1
|
Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol 2024; 15:1396354. [PMID: 38873428 PMCID: PMC11169668 DOI: 10.3389/fphar.2024.1396354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Jiayu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xin Wei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang H, Yang G, Li J, Xiao L, Guo C, Wang Y. Impaired autophagy activity-induced abnormal differentiation of bone marrow stem cells is related to adolescent idiopathic scoliosis osteopenia. Chin Med J (Engl) 2023; 136:2077-2085. [PMID: 36728938 PMCID: PMC10476821 DOI: 10.1097/cm9.0000000000002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS). Bone marrow stem cells (BMSCs) are a crucial regulator of bone homeostasis. Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia, but the underlying mechanism of this phenomenon remains unclear. METHODS A total of 22 AIS patients and 18 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Bone marrow blood was collected for BMSC isolation and culture. Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group. Furthermore, a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis. RESULTS A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed. Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified, including differences in the expression of LRRC17 , DCLK1 , PCDH7 , TSPAN5 , NHSL2 , and CPT1B . Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy. The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group. CONCLUSION Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity, which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients.
Collapse
Affiliation(s)
- Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
| | - Guanteng Yang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
| | - Lige Xiao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
| | - Yuxiang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central-South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
He S, Li J, Wang Y, Xiang G, Yang G, Xiao L, Tang M, Zhang H. Phosphorylated heat shock protein 27 improves the bone formation ability of osteoblasts and bone marrow stem cells from patients with adolescent idiopathic scoliosis. JOR Spine 2023; 6:e1256. [PMID: 37780830 PMCID: PMC10540826 DOI: 10.1002/jsp2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) is a scoliotic deformity of unknown etiology that occurs during adolescent development. Abnormal bone metabolism is closely related to AIS, but the cause is uncertain. Recent studies have shown that heat shock protein 27 (HSP27) and its phosphorylation (pHSP27) play important roles in bone metabolism. However, whether HSP27 and pHSP27 are involved in abnormal bone metabolism in AIS is unclear. Methods Osteoblasts (OBs) and bone marrow stem cells (BMSCs) were extracted from the facet joints and bone marrow of AIS patients and controls who underwent posterior spinal fusion surgery. The expression levels of HSP27 and pHSP27, as well as the expression levels of bone formation markers in OBs from AIS patients and controls, were examined by quantitative real-time PCR (qRT-PCR) and Western blotting. The mineralization ability of OBs from AIS patients and controls was analyzed by alizarin red staining after osteogenic differentiation. Heat shock and thiolutin were used to increase the levels of pHSP27 in OBs, and the levels of bone formation markers were also investigated. In addition, the levels of pHSP27 and the bone formation ability of BMSCs from AIS patients and controls were investigated after heat shock treatment. Results Lower pHSP27 levels and impaired osteogenic differentiation abilities were observed in the OBs of AIS patients than in those of controls. Thiolutin increased HSP27 phosphorylation and increased the mRNA levels of SPP1 and ALPL in OBs from AIS patients. Heat shock treatment increased SPP1 and HSP27 mRNA expression, pHSP27 levels, OCN expression, and mineralization ability of both OBs and BMSCs from AIS patients. Conclusion Heat shock treatment and thiolutin can increase the levels of pHSP27 and further promote the bone formation of OBs and BMSCs from AIS patients. Therefore, decreased pHSP27 levels may be associated with abnormal bone metabolism in AIS patients.
