1
|
Stokovic N, Ivanjko N, Javor A, Pecin M, Muzina K, Stepanic ZM, Capak H, Vrbanac Z, Maticic D, Vukicevic S. Regeneration of a Rabbit Segmental Defect with a New Bone Therapy: Autologous Blood Coagulum with Bone Morphogenetic Protein 6 and Synthetic Ceramics. Biomater Res 2025; 29:0140. [PMID: 39911304 PMCID: PMC11794767 DOI: 10.34133/bmr.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
Segmental defects of long bones are among the most challenging and debilitating conditions in clinical medicine. Osteogrow-C is a novel osteoinductive device composed of recombinant human bone morphogenetic protein 6 (rhBMP6) delivered within autologous blood coagulum (ABC) with calcium phosphate ceramics that was proven efficacious in preclinical models of spinal fusion. This study aimed to evaluate the efficacy of Osteogrow-C in comparison to that of other osteoinductive therapies in a clinically relevant segmental defect model in rabbits. Segmental defects (15 mm) of rabbit ulna were treated with Osteogrow-C containing different synthetic ceramic particles (tricalcium phosphate [TCP] and TCP/hydroxyapatite 40%/60%), Osteogrow (rhBMP6/ABC), Infuse (rhBMP2/absorbable collagen sponge), and control implants without bone morphogenetic proteins. Defect healing was evaluated by in vivo x-ray scans 4, 8, and 17 weeks after the surgery, and animals were killed after 17 weeks for further radiographical and histological assessment. Evaluation of x-ray images, micro-computed tomography, and histological sections revealed that both Osteogrow-C formulations as well as Osteogrow and Infuse promoted healing of the ulnar segmental defect. However, radiographic scores were higher in animals treated with Osteogrow-C than those for the other used therapies. Moreover, evaluation of in vivo x-ray scans revealed that Osteogrow-C with TCP ceramics induced the most rapid defect bridging. On the other hand, control implants (ABC/TCP and ABC/biphasic calcium phosphate) promoted limited osteogenesis without defect bridging. The findings of this study suggest that Osteogrow-C is a promising safe therapeutic solution for the treatment of large bone defects, providing relief to millions of patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine,
University of Zagreb, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine,
University of Zagreb, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Ana Javor
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department of Radiology, Ultrasound Diagnostics, and Physical Therapy, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Marko Pecin
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Clinics for Surgery, Orthopedics, and Ophthalmology, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Katarina Muzina
- Department of Inorganic Chemical Technology and Non-metals, Faculty of Chemical Engineering and Technology,
University of Zagreb, Zagreb, Croatia
| | - Zeljka Magdalena Stepanic
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Clinics for Surgery, Orthopedics, and Ophthalmology, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department of Radiology, Ultrasound Diagnostics, and Physical Therapy, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department of Radiology, Ultrasound Diagnostics, and Physical Therapy, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Clinics for Surgery, Orthopedics, and Ophthalmology, Faculty of Veterinary Medicine,
University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine,
University of Zagreb, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Paulini MR, Montarele LF, Pitol DL, Giannocco G, Pereira BF, Buchaim DV, Reis CHB, Buchaim RL, Mardegan Issa JP. Gene expression analysis of cytokines and MMPs in melatonin and rhBMP-2 enhanced bone remodeling. World J Orthop 2024; 15:1075-1087. [PMID: 39600865 PMCID: PMC11586733 DOI: 10.5312/wjo.v15.i11.1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND In the medical and dental fields, there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss. Melatonin may be an important endogenous biological factor for bone remodeling, and growth factors may enhance the repair process. AIM To evaluate the gene expression of cytokines (IL-1β, IL-6, IL-10 and TNF-α), markers of osteoclastogenesis (RANK, RANKL and OPG) and MMPs (MMP-1, MMP-2, MMP-8 and MMP-13) from the treatment of melatonin associated with an osteogenic membrane and rhBMP-2 on the recovery of a bone injury. METHODS Sixty-four rats were used and divided into 9 experimental groups and were formed according to the treatment carried out in the region of the bone lesion, which varied between the combination of 1, 10 and 100 μmol/L of melatonin. Gene Expression analysis was performed using real time-PCR by reading the concentration of total RNA and reverse transcription. RESULTS There were differences between groups when compared with clot or scaffold control, and improvement with a higher concentration of melatonin or rhBMP-2. The combination melatonin (1 µg) with 5 μg of rhBMP-2, using the guided bone regeneration technique, demonstrated some effects, albeit mild, on bone repair of critical bone defects. CONCLUSION This indicates that the approach for administering these substances needs to be reassessed, with the goal of ensuring their direct application to the affected area. Therefore, future research must be carried out, seeking to produce materials with these ideal characteristics.
