1
|
Yang MY, Zhong JD, Li X, Tian G, Bai WY, Fang YH, Qiu MC, Yuan CD, Yu CF, Li N, Yang JJ, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Cong PK, Khederzadeh S, Zhao PP, Qian Y, Guan PL, Gu JX, Gai SR, Yi XJ, Tao JG, Chen X, Miao MM, Lei LX, Xu L, Xie SY, Li JC, Guo JF, Karasik D, Yang L, Tang BS, Huang F, Zheng HF. SEAD reference panel with 22,134 haplotypes boosts rare variant imputation and genome-wide association analysis in Asian populations. Nat Commun 2024; 15:10839. [PMID: 39738056 DOI: 10.1038/s41467-024-55147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Limited whole genome sequencing (WGS) studies in Asian populations result in a lack of representative reference panels, thus hindering the discovery of ancestry-specific variants. Here, we present the South and East Asian reference Database (SEAD) panel ( https://imputationserver.westlake.edu.cn/ ), which integrates WGS data for 11,067 individuals from various sources across 17 Asian countries. The SEAD panel, comprising 22,134 haplotypes and 88,294,957 variants, demonstrates improved imputation accuracy for South Asian populations compared to 1000 Genomes Project, TOPMed, and ChinaMAP panels, with a higher proportion of well-imputed rare variants. For East Asian populations, SEAD shows concordance comparable to ChinaMAP, but outperforming TOPMed. Additionally, we apply the SEAD panel to conduct a genome-wide association study for total hip (Hip) and femoral neck (FN) bone mineral density (BMD) traits in 5369 genotyped Chinese samples. The single-variant test suggests that rare variants near SNTG1 are associated with Hip BMD (rs60103302, MAF = 0.0092, P = 1.67 × 10-7), and variant-set analysis further supports the association (Pslide_window = 9.08 × 10-9, Pgene_centric = 5.27 × 10-8). This association was not reported previously and can only be detected by using Asian reference panels. Preliminary in vitro experiments for one of the rare variants identified provide evidence that it upregulates SNTG1 expression, which could in turn inhibit the proliferation and differentiation of preosteoblasts.
Collapse
Affiliation(s)
- Meng-Yuan Yang
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia-Dong Zhong
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xin Li
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yi-Hu Fang
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Cheng-Da Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chun-Fu Yu
- Department of Orthopedic Surgery, Shangrao Municipal Hospital, Shangrao, Jiangxi, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Ji-Jian Yang
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd, Guangzhou, Guangdong, China
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yu Qian
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia-Xuan Gu
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiang-Jiao Yi
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiang Chen
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mao-Mao Miao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lan-Xin Lei
- Medical Biosciences, Imperial College London, London, United Kingdom
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Jin-Chen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ji-Feng Guo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bei-Sha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fei Huang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Hou-Feng Zheng
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
3
|
Thien ND, Hai-Nam N, Anh DT, Baecker D. Piezo1 and its inhibitors: Overview and perspectives. Eur J Med Chem 2024; 273:116502. [PMID: 38761789 DOI: 10.1016/j.ejmech.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aβ peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.
Collapse
Affiliation(s)
- Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Nguyen Hai-Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam.
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin, 14195, Germany.
| |
Collapse
|
4
|
Yuan K, Xie X, Huang W, Li D, Zhao Y, Yang H, Wang X. Elucidating causal relationships of diet-derived circulating antioxidants and the risk of osteoporosis: A Mendelian randomization study. Front Genet 2024; 15:1346367. [PMID: 38911297 PMCID: PMC11190308 DOI: 10.3389/fgene.2024.1346367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Background Osteoporosis (OP) is typically diagnosed by evaluating bone mineral density (BMD), and it frequently results in fractures. Here, we investigated the causal relationships between diet-derived circulating antioxidants and the risk of OP using Mendelian randomization (MR). Methods Published studies were used to identify instrumental variables related to absolute levels of circulating antioxidants like lycopene, retinol, ascorbate, and β-carotene, as well as antioxidant metabolites such as ascorbate, retinol, α-tocopherol, and γ-tocopherol. Outcome variables included BMD (in femoral neck, lumbar spine, forearm, heel, total body, total body (age over 60), total body (age 45-60), total body (age 30-45), total body (age 15-30), and total body (age 0-15)), fractures (in arm, spine, leg, heel, and osteoporotic fractures), and OP. Inverse variance weighted or Wald ratio was chosen as the main method for MR analysis based on the number of single nucleotide polymorphisms (SNPs). Furthermore, we performed sensitivity analyses to confirm the reliability of the findings. Results We found a causal relationship between absolute retinol levels and heel BMD (p = 7.6E-05). The results of fixed effects IVW showed a protective effect of absolute retinol levels against heel BMD, with per 0.1 ln-transformed retinol being associated with a 28% increase in heel BMD (OR: 1.28, 95% CI: 1.13-1.44). In addition, a sex-specific effect of the absolute circulating retinol levels on the heel BMD has been observed in men. No other significant causal relationship was found. Conclusion There is a positive causal relationship between absolute retinol levels and heel BMD. The implications of our results should be taken into account in future studies and in the creation of public health policies and OP prevention tactics.
