactions and regulatory functions in IDD. Apoptosis, aberrant proliferation, extracellular matrix degradation, and inflammatory abnormality are tetrad fundamental pathologic phenotypes in IDD. We demonstrated that ncRNAs are playing vital roles in apoptosis, proliferation, ECM degeneration, and inflammation process of IDD. The ncRNAs participate in underlying mechanisms of IDD in different ways. MiRNAs downregulate target genes’ expression by directly binding to the 3′-untranslated region of mRNAs. CircRNAs and lncRNAs act as sponges or competing endogenous RNAs by competitively binding to miRNAs and regulating the expression of mRNAs. The lncRNAs, circRNAs, miRNAs, and mRNAs widely crosstalk and form complex regulatory networks in the degenerative processes. The current review presents novel insights into the pathogenesis of IDD and potentially sheds light on the therapeutics in the future.
Collapse
Affiliation(s)
- Hao-Yu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Ming-Ke Guo
- Department of Orthopaedic Surgery, The Affiliated Hospital of PLA Army Medical University Warrant Officer School, Shijiazhuang, 050000, People's Republic of China
| | - Zhong-Yuan Wan
- Department of Orthopedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, People's Republic of China
| | - Fang Song
- Department of Stomatology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, People's Republic of China
| | - Hai-Qiang Wang
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian District, Shaanxi Province, 712046, People's Republic of China.
| |
Collapse
|
17
|
MSC-Derived Exosomes Protect Vertebral Endplate Chondrocytes against Apoptosis and Calcification via the miR-31-5p/ATF6 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:601-614. [PMID: 33230460 PMCID: PMC7569190 DOI: 10.1016/j.omtn.2020.09.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis and calcification of endplate chondrocytes (EPCs) can exacerbate intervertebral disc degeneration (IVDD). Mesenchymal stem cell-derived exosomes (MSC-exosomes) are reported to have the therapeutic potential in IVDD. However, the effects and related mechanisms of MSC-exosomes on EPCs are still unclear. We aimed to investigate the role of MSC-exosomes on EPCs with a tert-butyl hydroperoxide (TBHP)-induced oxidative stress cell model and IVDD rat model. First, our study revealed that TBHP could result in apoptosis and calcification of EPCs, and MSC-exosomes could inhibit the detrimental effects. We also found that these protective effects were inhibited after miroRNA (miR)-31-5p levels were downregulated in MSC-exosomes. The target relationship between miR-31-5p and ATF6 was tested. miR-31-5p negatively regulated ATF6-related endoplasmic reticulum (ER) stress and inhibited apoptosis and calcification in EPCs. Our in vivo experiments indicated that sub-endplate injection of MSC-exosomes can ameliorate IVDD; however, after miR-31-5p levels were downregulated in MSC-exosomes, these protective effects were inhibited. In conclusion, MSC-exosomes reduced apoptosis and calcification in EPCs, and the underlying mechanism may be related to miR-31-5p/ATF6/ER stress pathway regulation.
Collapse
|
18
|
Xiao L, Ding B, Gao J, Yang B, Wang J, Xu H. Curcumin prevents tension-induced endplate cartilage degeneration by enhancing autophagy. Life Sci 2020; 258:118213. [PMID: 32768583 DOI: 10.1016/j.lfs.2020.118213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
AIMS Intermittent cyclic tension stimulation(ICMT) was shown to promote degeneration of endplate chondrocytes and induce autophagy. However, enhancing autophagy can alleviate degeneration partly. Studies have shown that curcumin can induce autophagy and protect chondrocytes, we speculated that regulation of autophagy by curcumin might be an effective method to improve the stress resistance of endplate cartilage. In this study, human cervical endplate cartilage specimens were collected, and expression of autophagy markers was detected and compared. MAIN METHODS Human cervical endplate chondrocytes were cultured to establish a tension-induced degeneration model, for which changes of functional metabolism and autophagy levels were detected under different tension loading conditions. Changes in functional metabolism of endplate chondrocytes were observed under high-intensity tension loading in the presence of inhibitors, inducers, and curcumin to regulate the autophagy level of cells. In addition, a rat model of lumbar instability was established to observe the degeneration of lumbar disc after curcumin administration. KEY FINDINGS Through a series of experiments, we found that low-intensity tension stimulation can maintain a stable phenotype of endplate chondrocytes, but high-intensity tension stimulation has a negative effect. Moreover, with increasing tension intensity, the degree of degeneration of endplate chondrocytes was gradually aggravated and the level of autophagy increased. Besides, curcumin upregulated autophagy, inhibited apoptosis, and reduced phenotype loss of endplate chondrocytes induced by high-intensity tension loading, thereby relieving intervertebral disc degeneration induced by mechanical imbalance. SIGNIFICANCE Curcumin mediated autophagy and enhanced the adaptability of endplate chondrocytes to high-intensity tension load, thereby relieving intervertebral disc degeneration.
Collapse
Affiliation(s)
- Liang Xiao
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Baiyang Ding
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Jianming Gao
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Bijing Yang
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Jing Wang
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Hongguang Xu
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China.
| |
Collapse
|
19
|
Cazzanelli P, Wuertz-Kozak K. MicroRNAs in Intervertebral Disc Degeneration, Apoptosis, Inflammation, and Mechanobiology. Int J Mol Sci 2020; 21:ijms21103601. [PMID: 32443722 PMCID: PMC7279351 DOI: 10.3390/ijms21103601] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a multifactorial pathological process associated with low back pain, the leading cause of years lived in disability worldwide. Key characteristics of the pathological changes connected with degenerative disc disease (DDD) are the degradation of the extracellular matrix (ECM), apoptosis and senescence, as well as inflammation. The impact of nonphysiological mechanical stresses on IVD degeneration and inflammation, the mechanisms of mechanotransduction, and the role of mechanosensitive miRNAs are of increasing interest. As post-transcriptional regulators, miRNAs are known to affect the expression of 30% of proteincoding genes and numerous intracellular processes. The dysregulation of miRNAs is therefore associated with various pathologies, including degenerative diseases such as DDD. This review aims to give an overview of the current status of miRNA research in degenerative disc pathology, with a special focus on the involvement of miRNAs in ECM degradation, apoptosis, and inflammation, as well as mechanobiology.
Collapse
Affiliation(s)
- Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
- Correspondence: ; Tel.: +1-585-475-7355
| |
Collapse
|