Collapse
Affiliation(s)
- Marina Ribeiro Paulini
- Department of Basic and Oral Biology, University of São Paulo, Ribeirao Preto 14040-904, Brazil
| | | | | | - Gisele Giannocco
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Federal University of São Paulo, Diadema 09972-270, Brazil
| | - Bruno Fiorelini Pereira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Federal University of São Paulo, Diadema 09972-270, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina, Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia, Marilia 17525-902, Brazil
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia, Marilia 17525-902, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Joao Paulo Mardegan Issa
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirao Preto 14040-904, Brazil
| |
Collapse
|
4
|
Christou C, Varcoe T, Williams G, Heil T, Leifeld S, Park H, Peckham S, Stewart D, Greenbaum J, Wang T, Pelletier M, Walsh W, Alvarez L. In vivo Assessment of AMP2, a Novel Ceramic-Binding BMP-2, in Ovine Lumbar Interbody Fusion. Spine (Phila Pa 1976) 2024; 49:1381-1390. [PMID: 38988089 PMCID: PMC11386960 DOI: 10.1097/brs.0000000000005091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
STUDY DESIGN Assessment of bone formation in an ovine interbody fusion study. OBJECTIVE To compare OsteoAdapt SP, which consists of AMP-2, a modified variant of recombinant human bone morphogenetic protein (rhBMP-2) bound to a tricalcium phosphate-containing carrier, to autologous iliac crest bone graft (ICBG) in a lumbar interbody fusion model. SUMMARY OF BACKGROUND DATA Treatment of lumbar disk degeneration often involves spinal fusion to reduce pain and motion at the affected spinal segment by insertion of a cage containing bone graft material. Three graft materials were compared in this study-ICBG and OsteoAdapt SP (low or high dose). METHODS The sheep underwent lateral lumbar fusion surgery with PEEK or Titanium interbody cages packed with OsteoAdapt SP (low or high dose) or ICBG. Outcomes were evaluated at 8-, 16- and 26- weeks. Newly formed bone quality, bone mineralization, and fusion were assessed by manual palpation, qualitative and semi-quantitative histopathology, histomorphometry, computed tomography (CT), and micro-CT (mCT) analysis. RESULTS OsteoAdapt SP was implanted into 43 animals and ICBG into 21 animals (L3-L4). No group showed evidence of systemic toxicity by multiple assessments. All levels were fused by manual palpation at 26 weeks. Serial CT scans showed increasing fusion scores over time. Both doses of OsteoAdapt SP resulted in robust new bone formation and progression of fusion in the interbody cage. Range of motion tests for treatment groups was lower compared with ICBG at 8- and 16 weeks. Similarly, histology at eight weeks demonstrated more robust new bone formation for both OsteoAdapt SP groups compared to autograft. CONCLUSION We have demonstrated the preclinical safety and efficacy of OsteoAdapt SP in a clinically relevant large animal model, supporting faster and more robust new bone formation within the interbody cage, comparable to or better than the gold standard, ICBG, in all measures.
Collapse
Affiliation(s)
- Chris Christou
- South Australia Health and Medical Research Institute, Preclinical, Imaging & Research Laboratories (SAHMRI-PIRL), Gilles Plains, SA
| | - Tamara Varcoe
- South Australia Health and Medical Research Institute, Preclinical, Imaging & Research Laboratories (SAHMRI-PIRL), Gilles Plains, SA
| | - Georgia Williams
- South Australia Health and Medical Research Institute, Preclinical, Imaging & Research Laboratories (SAHMRI-PIRL), Gilles Plains, SA
| | | | | | | | | | | | | | - Tian Wang
- Surgical and Orthopaedic Research Laboratory, University of New South Wales, NSW
| | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratory, University of New South Wales, NSW
| | - William Walsh
- Surgical and Orthopaedic Research Laboratory, University of New South Wales, NSW
| | | |
Collapse
|
5
|
Ivanjko N, Stokovic N, Milesevic M, Rumenovic V, Windhager R, Sampath KT, Kovacic N, Grcevic D, Vukicevic S. rhBMP6 in autologous blood coagulum is a preferred osteoinductive device to rhBMP2 on bovine collagen sponge in the rat ectopic bone formation assay. Biomed Pharmacother 2023; 169:115844. [PMID: 37948990 DOI: 10.1016/j.biopha.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoinductive BMPs require a suitable delivery system for treating various pathological conditions of the spine and segmental bone defects. INFUSE, the only commercially available BMP-based osteoinductive device, consisting of rhBMP2 on bovine absorbable collagen sponge (ACS) showed major disadvantages due to serious side effects. A novel osteoinductive device, OSTEOGROW, comprised of rhBMP6 dispersed within autologous blood coagulum (ABC) is a promising therapy for bone regeneration, subjected to several clinical trials for diaphysial bone repair and spinal fusion. In the present study, we have examined the release dynamics showing that the ABC carrier provided a slower, more steady BMP release in comparison to the ACS. Rat subcutaneous assay was employed to evaluate cellular events and the time course of ectopic osteogenesis. The host cellular response to osteoinductive implants was evaluated by flow cytometry, while dynamics of bone formation and maintenance in time were evaluated by histology, immunohistochemistry and micro CT analyses. Flow cytometry revealed that the recruitment of lymphoid cell populations was significantly higher in rhBMP6/ABC implants, while rhBMP2/ACS implants recruited more myeloid populations. Furthermore, rhBMP6/ABC implants more efficiently attracted early and committed progenitor cells. Dynamics of bone formation induced by rhBMP2/ACS was characterized by a delayed endochondral ossification process in comparison to rhBMP6/ABC implants. Besides, rhBMP6/ABC implants induced more ectopic bone volume in all observed time points in comparison to rhBMP2/ACS implants. These results indicate that OSTEOGROW was superior to INFUSE due to ABC's advantages as a carrier and rhBMP6 superior efficacy in inducing bone.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Natasa Kovacic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grcevic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
6
|
Ivanjko N, Stokovic N, Pecin M, Vnuk D, Smajlovic A, Ivkic N, Capak H, Javor A, Vrbanac Z, Maticic D, Vukicevic S. Calcium phosphate ceramics combined with rhBMP6 within autologous blood coagulum promote posterolateral lumbar fusion in sheep. Sci Rep 2023; 13:22079. [PMID: 38086987 PMCID: PMC10716416 DOI: 10.1038/s41598-023-48878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Posterolateral spinal fusion (PLF) is a procedure used for the treatment of degenerative spine disease. In this study we evaluated Osteogrow-C, a novel osteoinductive device comprised of recombinant human Bone morphogenetic protein 6 (rhBMP6) dispersed in autologous blood coagulum with synthetic ceramic particles, in the sheep PLF model. Osteogrow-C implants containing 74-420 or 1000-1700 µm ceramic particles (TCP/HA 80/20) were implanted between L4-L5 transverse processes in sheep (Ovis Aries, Merinolaandschaf breed). In the first experiment (n = 9 sheep; rhBMP6 dose 800 µg) the follow-up period was 27 weeks while in the second experiment (n = 12 sheep; rhBMP6 dose 500 µg) spinal fusion was assessed by in vivo CT after 9 weeks and at the end of the experiment after 14 (n = 6 sheep) and 40 (n = 6 sheep) weeks. Methods of evaluation included microCT, histological analyses and biomechanical testing. Osteogrow-C implants containing both 74-420 and 1000-1700 µm ceramic particles induced radiographic solid fusion 9 weeks following implantation. Ex-vivo microCT and histological analyses revealed complete osseointegration of newly formed bone with adjacent transverse processes. Biomechanical testing confirmed that fusion between transverse processes was complete and successful. Osteogrow-C implants induced spinal fusion in sheep PLF model and therefore represent a novel therapeutic solution for patients with degenerative disc disease.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Niko Ivkic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Javor
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia.