Collapse
Affiliation(s)
- Kexin Yuan
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiwei Huang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingpeng Li
- The Second People’s Hospital of Gansu Province, Lanzhou, China
| | - Yongli Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Haodong Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuetao Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Cai Y, Jun G, Zhuang X. Metformin treatment reduces the incidence of osteoporosis: a two-sample Mendelian randomized study. Osteoporos Int 2024; 35:1089-1098. [PMID: 38536446 PMCID: PMC11136748 DOI: 10.1007/s00198-023-07013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 05/30/2024]
Abstract
It remains unclear whether the association between metformin and osteoporosis (OP) risk is causal. This two-sample Mendelian randomization (MR) study suggests a causal relationship between metformin treatment and a decrease in OP and fracture incidence, as well as an increase in bone mineral density (BMD) in the lumbar spine, femoral neck, and heel. Nonetheless, no significant causal effect is observed on forearm BMD. PURPOSE We utilize a MR approach to investigate the association between metformin treatment and the risk of OP. METHODS Metformin treatment was selected as exposures. Outcomes included OP; BMD at the forearm (FA), femoral neck (FN), and lumbar spine (LS); estimated heel bone mineral density (eBMD); and fracture. Summary statistics for exposures and outcomes were obtained from corresponding genome-wide association studies. Inverse variance-weighted (IVW) analysis was mainly applied; the weighted median (WM), penalized weighted median (PWM), maximum likelihood (ML), and MR-Egger regression (MR-Egger) method were also used to obtain robust estimates. A series of sensitivity analyses including Cochran's Q test, MR-Egger regression, leave-one-out analysis, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) were used to detect pleiotropy or heterogeneity. RESULTS In the main analysis, IVW estimates demonstrated that metformin treatment had a definite causal effect on the risk of OP (odds ratio (OR): 0.859, 95% CI: 0.774-0.953, P = 0.004), LS-BMD (OR: 1.063, 95% CI: 1.023-1.105, P = 0.002), FN-BMD (OR: 1.034, 95% CI: 1.000-1.069, P = 0.049), eBMD (OR: 1.035, 95% CI: 1.023-1.047, P ≤ 0.001), and fracture(OR: 0.958, 95% CI: 0.928-0.989, P = 0.008). However, it did not have an effect on FA-BMD(OR: 1.050, 95% CI: 0.969-1.138, P = 0.237). CONCLUSIONS This study indicated that metformin treatment is significantly associated with a reduction in the risk of OP, fracture and higher LS-BMD, FN-BMD, and eBMD. However, there was no significant association with FA-BMD.
Collapse
Affiliation(s)
- Yaotian Cai
- Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Gao Jun
- Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China.
| | - Xiaojie Zhuang
- Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| |
Collapse
|
6
|
Zhao P, Sheng Z, Xu L, Li P, Xiao W, Yuan C, Xu Z, Yang M, Qian Y, Zhong J, Gu J, Karasik D, Zheng HF. Deciphering the complex relationship between type 2 diabetes and fracture risk with both genetic and observational evidence. eLife 2024; 12:RP89281. [PMID: 38591545 PMCID: PMC11003741 DOI: 10.7554/elife.89281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The 'diabetic bone paradox' suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.
Collapse
Affiliation(s)
- Pianpian Zhao
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, ChinaHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Zhifeng Sheng
- Health Management Center, The Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lin Xu
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Peng Li
- Department of Geratology, The Third People's Hospital of HangzhouHangzhouChina
| | - Wenjin Xiao
- Department of Endocrinology, Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese MedicineHangzhouChina
| | - Zhanwei Xu
- Central Health Center of Mashenqiao TownTianjinChina
| | - Mengyuan Yang
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Yu Qian
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiadong Zhong
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiaxuan Gu
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan UniversitySafedIsrael
| | - Hou-Feng Zheng
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, ChinaHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
7
|
Du Y, Xu B, Li Q, Peng C, Yang K. The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol 2024; 12:1342149. [PMID: 38390363 PMCID: PMC10882629 DOI: 10.3389/fbioe.2024.1342149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Piezo1 (2010) was identified as a mechanically activated cation channel capable of sensing various physical forces, such as tension, osmotic pressure, and shear force. Piezo1 mediates mechanosensory transduction in different organs and tissues, including its role in maintaining bone homeostasis. This review aimed to summarize the function and possible mechanism of Piezo1 in the mechanical receptor cells in bone tissue. We found that it is a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ge Q, Yang S, Qian Y, Chen J, Yuan W, Li S, Wang P, Li R, Zhang L, Chen G, Kan H, Rajagopalan S, Sun Q, Zheng HF, Jin H, Liu C. Ambient PM2.5 Exposure and Bone Homeostasis: Analysis of UK Biobank Data and Experimental Studies in Mice and in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107002. [PMID: 37792558 PMCID: PMC10549986 DOI: 10.1289/ehp11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Previous evidence has identified exposure to fine ambient particulate matter (PM 2.5 ) as a leading risk factor for adverse health outcomes. However, to date, only a few studies have examined the potential association between long-term exposure to PM 2.5 and bone homeostasis. OBJECTIVE We sought to examine the relationship between long-term PM 2.5 exposure and bone health and explore its potential mechanism. METHODS This research included both observational and experimental studies. First, based on human data from UK Biobank, linear regression was used to explore the associations between long-term