Collapse
Affiliation(s)
- Sihan He
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Jiong Li
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Yunjia Wang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Gang Xiang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Guanteng Yang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Lige Xiao
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Mingxing Tang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Hongqi Zhang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
4
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
5
|
What is New in Pediatric Orthopaedic: Basic Science. J Pediatr Orthop 2023; 43:e174-e178. [PMID: 36607930 DOI: 10.1097/bpo.0000000000002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND An understanding of musculoskeletal basic science underpins most advancements in the field of orthopaedic surgery. Knowledge of biomechanics, genetics, and molecular pathways is integral to the understanding of the pathophysiology of disease and guides novel treatment options to improve patient outcomes. The purpose of this review is to provide a comprehensive and current overview of musculoskeletal basic science relevant to pediatric orthopaedic surgery. METHODS Comprehensive Pubmed database searches were performed for all English language articles published between January 2016 and November 2021 using the following search terms: basic science, pediatric orthopaedics, fracture, trauma, spine, scoliosis, DDH, hip dysplasia, Perthes, Legg-Calve-Perthes, clubfoot, and sports medicine. Inclusion criteria focused on basic science studies of pediatric orthopaedic conditions. Clinical studies or case reports were excluded. A total of 3855 articles were retrieved. After removing duplicates and those failing to meet our inclusion criteria, 49 articles were included in the final review. RESULTS A total of 49 papers were selected for review based on the date of publication and updated findings. Findings are discussed in the subheadings below. Articles were then sorted into the following sub-disciplines of pediatric orthopaedics: spine, trauma, sports medicine, hip, and foot. CONCLUSIONS With this review, we have identified many exciting developments in pediatric orthopaedic trauma, spine, hip, foot, and sports medicine that could potentially lead to changes in disease management and how we think of these processes. LEVEL OF EVIDENCE Level V.
Collapse
|
6
|
Yang Y, Chen Z, Huang Z, Tao J, Li X, Zhou X, Du Q. Risk factors associated with low bone mineral density in children with idiopathic scoliosis: a scoping review. BMC Musculoskelet Disord 2023; 24:48. [PMID: 36670417 PMCID: PMC9854192 DOI: 10.1186/s12891-023-06157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Children with idiopathic scoliosis (IS) have a high risk of osteoporosis and IS with low bone mineral density (BMD) are susceptible to curve progression. This review aims to explore the risk factors of low BMD in children with IS. METHODS Studies were retrieved from 5 databases that were published up to January 2022. Search terms are keywords in titles or abstracts, including subject headings related to "Scoliosis", "Bone Mineral Density", and "Risk Factors". Observational studies on risk factors of low BMD in children with IS were enrolled in this review. The number of studies, sample size, outcome measures, research type, endocrine, and lifestyle-related factors, gene/signal pathway, and other contents were extracted for qualitative analysis. RESULTS A total of 56 studies were included in this scoping review. Thirty studies involved genetic factors that may affect BMD, including the Vitamin-D receptor gene, RANK/RANKL signal pathway, the function of mesenchymal stem cells, Runx2, Interleukin-6 (IL-6), and miR-145/β-catenin pathway. Eight studies mentioned the influence of endocrine factors on BMD, and the results showed that serum levels of IL-6, leptin and its metabolites, and ghrelin in children with IS were different from the age-matched controls. In addition, there were 18 articles on lifestyle-related factors related to low BMD in children with IS, consisting of physical activity, calcium intake, Vitamin D level, and body composition. CONCLUSIONS Genetic, endocrine, and lifestyle-related factors might relate to low BMD and even osteoporosis in IS. To prevent osteoporosis, the effectiveness of regular screening for low BMD risk factors in children with IS needs to be investigated. Additionally, clear risk factors suggest strategies for bone intervention. Future studies should consider the effectiveness of calcium and vitamin D supplements and physical activity in BMD improvement.