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
7
|
Cavka M, Delimar D, Rezan R, Zigman T, Duric KS, Cimic M, Dumic-Cule I, Prutki M. Complications of Percutaneous Vertebroplasty: A Pictorial Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1536. [PMID: 37763655 PMCID: PMC10533082 DOI: 10.3390/medicina59091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Percutaneous vertebroplasty is a minimally invasive treatment technique for vertebral body compression fractures. The complications associated with this technique can be categorized into mild, moderate, and severe. Among these, the most prevalent complication is cement leakage, which may insert into the epidural, intradiscal, foraminal, and paravertebral regions, and even the venous system. The occurrence of a postprocedural infection carries a notable risk which is inherent to any percutaneous procedure. While the majority of these complications manifest without symptoms, they can potentially lead to severe outcomes. This review aims to consolidate the various complications linked to vertebroplasty, drawing from the experiences of a single medical center.
Collapse
Affiliation(s)
- Mislav Cavka
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
| | - Domagoj Delimar
- Department of Orthopaedic Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
| | - Robert Rezan
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
| | - Tomislav Zigman
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
- Department of Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kresimir Sasa Duric
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
- Department of Neurosurgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Mislav Cimic
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
| | - Ivo Dumic-Cule
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
- Department of Nursing, University North, 104 Brigade 3, 42000 Varazdin, Croatia
| | - Maja Prutki
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (M.C.); (R.R.); (M.P.)
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia; (T.Z.); (K.S.D.); (M.C.)
| |
Collapse
|
8
|
Woloszyk A, Aguilar L, Perez L, Salinas EL, Glatt V. Biomimetic hematoma delivers an ultra-low dose of rhBMP-2 to successfully regenerate large femoral bone defects in rats. BIOMATERIALS ADVANCES 2023; 148:213366. [PMID: 36905826 DOI: 10.1016/j.bioadv.2023.213366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Successful repair of large bone defects remains a clinical challenge. Following fractures, a bridging hematoma immediately forms as a crucial step that initiates bone healing. In larger bone defects the micro-architecture and biological properties of this hematoma are compromised, and spontaneous union cannot occur. To address this need, we developed an ex vivo Biomimetic Hematoma that resembles naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin, as an autologous delivery vehicle for a very reduced dose of rhBMP-2. When implanted into a rat femoral large defect model, complete and consistent bone regeneration with superior bone quality was achieved with 10-20× less rhBMP-2 compared to that required with the collagen sponges currently used. Moreover, calcium and rhBMP-2 demonstrated a synergistic effect enhancing osteogenic differentiation, and fully restored mechanical strength 8 weeks after surgery. Collectively, these findings suggest the Biomimetic Hematoma provides a natural reservoir for rhBMP-2, and that retention of the protein within the scaffold rather than its sustained release might be responsible for more robust and rapid bone healing. Clinically, this new implant, using FDA-approved components, would not only reduce the risk of adverse events associated with BMPs, but also decrease treatment costs and nonunion rates.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Emily L Salinas
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
9
|
Nakashima T, Morimoto T, Hashimoto A, Kii S, Tsukamoto M, Miyamoto H, Todo M, Sonohata M, Mawatari M. Osteoconductivity and neurotoxicity of silver-containing hydroxyapatite coating cage for spinal interbody fusion in rats. JOR Spine 2023; 6:e1236. [PMID: 36994462 PMCID: PMC10041372 DOI: 10.1002/jsp2.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background The use of spinal instrumentation is an established risk factor for postoperative infection. To address this problem, we prepared silver-containing hydroxyapatite coating, consisting of highly osteoconductive hydroxyapatite interfused with silver. The technology has been adopted for total hip arthroplasty. Silver-containing hydroxyapatite coating has been reported to have good biocompatibility and low toxicity. However, no studies about applying this coating in spinal surgery have addressed the osteoconductivity and direct neurotoxicity to the spinal cord of silver-containing hydroxyapatite cages in spinal interbody fusion. Aim In this study, we evaluated the osteoconductivity and neurotoxicity of silver-containing hydroxyapatite-coated implants in rats. Materials & Methods Titanium (non-coated, hydroxyapatite-coated, and silver-containing hydroxyapatite-coated) interbody cages were inserted into the spine for anterior lumbar fusion. At 8 weeks postoperatively, micro-computed tomography and histology were performed to evaluate the osteoconductivity of the cage. Inclined plane test and toe pinch test were performed postoperatively to assess neurotoxicity. Results Micro-computed tomography data indicated no significant difference in bone volume/total volume among the three groups. Histologically, the hydroxyapatite-coated and silver-containing hydroxyapatite-coated groups showed significantly higher bone contact rate than that of the titanium group. In contrast, there was no significant difference in bone formation rate among the three groups. Data of inclined plane and toe pinch test showed no significant loss of motor and sensory function in the three groups. Furthermore, there was no degeneration, necrosis, or accumulation of silver in the spinal cord on histology. Conclusions This study suggests that silver-hydroxyapatite-coated interbody cages produce good osteoconductivity and are not associated with direct neurotoxicity.