exposure to PM 2.5 (i.e., annual average PM 2.5 concentration for 2010) and bone mineral density [BMD; i.e., heel BMD (n = 37,440 ) and femur neck and lumbar spine BMD (n = 29,766 )], which were measured during 2014-2020. For the experimental animal study, C57BL/6 male mice were assigned to ambient PM 2.5 or filtered air for 6 months via a whole-body exposure system. Micro-computed tomography analyses were applied to measure BMD and bone microstructures. Biomarkers for bone turnover and inflammation were examined with histological staining, immunohistochemistry staining, and enzyme-linked immunosorbent assay. We also performed tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay to determine the effect of PM 2.5 exposure on osteoclast activity in vitro. In addition, the potential downstream regulators were assessed by real-time polymerase chain reaction and western blot. RESULTS We observed that long-term exposure to PM 2.5 was significantly associated with lower BMD at different anatomical sites, according to the analysis of UK Biobank data. In experimental study, mice exposed long-term to PM 2.5 exhibited excessive osteoclastogenesis, dysregulated osteogenesis, higher tumor necrosis factor-alpha (TNF- α ) expression, and shorter femur length than control mice, but they demonstrated no significant differences in femur structure or BMD. In vitro, cells stimulated with conditional medium of PM 2.5 -stimulated macrophages had aberrant osteoclastogenesis and differences in the protein/mRNA expression of members of the TNF- α / Traf 6 / c -Fos pathway, which could be partially rescued by TNF- α inhibition. DISCUSSION Our prospective observational evidence suggested that long-term exposure to PM 2.5 is associated with lower BMD and further experimental results demonstrated exposure to PM 2.5 could disrupt bone homeostasis, which may be mediated by inflammation-induced osteoclastogenesis. https://doi.org/10.1289/EHP11646.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Sijia Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qian
- Diseases and Population Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Guobo Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haidong Kan
- College of Public Health, Fudan University, Shanghai, China
| | - Sanjay Rajagopalan
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Hou-Feng Zheng
- Diseases and Population Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| |
Collapse
|
9
|
Zheng C, Liu H, Zhao P, Lu W, Song S, He T, Fan J, Wang D, Yang P, Jie Q, Zheng HF, Luo Z, Yang L. Targeting sulfation-dependent mechanoreciprocity between matrix and osteoblasts to mitigate bone loss. Sci Transl Med 2023; 15:eadg3983. [PMID: 37611084 DOI: 10.1126/scitranslmed.adg3983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Sulfation is a widespread modification of biomolecules that has been incompletely explored to date. Through cross-phenotype meta-analysis of bone mineral density in up to 426,824 genotyped human participants along with phenotypic characterization of multiple mutant mouse lines, we identified a causative role for sulfate transporter solute carrier family 26 member A2 (SLC26A2) deficiency in osteoporosis. Ablation of SLC26A2 in osteoblasts caused severe bone loss and accumulation of immature bone cells and elicited peculiar pericellular matrix (PCM) production characterized by undersulfation coupled with decreased stiffness. These altered chemophysical properties of the PCM disrupted the formation of focal adhesions in osteoblasts. Bulk RNA sequencing and functional assays revealed that the mechanoreciprocal inhibition of focal adhesion kinase (FAK) and Yes1-associated transcriptional regulator (YAP)/WW domain containing transcription regulator 1 (TAZ) signaling impinged osteoblast maturation upon SLC26A2 deficiency. Moreover, pharmacological abrogation of the Hippo kinases and forced wheel-running ameliorated SLC26A2-deficient osteoporosis by promoting YAP/TAZ activity. Analysis of mouse single-cell RNA sequencing data suggested coordination among sulfate metabolism, focal adhesion, and YAP/TAZ activity during osteoblast-to-osteocyte transition. In addition to the SLC26A2-deficient setting, altered FAK and YAP/TAZ signaling was also observed in bone cells of ovariectomized mice and patients with osteoporosis, and pharmacological enforcing of YAP/TAZ activity ameliorated bone loss in ovariectomized mice. Collectively, these data unveil a role for sulfation in the developmental mechanoreciprocity between matrix and osteoblasts, which could be leveraged to prevent bone loss.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - He Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Pianpian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shiju Song
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ting He
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Pengfei Yang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Jie
- Department of Orthopedic Surgery, Hong Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an 710049, China
- Research Center for Skeletal Developmental Deformity and Injury repair, College of Life Science and Medicine, Northwest University, Xi'an 710069, China
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Savadipour A, Palmer D, Ely EV, Collins KH, Garcia-Castorena JM, Harissa Z, Kim YS, Oestrich A, Qu F, Rashidi N, Guilak F. The role of PIEZO ion channels in the musculoskeletal system. Am J Physiol Cell Physiol 2023; 324:C728-C740. [PMID: 36717101 PMCID: PMC10027092 DOI: 10.1152/ajpcell.00544.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