Collapse
Affiliation(s)
- Yuqi Yang
- College of Global Public Health, New York University, New York, NY, 10003, USA
| | - Zhengquan Chen
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zefan Huang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jing Tao
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xin Li
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Qing Du
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
- Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 202150, China.
| |
Collapse
|
7
|
Yang Y, Han X, Chen Z, Li X, Zhu X, Yuan H, Huang Z, Zhou X, Du Q. Bone mineral density in children and young adults with idiopathic scoliosis: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:149-166. [PMID: 36450863 DOI: 10.1007/s00586-022-07463-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Osteoporosis is a risk factor for idiopathic scoliosis (IS) progression, but it is still unclear whether IS patients have bone mineral density (BMD) loss and a higher risk of osteoporosis than asymptomatic people. This systematic review aims to explore the differences in BMD and prevalence of osteoporosis between the IS group and the control group. METHODS We searched 5 health science-related databases. Studies that were published up to February 2022 and written in English and Chinese languages were included. The primary outcome measures consisted of BMD z score, the prevalence of osteoporosis and osteopenia, and areal and volumetric BMD. Bone morphometry, trabecular microarchitecture, and quantitative ultrasound measures were included in the secondary outcome measures. The odds ratio (OR) and the weighted mean difference (WMD) with a 95% confidence interval (CI) were used to pool the data. RESULTS A total of 32 case-control studies were included. The pooled analysis revealed significant differences between the IS group and the control group in BMD z score (WMD -1.191; 95% CI - 1.651 to -0.732, p < 0.001). Subgroup analysis showed significance in both female (WMD -1.031; 95% CI -1.496 to -0.566, p < 0.001) and male participants (WMD -1.516; 95% CI -2.401 to -0.632, p = 0.001). The prevalence of osteoporosis and osteopenia in the group with IS was significantly higher than in the control group (OR = 6.813, 95% CI 2.815-16.489, p < 0.001; OR 1.879; 95% CI 1.548-2.281, p < 0.000). BMD measures by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography showed a significant decrease in the IS group (all p < 0.05), but no significant difference was found in the speed of sound measured by quantitative ultrasound between the two groups (p > 0.05). CONCLUSION Both the male and female IS patients had a generalized lower BMD and an increased prevalence of osteopenia and osteoporosis than the control group. Future research should focus on the validity of quantitative ultrasound in BMD screening. To control the risk of progression in IS patients, regular BMD scans and targeted intervention are necessary for IS patients during clinical practice.
Collapse
Affiliation(s)
- Yuqi Yang
- College of Global Public Health, New York University, New York, USA
| | - Xiaoli Han
- Centers for Disease Control and Prevention of Chongming, Shanghai, China
| | - Zhengquan Chen
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Li
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoqing Zhu
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiyan Yuan
- Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zefan Huang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Qing Du
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China. .,Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
8
|
Normand E, Franco A, Alos N, Parent S, Moreau A, Marcil V. Circulatory Adipokines and Incretins in Adolescent Idiopathic Scoliosis: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1619. [PMID: 36360347 PMCID: PMC9688531 DOI: 10.3390/children9111619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/26/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a three-dimensional malformation of the spine of unknown cause that develops between 10 and 18 years old and affects 2-3% of adolescents, mostly girls. It has been reported that girls with AIS have a taller stature, lower body mass index (BMI), and bone mineral density (BMD) than their peers, but the causes remain unexplained. Energy metabolism discrepancies, including alterations in adipokine and incretin circulatory levels, could influence these parameters and contribute to disease pathophysiology. This pilot study aims to compare the anthropometry, BMD, and metabolic profile of 19 AIS girls to 19 age-matched healthy controls. Collected data include participants' fasting metabolic profile, anthropometry (measurements and DXA scan), nutritional intake, and physical activity level. AIS girls (14.8 ± 1.7 years, Cobb angle 27 ± 10°), compared to controls (14.8 ± 2.1 years), were leaner (BMI-for-age z-score ± SD: -0.59 ± 0.81 vs. 0.09 ± 1.11, p = 0.016; fat percentage: 24.4 ± 5.9 vs. 29.2 ± 7.2%, p = 0.036), had lower BMD (total body without head z-score ± SD: -0.6 ± 0.83 vs. 0.23 ± 0.98, p = 0.038; femoral neck z-score: -0.54 ± 1.20 vs. 0.59 ± 1.59, p = 0.043), but their height was similar. AIS girls had higher adiponectin levels [56 (9-287) vs. 32 (7-74) μg/mL, p = 0.005] and lower leptin/adiponectin ratio [0.042 (0.005-0.320) vs. 0.258 (0.024-1.053), p = 0.005]. AIS participants with a Cobb angle superior to 25° had higher resistin levels compared to controls [98.2 (12.8-287.2) vs. 32.1 (6.6-73.8), p = 0.0013]. This pilot study suggests that adipokines are implicated in AIS development and/or progression, but more work is needed to confirm their role in the disease.