Collapse
Affiliation(s)
- Takema Nakashima
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Akira Hashimoto
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Sakumo Kii
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of MedicineSaga UniversitySagaJapan
| | - Mitsugu Todo
- Division of Renewable Energy Dynamics, Research Institute for Applied MechanicsKyushu UniversityFukuokaJapan
| | - Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| |
Collapse
|
10
|
Montarele LF, Pitol DL, Pereira BF, Feldman S, Fazan VPS, Issa JPM. Histological and Immunohistochemical Analysis of the Effects of Topical Melatonin Treatment Associated with Collagen Sponge and rhBMP-2 Protein on Bone Remodeling. Biomolecules 2022; 12:biom12121738. [PMID: 36551166 PMCID: PMC9775039 DOI: 10.3390/biom12121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Extensive bone defect healing is an important health issue not yet completely resolved. Different alternative treatments have been proposed but, in face of a critical bone defect, it is still very difficult to reach a complete regeneration, with the new-formed bone presenting all morphological and physiological characteristics of a normal, preinjury bone. Topical melatonin use has shown as a promising adjuvant for bone regeneration due to its positive effects on bone metabolism. Thus, to search for new, safe, biological techniques that promote bone repair and favor defect healing, we hypothesized that there is a synergistic effect of melatonin treatment associated with rhBMP-2 to guide bone regeneration. This study aimed to investigate bone repair effects of topical melatonin administration in different concentrations (1, 10, and 100 µg), associated or not with rhBMP-2. Surgical-induced bone defect healing was qualitatively evaluated through histopathological analysis by light microscopy. Additionally, quantitative stereology was performed in immunohistochemistry-prepared tissue to identify angiogenic, osteogenic, and osteoclastogenic factors. Quantification data were compared between groups by the ANOVA/Tukey test and differences were considered significant when p < 0.05. Our results showed that the presence of the scaffold in the bone defect hindered the process of bone repair because in the group treated with "blood clot + scaffold" the results of bone formation and immunolabeling were reduced in comparison with all other groups (treated with melatonin alone or in association with rhBMP-2). Statistical analysis revealed a significant difference between the control group (bone defect + blood clot), and groups treated with different concentrations of melatonin in association with rhBMP-2, indicating a positive effect of the association for bone repair. This treatment is promising once it becomes a new safe alternative technique for the clinical treatment of fractures, bone defects, and bone grafts. Our results support the hypothesis of the safe use of the association of melatonin and rhBMP-2 and have established a safe and effective dose for this experimental treatment.
Collapse
Affiliation(s)
- Leticia Ferreira Montarele
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (FORP-USP), Ribeirão Preto 14040-904, Brazil
| | - Dimitrius Leonardo Pitol
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (FORP-USP), Ribeirão Preto 14040-904, Brazil
| | - Bruno Fiorelini Pereira
- Department of Biological Sciences, Universidade Federeal de São Paulo—UNIFESP, Diadema 05468-901, Brazil
| | - Sara Feldman
- LABOATEM, Laboratório de Biologia e Engenharia de Tecidos, Faculdade de Medicina, Universidade Nacional de Rosário, Rosário S2002, Argentina
| | - Valéria Paula Sassoli Fazan
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto 14049-900, Brazil
| | - João Paulo Mardegan Issa
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (FORP-USP), Ribeirão Preto 14040-904, Brazil
- Correspondence:
| |
Collapse
|
11
|
Stokovic N, Ivanjko N, Rumenovic V, Breski A, Sampath KT, Peric M, Pecina M, Vukicevic S. Comparison of synthetic ceramic products formulated with autologous blood coagulum containing rhBMP6 for induction of bone formation. INTERNATIONAL ORTHOPAEDICS 2022; 46:2693-2704. [PMID: 35994064 DOI: 10.1007/s00264-022-05546-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Osteogrow, an osteoinductive device containing recombinant human Bone Morphogenetic Protein 6 (rhBMP6) in autologous blood coagulum, is a novel therapeutic solution for bone regeneration. This study aimed to evaluate different commercially available calcium phosphate synthetic ceramic particles as a compression-resistant matrix (CRM) added to Osteogrow implants to enhance their biomechanical properties. METHODS Osteogrow implants with the addition of Vitoss, ChronOs, BAM, and Dongbo ceramics (Osteogrow-C, where C stands for ceramics) were evaluated in the rodent subcutaneous ectopic bone formation assay. Osteogrow-C device was prepared as follows: rhBMP6 was added to blood, and blood was mixed with ceramics and left to coagulate. Osteogrow-C was implanted subcutaneously in the axillary region of Sprague-Dawley rats and the outcome was analyzed 21 days following implantation using microCT, histology, morphometric analyses, and immunohistochemistry. RESULTS Osteogrow-C implants with all tested ceramic particles induced the formation of the bone-ceramic structure containing cortical bone, the bone between the particles, and bone at the ceramic surfaces. The amount of newly formed bone was significant in all experimental groups; however, the highest bone volume was measured in Osteogrow-C implants with highly porous Vitoss ceramics. The trabecular number was highest in Osteogrow-C implants with Vitoss and ChronOs ceramics while trabeculae were thicker in implants containing BAM and Dongbo ceramics. The immunological response and inflammation were comparable among ceramic particles evaluated in this study. CONCLUSION Osteogrow-C bone regenerative device was effective with a broad range of commercially available synthetic ceramics providing a promising therapeutic solution for the regeneration of long bone fracture nonunion, large segmental defects, and spinal fusion surgeries.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Mihaela Peric