PIEZO1 and PIEZO2 are mechanosensitive cation channels that are highly expressed in numerous tissues throughout the body and exhibit diverse, cell-specific functions in multiple organ systems. Within the musculoskeletal system, PIEZO1 functions to maintain muscle and bone mass, sense tendon stretch, and regulate senescence and apoptosis in response to mechanical stimuli within cartilage and the intervertebral disc. PIEZO2 is essential for transducing pain and touch sensations as well as proprioception in the nervous system, which can affect musculoskeletal health. PIEZO1 and PIEZO2 have been shown to act both independently as well as synergistically in different cell types. Conditions that alter PIEZO channel mechanosensitivity, such as inflammation or genetic mutations, can have drastic effects on these functions. For this reason, therapeutic approaches for PIEZO-related disease focus on altering PIEZO1 and/or PIEZO2 activity in a controlled manner, either through inhibition with small molecules, or through dietary control and supplementation to maintain a healthy cell membrane composition. Although many opportunities to better understand PIEZO1 and PIEZO2 remain, the studies summarized in this review highlight how crucial PIEZO channels are to musculoskeletal health and point to promising possible avenues for their modulation as a therapeutic target.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Daniel Palmer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Erica V Ely
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jaquelin M Garcia-Castorena
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arin Oestrich
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Feini Qu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
11
|
Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell 2023; 36:540-553. [PMID: 36580272 DOI: 10.1007/s13577-022-00853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Piezo ion channel is a mechanosensitive protein on the cell membrane, which contains Piezo1 and Piezo2. Piezo channels are activated by mechanical forces, including stretch, matrix stiffness, static pressure, and shear stress. Piezo channels transmit mechanical signals that cause different downstream responses in the differentiation process, including integrin signaling pathway, ERK1/2 MAPK signaling pathway, Notch signaling, and WNT signaling pathway. In the fate of stem cell differentiation, scientists found differences in Piezo channel expression and found that Piezo channel expression is related to developmental diseases. Here, we briefly review the structure and function of Piezo channels and the relationship between Piezo and mechanical signals, discussing the current understanding of the role of Piezo channels in stem cell fate and associated molecules and developmental diseases. Ultimately, we believe this review will help identify the association between Piezo channels and stem cell fate.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhuoyue Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuqi Feng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
12
|
Tang F, Wang S, Zhao H, Xia D, Dong X. Mendelian randomization analysis does not reveal a causal influence of mental diseases on osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1125427. [PMID: 37152964 PMCID: PMC10157183 DOI: 10.3389/fendo.2023.1125427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Osteoporosis (OP) is primarily diagnosed through bone mineral density (BMD) measurements, and it often leads to fracture. Observational studies suggest that several mental diseases (MDs) may be linked to OP, but the causal direction of these associations remain unclear. This study aims to explore the potential causal association between five MDs (Schizophrenia, Depression, Alzheimer's disease, Parkinson's disease, and Epilepsy) and the risk of OP. Methods First, single-nucleotide polymorphisms (SNPs) were filtered from summary-level genome-wide association studies using quality control measures. Subsequently, we employed two-sample Mendelian randomization (MR) analysis to indirectly analyze the causal effect of MDs on the risk of OP through bone mineral density (in total body, femoral neck, lumbar spine, forearm, and heel) and fractures (in leg, arm, heel, spine, and osteoporotic fractures). Lastly, the causal effect of the MDs on the risk of OP was evaluated directly through OP. MR analysis was performed using several methods, including inverse variance weighting (IVW)-random effects, IVW-fixed effects, maximum likelihood, weighted median, MR-Egger regression, and penalized weighted median. Results The results did not show any evidence of a causal relationship between MDs and the risk of OP (with almost all P values > 0.05). The robustness of the above results was proved to be good. Discussion In conclusion, this study did not find evidence supporting the claim that MDs have a definitive impact on the risk of OP, which contradicts many existing observational reports. Further studies are needed to determine the potential mechanisms of the associations observed in observational studies.
Collapse
Affiliation(s)
- Fen Tang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sheng Wang
- Department of Emergency, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hongxia Zhao
- Clinical Research Institute of Zhanjiang, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Xin Dong, ; Demeng Xia,
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xin Dong, ; Demeng Xia,
| |
Collapse
|
13
|
Wang J, Sun YX, Li J. The role of mechanosensor Piezo1 in bone homeostasis and mechanobiology. Dev Biol 2023; 493:80-88. [PMID: 36368521 DOI: 10.1016/j.ydbio.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Bones and articular cartilage are important load-bearing tissues. The fluid flow inside the bone cells and cell interaction with the extracellular matrix serve as the mechanical cues for bones and joints. Piezo1 is an ion channel found on the cell surface of many cell types, including osteocytes and chondrocytes. It is activated in response to mechanical stimulation, which subsequently mediates a variety of signaling pathways in osteoblasts, osteocytes, and chondrocytes. Piezo1 activation in osteoblastic cells positively regulates osteogenesis, while its activation in joints mediates cartilage degradation. This review focuses on the most recent research on Piezo1 in bone development and regeneration.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Shenyang City, Liaoning Province, 110000, China.
| | - Yong-Xin Sun
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Shenyang City, Liaoning Province, 110000, China.