Collapse
Affiliation(s)
- Emilie Normand
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Anita Franco
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Viscogliosi Laboratory in Molecular Genetics and Musculoskeletal Diseases, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Nathalie Alos
- Endocrine Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada
| | - Stefan Parent
- Department of Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics and Musculoskeletal Diseases, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC H3A 1J4, Canada
| | - Valérie Marcil
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Liang ZT, Guo CF, Li J, Zhang HQ. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis. FASEB J 2021; 35:e21839. [PMID: 34387890 DOI: 10.1096/fj.202100759r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity characterized by changes in the three-dimensional structure of the spine. It usually initiates during puberty, the peak period of human growth when the secretion of numerous hormones is changing, and it is more common in females than in males. Accumulating evidence shows that the abnormal levels of many hormones including estrogen, melatonin, growth hormone, leptin, adiponectin and ghrelin, may be related to the occurrence and development of AIS. The purpose of this review is to provide a summary and critique of the research published on each hormone over the past 20 years, and to highlight areas for future study. It is hoped that the presentation will help provide a better understanding of the role of endocrine hormones in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Zhuo-Tao Liang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Hansen MS, Frost M. Alliances of the gut and bone axis. Semin Cell Dev Biol 2021; 123:74-81. [PMID: 34303607 DOI: 10.1016/j.semcdb.2021.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.
Collapse
Affiliation(s)
- Morten Steen Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| |
Collapse
|
11
|
Is ghrelin a biomarker of early-onset scoliosis in children with Prader-Willi syndrome? Orphanet J Rare Dis 2021; 16:305. [PMID: 34238321 PMCID: PMC8265004 DOI: 10.1186/s13023-021-01930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/27/2021] [Indexed: 01/21/2023] Open
Abstract
Background Adolescents with idiopathic scoliosis display high ghrelin levels. As hyperghrelinemia is found in patients with PWS and early-onset scoliosis (EOS) is highly prevalent in these patients, our aims were to explore (1) whether ghrelin levels differ between those with and without EOS and correlate with scoliosis severity, and (2) whether ghrelin levels in the first year of life are associated with the later development of EOS. Methods We used a case control study design for the first question and a longitudinal design for the second. Patients with PWS having plasma ghrelin measurements recorded between 2013 and 2018 in our database were selected and 30 children < 10 years old with EOS and 30 age- and BMI-matched controls without EOS were included. The Cobb angle at diagnosis was recorded. In addition, 37 infants with a ghrelin measurement in the first year of life were followed until 4 years of age and assessed for EOS. Total ghrelin (TG), acylated (AG) and unacylated ghrelin (UAG), and the AG/UAG ratio were analyzed. Results EOS children had an AG/UAG ratio statistically significantly lower than controls. The Cobb angle was positively correlated with TG and UAG. TG and AG in the first year of life were higher in infants who later develop EOS without reaching a statistically significant difference. Conclusions Our results suggest that ghrelin may play a role in the pathophysiology of EOS in PWS. Higher ghrelinemia in the first year of life required careful follow-up for EOS.