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department for Intracellular Communication, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
12
|
Long-term posterolateral spinal fusion in rabbits induced by rhBMP6 applied in autologous blood coagulum with synthetic ceramics. Sci Rep 2022; 12:11649. [PMID: 35803983 PMCID: PMC9270325 DOI: 10.1038/s41598-022-14931-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (Osteogrow) is a novel therapeutic solution for bone regeneration. This study is aimed to investigate the long-term outcome of ABGS with synthetic ceramics (Osteogrow-C) in rabbit posterolateral spinal fusion (PLF) model. Osteogrow-C implants were implanted bilaterally between rabbit lumbar transverse processes. We compared the outcome following implantation of ABGS with ceramic particles of different chemical composition (TCP and biphasic ceramics containing both TCP and HA) and size (500–1700 µm and 74–420 µm). Outcome was analyzed after 14 and 27 weeks by microCT, histology, and biomechanical analyses. Successful bilateral spinal fusion was observed in all animals at the end of observation period. Chemical composition of ceramic particles has impact on the PLF outcome via resorption of TCP ceramics, while ceramics containing HA were only partially resorbed. Moreover, persistence of ceramic particles subsequently resulted with an increased bone volume in implants with small particles containing high proportion of HA. ABGS (rhBMP6/ABC) with various synthetic ceramic particles promoted spinal fusion in rabbits. This is the first presentation of BMP-mediated ectopic bone formation in rabbit PLF model with radiological, histological, and biomechanical features over a time course of up to 27 weeks.
Collapse
|
13
|
Windolf M, Heumann M, Varjas V, Constant C, Ernst M, Richards RG, Wilke HJ, Benneker LM. Continuous Rod Load Monitoring to Assess Spinal Fusion Status-Pilot In Vivo Data in Sheep. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:899. [PMID: 35888618 PMCID: PMC9319051 DOI: 10.3390/medicina58070899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Spinal fusion is an effective and widely accepted intervention. However, complications such as non-unions and hardware failures are frequently observed. Radiologic imaging and physical examination are still the gold standards in the assessment of spinal fusion, despite multiple limitations including radiation exposure and subjective image interpretation. Furthermore, current diagnostic methods only allow fusion assessment at certain time points and require the patient's presence at the hospital or medical practice. A recently introduced implantable sensor system for continuous and wireless implant load monitoring in trauma applications carries the potential to overcome these drawbacks, but transferability of the principle to the spine has not been demonstrated yet. Materials and Methods: The existing trauma sensor was modified for attachment to a standard pedicle-screw-rod system. Two lumbar segments (L2 to L4) of one Swiss white alpine sheep were asymmetrically instrumented. After facetectomy, three sensors were attached to the rods between each screw pair and activated for measurement. The sheep was euthanized 16 weeks postoperatively. After radiological assessment the spine was explanted and loaded in flexion-extension to determine the range of motion of the spinal segments. Sensor data were compared with mechanical test results and radiologic findings. Results: The sensors measured physiological rod loading autonomously over the observation period and delivered the data daily to bonded smartphones. At euthanasia the relative rod load dropped to 67% of the respective maximum value for the L23 segment and to 30% for the L34 segment. In agreement, the total range of motion of both operated segments was lower compared to an intact reference segment (L23: 0.57°; L34: 0.49°; intact L45: 4.17°). Radiologic assessment revealed fusion mass in the facet joint gaps and bilateral bridging bone around the joints at both operated segments. Conclusions: Observations of this single-case study confirm the basic ability of continuous rod load measurement to resolve the spinal fusion process as indicated by a declining rod load with progressing bone fusion. A strong clinical potential of such technology is eminent, but further data must be collected for final proof of principle.
Collapse
Affiliation(s)
- Markus Windolf
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.W.); (V.V.); (C.C.); (M.E.); (R.G.R.)
| | - Maximilian Heumann
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.W.); (V.V.); (C.C.); (M.E.); (R.G.R.)
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University, 89081 Ulm, Germany;
| | - Viktor Varjas
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.W.); (V.V.); (C.C.); (M.E.); (R.G.R.)
| | - Caroline Constant
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.W.); (V.V.); (C.C.); (M.E.); (R.G.R.)
| | - Manuela Ernst
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.W.); (V.V.); (C.C.); (M.E.); (R.G.R.)
| | - Robert Geoff Richards
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.W.); (V.V.); (C.C.); (M.E.); (R.G.R.)