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
14
|
Both indirect maternal and direct fetal genetic effects reflect the observational relationship between higher birth weight and lower adult bone mass. BMC Med 2022; 20:361. [PMID: 36192722 PMCID: PMC9531399 DOI: 10.1186/s12916-022-02531-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Birth weight is considered not only to undermine future growth, but also to induce lifelong diseases; the aim of this study is to explore the relationship between birth weight and adult bone mass. METHODS We performed multivariable regression analyses to assess the association of birth weight with bone parameters measured by dual-energy X-ray absorptiometry (DXA) and by quantitative ultrasound (QUS), independently. We also implemented a systemic Mendelian randomization (MR) analysis to explore the causal association between them with both fetal-specific and maternal-specific instrumental variables. RESULTS In the observational analyses, we found that higher birth weight could increase the adult bone area (lumbar spine, β-coefficient= 0.17, P < 2.00 × 10-16; lateral spine, β-coefficient = 0.02, P = 0.04), decrease bone mineral content-adjusted bone area (BMCadjArea) (lumbar spine, β-coefficient= - 0.01, P = 2.27 × 10-14; lateral spine, β-coefficient = - 0.05, P = 0.001), and decrease adult bone mineral density (BMD) (lumbar spine, β-coefficient = - 0.04, P = 0.007; lateral spine; β-coefficient = - 0.03, P = 0.02; heel, β-coefficient = - 0.06, P < 2.00 × 10-16), and we observed that the effect of birth weight on bone size was larger than that on BMC. In MR analyses, the higher fetal-specific genetically determined birth weight was identified to be associated with higher bone area (lumbar spine; β-coefficient = 0.15, P = 1.26 × 10-6, total hip, β-coefficient = 0.15, P = 0.005; intertrochanteric area, β-coefficient = 0.13, P = 0.0009; trochanter area, β-coefficient = 0.11, P = 0.03) but lower BMD (lumbar spine, β-coefficient = - 0.10, P = 0.01; lateral spine, β-coefficient = - 0.12, P = 0.0003, and heel β-coefficient = - 0.11, P = 3.33 × 10-13). In addition, we found that the higher maternal-specific genetically determined offspring birth weight was associated with lower offspring adult heel BMD (β-coefficient = - 0.001, P = 0.04). CONCLUSIONS The observational analyses suggested that higher birth weight was associated with the increased adult bone area but decreased BMD. By leveraging the genetic instrumental variables with maternal- and fetal-specific effects on birth weight, the observed relationship could be reflected by both the direct fetal and indirect maternal genetic effects.
Collapse
|
15
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
16
|
Delmas P, Parpaite T, Coste B. PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron 2022; 110:2713-2727. [PMID: 35907398 DOI: 10.1016/j.neuron.2022.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 10/16/2022]
Abstract
Many ion channels have been described as mechanosensitive according to various criteria. Most broadly defined, an ion channel is called mechanosensitive if its activity is controlled by application of a physical force. The last decade has witnessed a revolution in mechanosensory physiology at the molecular, cellular, and system levels, both in health and in diseases. Since the discovery of the PIEZO proteins as prototypical mechanosensitive channel, many proteins have been proposed to transduce mechanosensory information in mammals. However, few of these newly identified candidates have all the attributes of bona fide, pore-forming mechanosensitive ion channels. In this perspective, we will cover and discuss new data that have advanced our understanding of mechanosensation at the molecular level.
Collapse
Affiliation(s)
- Patrick Delmas
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France.
| | - Thibaud Parpaite
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| | - Bertrand Coste
- SomatoSens, Laboratory for Cognitive Neuroscience, Aix-Marseille University, CNRS UMR 7291, Marseilles, France
| |
Collapse
|
17
|
Nie X, Chung MK. Piezo channels for skeletal development and homeostasis: Insights from mouse genetic models. Differentiation 2022; 126:10-15. [DOI: 10.1016/j.diff.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
|
18
|
Zhu XW, Liu KQ, Yuan CD, Xia JW, Qian Y, Xu L, Gao JH, Rong XL, Chen GB, Karasik D, Xie SY, Zheng HF. General and abdominal obesity operate differently as influencing factors of fracture risk in old adults. iScience 2022; 25:104466. [PMID: 35677640 PMCID: PMC9167983 DOI: 10.1016/j.isci.2022.104466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
To infer the causality between obesity and fracture and the difference between general and abdominal obesity, a prospective study was performed in 456,921 participants, and 10,142 participants developed an incident fracture with follow-up period of 7.96 years. A U-shape relationship was observed between BMI and fracture, with the lowest risk of fracture in overweight participants. The obesity individuals had higher fracture risk when BMD was adjusted, and the protective effect of moderate-high BMI on fracture was mostly mediated by bone mineral density (BMD). However, for abdominal obesity, the higher WCadjBMI (linear) and HCadjBMI (J-shape) were found to be related to higher fracture risk, and less than 30% of the effect was mediated by BMD. By leveraging genetic instrumental variables, it provided additional evidences to support the aforementioned findings. In conclusion, keeping moderate-high BMI might be of benefit to old people in terms of fracture risk, whereas abdominal adiposity might increase risk of fracture.