Collapse
|
12
|
Wang Q, Wang C, Hu W, Hu F, Liu W, Zhang X. Disordered leptin and ghrelin bioactivity in adolescent idiopathic scoliosis (AIS): a systematic review and meta-analysis. J Orthop Surg Res 2020; 15:502. [PMID: 33121521 PMCID: PMC7596938 DOI: 10.1186/s13018-020-01988-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background Adolescents with scoliosis consistently demonstrate lower body weight, lean muscle mass, and bone mineral density than healthy adolescent counterparts. Recent studies have focused on understanding how leptin and ghrelin signaling may play a role in adolescent idiopathic scoliosis (AIS). In our current study, we aim to evaluate the serum levels of leptin, soluble leptin receptor (sOB-R), and ghrelin in AIS patients through systematic review and meta-analysis. Methods We conducted our systematic review by searching the keywords in online databases including PubMed, Embase, Cochrane, Elsevier, Springer, and Web of Science from the time of database inception to January 2020. Inclusion criteria were studies that measure leptin, soluble leptin receptor (sOB-R), and ghrelin levels in AIS patients. Selection of studies, assessment of study quality, and data extraction were performed by two reviewers independently. Then, data was analyzed to calculate the mean difference and 95% confidence interval (CI). Results Seven studies concerning leptin/sOB-R and three studies concerning ghrelin were qualified for meta-analysis (one study concerning both leptin and ghrelin). Serum leptin of patients with AIS were significantly lower when compared with healthy controls, with the weighted mean difference (WMD) of − 0.95 (95% CI − 1.43 to − 0.48, p < 0.0001) after reducing the heterogeneity using six studies for meta-analysis, while sOB-R and ghrelin level was significantly higher in AIS group when compared with control group, with the WMD of 2.64 (95% CI 1.60 to 3.67, p < 0.001) and 1.42 (95% CI 0.48 to 2.35, p = 0.003), respectively. Conclusion Our current meta-analysis showed that serum level of leptin in AIS patients was significantly lower when compared with control subjects, while serum sOB-R and ghrelin levels were significantly higher in AIS patients. More clinical studies are still required to further validate the predictive value of leptin or ghrelin for the curve progression for AIS patients.
Collapse
Affiliation(s)
- Qi Wang
- Medical School of Chinese PLA General Hospital, Beijing, 100853, China.,Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chi Wang
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenhao Hu
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fanqi Hu
- Medical School of Chinese PLA General Hospital, Beijing, 100853, China.,Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weibo Liu
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xuesong Zhang
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
13
|
Dysregulated Bone Metabolism Is Related to High Expression of miR-151a-3p in Severe Adolescent Idiopathic Scoliosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4243015. [PMID: 33029507 PMCID: PMC7537684 DOI: 10.1155/2020/4243015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common complex disease, and bone homeostasis plays an important role in its pathogenesis. Recent advances in epigenetic research show that dysregulated miRNAs may participate in the development of orthopedic diseases and AIS. The aim of this study was to detect differentially expressed miRNAs in severe AIS and elucidate the mechanism of miRNA deregulation in the pathogenesis of AIS. In the present study, miRNA expression profiles were detected in severe and mild AIS patients as well as healthy controls by miRNA sequencing. Candidate miRNAs were validated in a larger cohort. Primary osteoblasts from severe AIS patients were extracted and isolated to determine the effect of the candidate miRNAs on bone metabolism. Finally, we determined the methylation level in primary osteoblasts from severe AIS patients. The result showed that miR-151a-3p was overexpressed in severe AIS patients. Reduced GREM1 expression was observed in primary osteoblasts from severe AIS patients. miR-151a-3p directly inhibited GREM1 in primary osteoblasts. Relatively lower methylation levels were detected in primary osteoblasts from severe AIS patients. In conclusion, our study revealed that plasma miR-151a-3p levels may serve as a biomarker for severe AIS. Overexpression of miR-151a-3p may interrupt bone homeostasis via inhibiting GREM1 expression. Our result may provide a new biomarker for the early detection of AIS and increase our understanding of the pathogenesis of AIS.
Collapse
|