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University, 89081 Ulm, Germany;
| | | |
Collapse
|
14
|
Zhang H, Wang Z, Wang Y, Li Z, Chao B, Liu S, Luo W, Jiao J, Wu M. Biomaterials for Interbody Fusion in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:900992. [PMID: 35656196 PMCID: PMC9152360 DOI: 10.3389/fbioe.2022.900992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, interbody fusion cages have played an important role in interbody fusion surgery for treating diseases like disc protrusion and spondylolisthesis. However, traditional cages cannot achieve satisfactory results due to their unreasonable design, poor material biocompatibility, and induced osteogenesis ability, limiting their application. There are currently 3 ways to improve the fusion effect, as follows. First, the interbody fusion cage is designed to facilitate bone ingrowth through the preliminary design. Second, choose interbody fusion cages made of different materials to meet the variable needs of interbody fusion. Finally, complete post-processing steps, such as coating the designed cage, to achieve a suitable osseointegration microstructure, and add other bioactive materials to achieve the most suitable biological microenvironment of bone tissue and improve the fusion effect. The focus of this review is on the design methods of interbody fusion cages, a comparison of the advantages and disadvantages of various materials, the influence of post-processing techniques and additional materials on interbody fusion, and the prospects for the future development of interbody fusion cages.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Gupta A, Tripathi L, Pandey S, Dwivedi D. Biology of Bone Morphogenetic Proteins in Skeleton Disease: Osteonecrosis
in Sickle Cell Disease Patients. Curr Protein Pept Sci 2022; 23:264-270. [DOI: 10.2174/1389203723666220530104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Sickle cell disease (SCD) is an autosomal recessive trait of genetic hemoglobin disorder whose prevalence is varied from 5 to 25 % of the world population. It is characterized by the presence of hemoglobin (HbS) instead of normal hemoglobin (HbA). An individual suffering from sickle cell disease is likely to be at risk of osteonecrosis which is a form of ischemic bone infarction which causes intolerable degenerative joint problems and can affect 30-50% of people with sickle cell disease. The femoral head is the most frequent epiphyseal location in osteonecrosis with sickle cell disease. In this review, the Bone morphogenetic protein (BMP)-a subfamily of transforming growth factor-β (TGF-β) characteristics, outlined the osteoblastogenesis potentiality via using combinatorial or advanced treatment approaches. In this review, we aim to describe the Bone morphogenetic proteins' role in Skeleton diseases and discuss the potent osteogenic BMPs (majorly BMP-2, BMP-6, and BMP-7) with therapeutic benefits.
Collapse
Affiliation(s)
- Ankita Gupta
- Shyam Shah Medical College, Multidisciplinary Research Unit, Rewa, M.P., India
| | - Lokesh Tripathi
- Department of Pathology, Shyam Shah Medical College, Rewa, M.P., India
| | - Sanjay Pandey
- Multidisciplinary Research Unit, Shyam Shah Medical College, Rewa, India
| | - Deepak Dwivedi
- Department of Pediatrics, Shyam Shah Medical College, Rewa, India
| |
Collapse
|
16
|
Kang Y, Liu C, Wang M, Wang C, Yan YG, Wang WJ. A novel rat model of interbody fusion based on anterior lumbar corpectomy and fusion (ALCF). BMC Musculoskelet Disord 2021; 22:965. [PMID: 34794408 PMCID: PMC8603486 DOI: 10.1186/s12891-021-04822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Rats have been widely used as experimental animals when performing fundamental research because they are economical, rapidly reproducing, and heal quickly. While the rat interbody fusion model has been applied in basic studies, existing rat models generally have shortcomings, such as insufficiently simulating clinical surgery. The purpose of this study was to develop a novel rat model of interbody fusion which more closely represents clinical surgery. METHODS The internal fixation was designed based on physical measurements of the rats' lumbar spine. Then, ten rats divided into two groups (A and B) underwent anterior lumbar corpectomy and fusion of the L5 vertebrae. Groups A and B were sacrificed four and 8 weeks post-surgery, respectively. Micro-CT and histological examination were used to evaluate the model. Fusion rate, bone volume fraction (BV/TV), trabecular bone number (Tb.N), trabecular bone thickness (Tb.Th), and the area ratio of newly formed bone (NB) were calculated for quantitative analysis. RESULTS Based on the L5 body dimensions of individual rats, 3D-printed titanium cage of the appropriate size were printed. The operations were successfully completed in all ten rats, and X-ray confirmed that internal fixation was good without migration. Micro-CT suggested that fusion rates in group B (100%) were greater than group A (40%, P < 0.05). The BV/TV (B: 42.20 ± 10.50 vs. A: 29.02 ± 3.25, P < 0.05) and Tb.N (B: 4.66 ± 1.23 vs. A: 1.97 ± 0.40, P < 0.05) were greater in group B than A, and the Tb.Th in group B was lower than group A (B: 0.10 ± 0.04 vs. A: 0.15 ± 0.02, P < 0.05). Histomorphometry results demonstrated that the area ratio of NB in group B were greater than group A (B: 35.72 ± 12.80 vs. A: 12.36 ± 16.93, P < 0.05). CONCLUSION A rat interbody fusion model based on anterior lumbar corpectomy and fusion has successfully been constructed and verified. It could provide a new choice for fundamental research using animal models of spinal fusion.