Collapse
Affiliation(s)
- Xiao-Wei Zhu
- Fudan University, Shanghai 200433, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ke-Qi Liu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi 334000, China
| | - Cheng-Da Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jian-Hua Gao
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi 334000, China
| | - Xiao-Li Rong
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Bo Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 5290002, Israel
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Hou-Feng Zheng
- Fudan University, Shanghai 200433, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
19
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
20
|
Observational and genetic evidence highlight the association of human sleep behaviors with the incidence of fracture. Commun Biol 2021; 4:1339. [PMID: 34837057 PMCID: PMC8626439 DOI: 10.1038/s42003-021-02861-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
We combined conventional evidence from longitudinal data in UK Biobank and genetic evidence from Mendelian randomization (MR) approach to infer the causality between sleep behaviors and fracture risk. We found that participants with insomnia showed 6.4% higher risk of fracture (hazard ratio [HR] = 1.064, 95% CI = 1.038-1.090, P = 7.84 × 10-7), falls and bone mineral density (BMD) mediated 24.6% and 10.6% of the intermediary effect; the MR analyses provided the consistent evidence. A U-shape relationship was observed between sleep duration and fracture risk (P < 0.001) with the lowest risk at sleeping 7-8 h per day. The excessive daytime sleepiness and "evening" chronotype were associated with fracture risk in observational study, but the association between chronotype and fracture did not show in MR analyses. We further generated a sleep risk score (SRS) with potential risk factors (i.e., insomnia, sleep duration, chronotype, and daytime sleepiness). We found that the risk of fracture increased with an increasing SRS (HR = 1.087, 95% CI = 1.065-1.111, P = 1.27 × 10-14). Moreover, 17.4% of the fracture cases would be removed if all participants exhibited a healthy sleep pattern. In conclusion, insomnia had a causal effect on fracture, falls had a larger intermediary effect than BMD in this association. Individuals with fracture risk could benefit from the intervention on unhealthy sleep pattern.
Collapse
|
21
|
Lee S, Park S, Kim HY, Chae JH, Ko JM. Extended phenotypes of PIEZO1-related lymphatic dysplasia caused by two novel compound heterozygous variants. Eur J Med Genet 2021; 64:104295. [PMID: 34371190 DOI: 10.1016/j.ejmg.2021.104295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Defects in the PIEZO1 gene cause lymphatic dysplasia in an autosomal recessive manner, mostly by loss-of-function variants. Moreover, since 2019, the role of PIEZO1 in bone formation has been established, but there have been no PIEZO1-related cases presenting definite skeletal involvement to date. A 21-year-old male with primary lymphatic dysplasia had some other distinctive clinical features, including multiple fracture history during infancy, thoracolumbar scoliosis, short stature, and left-sided facial bone hypoplasia. We analyzed the whole exome of the patient and found two novel pathogenic variants of PIEZO1 in trans: a 93.7 kb heterozygous deletion (chr16:88,782,477-88,876,207; exon 1-50) and c.2858G>A (p.Arg953His). Sanger sequencing validated the deletion with breakpoints, and each variant was inherited from a different parent. This study presented an extremely rare case of a patient with lymphatic dysplasia caused by compound heterozygous variants of PIEZO1, along with additional clinical manifestations including several skeletal phenotypes.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hwa Young Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea; Rare Disease Center, Seoul National University Hospital, Seoul, South Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea; Rare Disease Center, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
22
|
Abstract
Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.
Collapse
Affiliation(s)
- Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA;
| |
Collapse
|
23
|
Bai WY, Xia JW, Rong XL, Cong PK, Khederzadeh S, Zheng HF. Integrative analysis of genomic and epigenomic data reveals underlying super-enhancer-mediated microRNA regulatory network for human bone mineral density. Hum Mol Genet 2021; 30:2177-2189. [PMID: 34230965 PMCID: PMC8561425 DOI: 10.1093/hmg/ddab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Bone mineral density (BMD) is a highly heritable complex trait and is a key indicator for diagnosis and treatment for osteoporosis. In the last decade, numerous susceptibility loci for BMD and fracture have been identified by genome wide association studies (GWAS); however, fine mapping of these loci is challengeable. Here, we proposed a new long-range fine-mapping approach that combined super-enhancers (SEs) and microRNAs (miRNAs) data, which were two important factors in control of cell identity and specific differentiation, with the GWAS summary datasets in cell-type-restricted way. Genome-wide SE-based analysis found that the BMD-related variants were significantly enriched in the osteoblast SE regions, indicative of potential long-range effects of such SNPs. With the SNP-mapped SEs (mSEs), 13 accessible long-range mSE-interacted miRNAs (mSE-miRNAs) were identified by integrating osteoblast Hi-C and ATAC-seq data, including three known bone-related miRNAs (miR-132-3p, miR-212-3p and miR-125b-5p). The putative targets of the two newly identified mSE-miRNAs (miR-548aj-3p and miR-190a-3p) were found largely enriched in osteogenic-related pathway and processes, suggesting that these mSE-miRNAs could be functional in the regulation of osteoblast differentiation. Furthermore, we identified 54 genes with the long-range 'mSE-miRNA' approach, and 24 of them were previously reported to be related to skeletal development. Besides, enrichment analysis found that these genes were specifically enriched in the post-transcriptional regulation and bone formation processes. This study provided a new insight into the approach of fine-mapping of GWAS loci. A tool was provided for the genome-wide SE-based analysis and the detection of long-range osteoblast-restricted mSE-miRNAs (https://github.com/Zheng-Lab-Westlake/Osteo-Fine-Mapp-SNP2SE2miRNA).
Collapse
Affiliation(s)
- Wei-Yang Bai
- Fudan University, Shanghai, China.,Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Xiao-Li Rong
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Hou-Feng Zheng
- Fudan University, Shanghai, China.,Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
24
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
25
|
Zhou J, Zhou XD, Xu R, Du XZ, Li Q, Li B, Zhang GY, Chen LX, Perelman JM, Kolosov VP. The Degradation of Airway Epithelial Tight Junctions in Asthma Under High Airway Pressure Is Probably Mediated by Piezo-1. Front Physiol 2021; 12:637790. [PMID: 33868003 PMCID: PMC8047413 DOI: 10.3389/fphys.2021.637790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/02/2022] Open
Abstract
Full functioning of the airway physical barrier depends on cellular integrity, which is coordinated by a series of tight junction (TJ) proteins. Due to airway spasm, edema, and mucus obstruction, positive end-expiratory alveolar pressure (also termed auto-PEEP) is a common pathophysiological phenomenon, especially in acute asthma attack. However, the influence of auto-PEEP on small airway epithelial TJs is currently unclear. We performed studies to investigate the effect of extra pressure on small airway epithelial TJs and its mechanism. The results first confirmed that a novel mechanosensitive receptor, piezo-1, was highly expressed in the airway epithelium of asthmatic mice. Extra pressure induced the degradation of occludin, ZO-1 and claudin-18 in primary human small airway epithelial cells (HSAECs), resulting in a decrease in transepithelial electrical resistance (TER) and an increase in cell layer permeability. Through in vitro investigations, we observed that exogenous pressure stimulation could elevate the intracellular calcium concentration ([Ca2+]i) in HSAECs. Downregulation of piezo-1 with siRNA and pretreatment with BAPTA-AM or ALLN reduced the degradation of TJs and attenuated the impairment of TJ function induced by exogenous pressure. These findings indicate the critical role of piezo-1/[Ca2+]i/calpain signaling in the regulation of small airway TJs under extra pressure stimulation.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Dong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Rui Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xian-Zhi Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bin Li
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fengjie, Chongqing, China
| | - Guo-Yue Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Xiu Chen
- Department of Respiratory Medicine, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Juliy M Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Medical Sciences, Blagoveshchensk, Russia
| | - Victor P Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Medical Sciences, Blagoveshchensk, Russia
| |
Collapse
|
26
|
Hendrickx G, Fischer V, Liedert A, von Kroge S, Haffner-Luntzer M, Brylka L, Pawlus E, Schweizer M, Yorgan T, Baranowsky A, Rolvien T, Neven M, Schumacher U, Beech DJ, Amling M, Ignatius A, Schinke T. Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation. J Bone Miner Res 2021; 36:369-384. [PMID: 33180356 DOI: 10.1002/jbmr.4198] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023]
Abstract
The skeleton is a dynamic tissue continuously adapting to mechanical stimuli. Although matrix-embedded osteocytes are considered as the key mechanoresponsive bone cells, all other skeletal cell types are principally exposed to macroenvironmental and microenvironmental mechanical influences that could potentially affect their activities. It was recently reported that Piezo1, one of the two mechanically activated ion channels of the Piezo family, functions as a mechanosensor in osteoblasts and osteocytes. Here we show that Piezo1 additionally plays a critical role in the process of endochondral bone formation. More specifically, by targeted deletion of Piezo1 or Piezo2 in either osteoblast (Runx2Cre) or osteoclast lineage cells (Lyz2Cre), we observed severe osteoporosis with numerous spontaneous fractures specifically in Piezo1Runx2Cre mice. This phenotype developed at an early postnatal stage and primarily affected the formation of the secondary spongiosa. The presumptive Piezo1Runx2Cre osteoblasts in this region displayed an unusual flattened appearance and were positive for type X collagen. Moreover, transcriptome analyses of primary osteoblasts identified an unexpected induction of chondrocyte-related genes in Piezo1Runx2Cre cultures. Because Runx2 is not only expressed in osteoblast progenitor cells, but also in prehypertrophic chondrocytes, these data suggested that Piezo1 functions in growth plate chondrocytes to ensure trabecular bone formation in the process of endochondral ossification. To confirm this hypothesis, we generated mice with Piezo1 deletion in chondrocytes (Col2a1Cre). These mice essentially recapitulated the phenotype of Piezo1Runx2Cre animals, because they displayed early-onset osteoporosis with multiple fractures, as well as impaired formation of the secondary spongiosa with abnormal osteoblast morphology. Our data identify a previously unrecognized key function of Piezo1 in endochondral ossification, which, together with its role in bone remodeling, suggests that Piezo1 represents an attractive target for the treatment of skeletal disorders. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Pawlus
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
28
|
Pei F, Liu J, Zhang L, Pan X, Huang W, Cen X, Huang S, Jin Y, Zhao Z. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal 2020; 78:109877. [PMID: 33296740 DOI: 10.1016/j.cellsig.2020.109877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Tooth and bone are independent tissues with a close relationship. Both are composed of a highly calcified outer structure and soft inner tissue, and both are constantly under mechanical stress. In particular, the alveolar bone and tooth constitute an occlusion system and suffer from masticatory and occlusal force. Thus, mechanotransduction is a key process in many developmental, physiological and pathological processes in tooth and bone. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important participants in mechanotransduction, but their functions in tooth and bone are poorly understood. This review summarizes our current understanding of mechanosensitive ion channels and their roles in tooth and bone tissues. Research in these areas may shed new light on the regulation of tooth and bone tissues and potential treatments for diseases affecting these tissues.