Collapse
Affiliation(s)
- Yu Kang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Orthopedicsity, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Chao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ming Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Cheng Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Yi-Guo Yan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wen-Jun Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
17
|
Stokovic N, Ivanjko N, Erjavec I, Breski A, Peric M, Vukicevic S. Zoledronate Bound to Ceramics Increases Ectopic Bone Volume Induced by rhBMP6 Delivered in Autologous Blood Coagulum in Rats. Biomedicines 2021; 9:biomedicines9101487. [PMID: 34680604 PMCID: PMC8533060 DOI: 10.3390/biomedicines9101487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) with synthetic ceramics is a novel therapeutic solution for bone repair. The aim of this study was to investigate whether the application of Zoledronate (ZOL) with ABGS might enhance the properties of newly formed bone. The effect of ZOL on bone induction was tested in a rat subcutaneous implant model. ZOL bound to synthetic ceramics was added into ABGS implants, and the quantity, quality, and longevity of the induced bone were assessed by micro-CT, histomorphometry, and histology over a period of 365 days. Local use of ZOL in the ABGS implants with ceramics had no influence on the bone volume (BV) on day 14 but subsequently significantly increased BV on days 35, 50, 105, 140, and 365 compared to the control implants. Locally applied ZOL had a similar effect in all of the applied doses (2–20 µg), while its systemic use on stimulating the BV of newly induced bone by ABGS depended on the time of application. BV was increased when ZOL was applied systemically on day 14 but had no effect when applied on day 35. The administration of ZOL bound to ceramics in ABGS increased and maintained the BV over a period of one year, offering a novel bone tissue engineering strategy for treating bone defects and spinal fusions.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
- Correspondence:
| |
Collapse
|
18
|
Gadomski BC, Labus KM, Puttlitz CM, McGilvray KC, Regan DP, Nelson B, Seim HB, Easley JT. Evaluation of lumbar spinal fusion utilizing recombinant human platelet derived growth factor-B chain homodimer (rhPDGF-BB) combined with a bovine collagen/β-tricalcium phosphate (β-TCP) matrix in an ovine model. JOR Spine 2021; 4:e1166. [PMID: 34611589 PMCID: PMC8479519 DOI: 10.1002/jsp2.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND CONTEXT While the clinical effectiveness of recombinant human Platelet Derived Growth Factor-B chain homodimer combined with collagen and β-tricalcium phosphate (rhPDGF-BB + collagen/β-TCP) treatment for indications involving hindfoot and ankle is well-established, it is not approved for use in spinal interbody fusion, and the use of autograft remains the gold standard. PURPOSE The purpose of this study was to compare the effects of rhPDGF-BB + collagen/β-TCP treatment on lumbar spine interbody fusion in an ovine model to those of autograft bone and collagen/β-TCP treatments using biomechanical, radiographic, and histological assessment techniques. STUDY DESIGN Thirty-two skeletally mature Columbian Rambouillet sheep were used to evaluate the safety and effectiveness of rhPDGF-BB + collagen/β-TCP matrix in a lumbar spinal fusion model. Interbody polyetheretherketone (PEEK) cages contained either autograft, rhPDGF-BB + collagen/β-TCP, collagen/β-TCP matrix, or left empty. METHODS Animals were sacrificed 8- or 16-weeks post-surgery. Spinal fusion was evaluated via post-sacrifice biomechanical, micro-computed tomography (μCT), and histological analysis. Outcomes were statistically compared using a two-way analysis of variance (ANOVA) with an alpha value of 0.05 and a Tukey post-hoc test. RESULTS There were no statistically significant differences between groups within treatment timepoints for flexion-extension, lateral bending, or axial rotation range of motion, neutral zone, neutral zone stiffness, or elastic zone stiffness. μCT bone volume fraction was significantly greater between treatment groups independent of timepoint where Autograft and rhPDGF-BB + collagen/β-TCP treatments demonstrated significantly greater bone volume fraction as compared to collagen/β-TCP (P = .026 and P = .038, respectively) and Empty cage treatments (P = .002 and P = .003, respectively). μCT mean bone density fraction was most improved in rhPDGF-BB + collagen/β-TCP specimens at the 8 week and 16-week timepoints as compared to all other treatment groups. There were no statistically significant differences in histomorphometric measurements of bone, soft tissue, or empty space between rhPDGF-BB + collagen/β-TCP and autograft treatments. CONCLUSIONS The results of this study indicate that the use of rhPDGF-BB combined with collagen/β-TCP promotes spinal fusion comparable to that of autograft bone. CLINICAL SIGNIFICANCE The data indicate that rhPDGF-BB combined with collagen/β-TCP promotes spinal fusion comparably to autograft bone treatment and may offer a viable alternative in large animal spinal fusion. Future prospective clinical studies are necessary to fully understand the role of rhPDGF-BB combined with collagen/β-TCP in human spinal fusion healing.
Collapse
Affiliation(s)
- Benjamin C. Gadomski
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Kevin M. Labus
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Christian M. Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Kirk C. McGilvray
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Daniel P. Regan
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Brad Nelson
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Howard B. Seim
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
19
|
Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies. MATERIALS 2021; 14:ma14133513. [PMID: 34202501 PMCID: PMC8269575 DOI: 10.3390/ma14133513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.