Collapse
Affiliation(s)
- Fang Pei
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Wei Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiao Cen
- Department of the Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
29
|
Shu J, Li J, Fu Y, Hui X, Jin Y, Chen M, Zheng X, Shi Y. Association of ESR1 polymorphism rs2234693 and rs9340799 with postmenopausal osteoporosis in a Chinese population. BMC Musculoskelet Disord 2020; 21:346. [PMID: 32493284 PMCID: PMC7271450 DOI: 10.1186/s12891-020-03359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background Postmenopausal osteoporosis (PMO) is the most common type of primary osteoporosis. ESR1 polymorphism rs2234693 and rs9340799 has been widely studied as a candidate gene associated with PMO, however, the findings were inconclusive. The present study aims to explore the relationship of ESR1 polymorphism rs2234693 and rs9340799 with PMO risk in a Chinese Han population. Methods PMO patients and healthy controls were recruited from gynecology department. DNA of all participants were extracted from the peripheral blood samples and genotyped by Mass Array method. A meta-analysis of case control studies was also conducted to further elucidate the relationship of polymorphism with PMO. Results Our results revealed that there were no associations of rs2234693 with PMO. However, GG genotype of rs9340799 was associated with a higher risk of PMO (OR = 1.51, 95%CI:1.08–4.34, p = 0.03), even adjusting for risk factors (OR = 1.83, 95%CI: 1.12–5.04, p = 0.04). Logistic regression analysis showed that dominant model was associated with a higher risk of PMO (OR = 2.07, 95%CI: 1.02–5.16, p = 0.02) after correcting the risk factors (OR = 2.14, 95%CI:1.12–5.64, p = 0.04); In addition, the Meta-analysis results revealed that both two polymorphisms were not associated with PMO. Conclusions In conclusion, ESR1 polymorphism rs9340799 was associated with PMO. However, well designed studies with larger sample sizes are required to further elucidate the associations.
Collapse
|
30
|
Xia J, Xie SY, Liu KQ, Xu L, Zhao PP, Gai SR, Guan PL, Zhao JQ, Zhu YP, Tsoi LC, Stuart PE, Nair RP, Yang HQ, Liao YT, Mao K, Qiu MC, Ying ZM, Hu B, Yang ZH, Bai WY, Zhu XW, Cong PK, Elder JT, Ye ZM, Wang B, Zheng HF. Systemic evaluation of the relationship between psoriasis, psoriatic arthritis and osteoporosis: observational and Mendelian randomisation study. Ann Rheum Dis 2020; 79:1460-1467. [PMID: 32737104 PMCID: PMC7970448 DOI: 10.1136/annrheumdis-2020-217892] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES AND METHODS With 432 513 samples from UK Biobank dataset, multivariable linear/logistic regression were used to estimate the relationship between psoriasis/psoriatic arthritis (PsA) and estimated bone mineral density (eBMD)/osteoporosis, controlling for potential confounders. Here, confounders were set in three ways: model0 (including age, height, weight, smoking and drinking), model1 (model0 +regular physical activity) and model2 (model1 +medication treatments). The eBMD was derived from heel ultrasound measurement. And 4904 patients with psoriasis and 847 patients with PsA were included in final analysis. Mendelian randomisation (MR) approach was used to evaluate the causal effect between them. RESULTS Lower eBMD were observed in patients with PsA than in controls in both model0 (β-coefficient=-0.014, p=0.0006) and model1 (β-coefficient=-0.013, p=0.002); however, the association disappeared when conditioning on treatment with methotrexate or ciclosporin (model2) (β-coefficient=-0.005, p=0.28), mediation analysis showed that 63% of the intermediary effect on eBMD was mediated by medication treatment (p<2E-16). Patients with psoriasis without arthritis showed no difference of eBMD compared with controls. Similarly, the significance of higher risk of osteopenia in patients with PsA (OR=1.27, p=0.002 in model0) could be eliminated by conditioning on medication treatment (p=0.244 in model2). Psoriasis without arthritis was not related to osteopenia and osteoporosis. The weighted Genetic Risk Score analysis found that genetically determined psoriasis/PsA were not associated with eBMD (p=0.24 and p=0.88). Finally, MR analysis showed that psoriasis/PsA had no causal effect on eBMD, osteoporosis and fracture. CONCLUSIONS The effect of PsA on osteoporosis was secondary (eg, medication) but not causal. Under this hypothesis, psoriasis without arthritis was not a risk factor for osteoporosis.
Collapse
Affiliation(s)
- Jiangwei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Shu-Yang Xie
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ke-Qi Liu
- Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Lin Xu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Jin-Qiu Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Ping Zhu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States
| | - Han-Qi Yang
- School of Public Health, Boston University, Boston, Massachusetts, 02118, United States
| | - Yu-Ting Liao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaijing Mao
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mo-Chang Qiu
- Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Zhi-Min Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhi-Hua Yang
- Department of Orthopedic Surgery, Zhejiang Xiaoshan hospital, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - James T. Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, United States
| | - Zhao-Ming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Bin Wang
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China,Instituteof Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
31
|
Yasri S, Wiwanitkit V. PIEZO1 polymorphisms and bone mineral density. Bone 2020; 133:115257. [PMID: 32007606 DOI: 10.1016/j.bone.2020.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Sora Yasri
- KMT Primary Care Center, Bangkok, Thailand.
| | | |
Collapse
|