Collapse
|
20
|
Pecin M, Stokovic N, Ivanjko N, Smajlovic A, Kreszinger M, Capak H, Vrbanac Z, Oppermann H, Maticic D, Vukicevic S. A novel autologous bone graft substitute containing rhBMP6 in autologous blood coagulum with synthetic ceramics for reconstruction of a large humerus segmental gunshot defect in a dog: The first veterinary patient to receive a novel osteoinductive therapy. Bone Rep 2021; 14:100759. [PMID: 33732816 PMCID: PMC7937538 DOI: 10.1016/j.bonr.2021.100759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Management of large segmental defects is one of the most challenging issues in bone repair biology. Autologous bone graft substitute (ABGS) containing rhBMP6 within autologous blood coagulum (ABC) with synthetic ceramics is a novel biocompatible therapeutic solution for bone regeneration. Case presentation A 2-year old dog was brought to the veterinary clinics due to pain and bleeding from the right front leg after being unintendedly hit by a gunshot. Radiological examination revealed a large, 3 cm long multisegmental defect of the humerus on the right front leg with a loss of anatomical structure in the distal portion of the bone. The defect was treated surgically and an external fixator was inserted to ensure immobilization. Complete lack of bone formation 3 months following surgery required a full reconstruction of the defect site with a novel ABGS (rhBMP6 in ABC with ceramic particles) to avoid front leg amputation. The healing was then followed for the next 16 months. The callus formation was observed on x-ray images 2 months following ABGS implantation. The bone segments progressively fused together leading to the defect rebridgment allowing removal of the external fixator by 4 months after the reconstruction surgery. At the end of the observation period, the function of the leg was almost fully restored while analyses of the humeral CT sections revealed restoration and cortices rebridgment with a renewal of uniform medullary canal including structural reconstruction of the distal humerus. Conclusion This large humeral gunshot segmental defect of the front leg in a dog was saved from amputation via inducing bone regeneration using a novel ABGS osteoinductive device containing BMP6 in ABC.
Collapse
Affiliation(s)
- Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Kreszinger
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Corresponding author at: Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone 2020; 141:115602. [PMID: 32841742 DOI: 10.1016/j.bone.2020.115602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BMPs were purified from demineralized bone matrix based on their ability to induce new bone in vivo and they represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for mesenchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft substitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of osteogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to support osteogenesis.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Stokovic N, Ivanjko N, Erjavec I, Milosevic M, Oppermann H, Shimp L, Sampath KT, Vukicevic S. Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat subcutaneous assay. Bone 2020; 141:115654. [PMID: 32977068 DOI: 10.1016/j.bone.2020.115654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
Bone morphogenetic proteins (BMPs) are potent osteoinductive agents for bone tissue engineering. In order to define optimal properties of a novel autologous bone graft substitute (ABGS) containing rhBMP6 within the autologous blood coagulum (ABC) and ceramic particles as a compression resistant matrix (CRM), we explored the influence of their amount, chemical composition and particle size on the quantity and quality of bone formation in the rat subcutaneous assay. Tested ceramic particles included tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphate ceramic (BCP), containing TCP and HA in 80/20 ratio of different particle sizes (small 74-420 μm, medium 500-1700 μm and large 1000-4000 μm). RhBMP6 was either mixed with ABC or lyophilized on CRM prior to use with ABC. The experiments were terminated on day 21 and implants were analysed by microCT, histology and histomorphometry. Addition of CRM to ABGS containing rhBMP6 in ABC significantly increased the amount of newly formed bone and the optimal CRM/ABC ratio was found to be around 100 mg/500 μL. MicroCT analyses revealed that all tested ABGS formulations induced an extensive new bone formation and there were no differences between the two methods of rhBMP6 application as determined by the bone volume. However, the particle size played a significant role in the quantity and quality of newly formed bone. ABGS containing small particles induced new bone forming a dense trabecular network, cortical bone at the rim, bone and bone marrow in apposition to and in between ceramic particles. ABGS containing medium and large particles also resulted in new bone on the surface of particles as well as inside the pores. Histomorphometric analysis revealed that the ceramics particle size correlated with the quality of trabecular pattern of newly formed bone, bone/bone marrow ratio as observed in apposition and between particles, and the ratio between the cortical and trabecular bone. By employing rat subcutaneous implant assay, we showed for the first time that the size of synthetic ceramics particles affected the osteogenesis as defined by both the quantity and quality of ectopic bone.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Milan Milosevic
- Department for Environmental Health, Occupational and Sports Medicine, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia.
| |
Collapse
|
23
|
Vukicevic S, Sampath KT, Luyten FP. Editorial - "The role of bone morphogenetic proteins (BMPs) in musculoskeletal biology". Bone 2020; 141:115622. [PMID: 32919995 DOI: 10.1016/j.bone.2020.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Kuber T Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Sampath TK, Reddi AH. Discovery of bone morphogenetic proteins - A historical perspective. Bone 2020; 140:115548. [PMID: 32730937 DOI: 10.1016/j.bone.2020.115548] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) were purified from demineralized bone matrix by their ability to induce new bone formation in vivo. BMPs represent a large sub-family of proteins structurally related to TGF-beta and activins. Two BMP bone graft substitutes, BMP2 (InFuse®) and BMP7 (OP1®) have been developed as products for the repair of long bone non-union fractures and lumbar spinal fusion in humans. The approval of BMP2 and BMP7 based products for use in the clinic supports that the signals responsible for bone formation at ectopic sites can form a basis as therapeutics for bone repair and regeneration. This article describes a historical perspective of the discovery BMPs.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm biologics Inc., Holliston, MA, United States of America.
| | - A Hari Reddi
- Lawrence Ellison Center for Musculoskeletal Regeneration, Department of Orthopedic Surgery, School of Medicine, University of California at Davis, Sacramento, CA, United States of America
| |
Collapse
|
25
|
Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, Gavrankapetanovic I, Jamakosmanovic M, Milosevic M, Martinovic S, Sampath TK, Peric M, Grgurevic L, Vukicevic S. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. Bone 2020; 140:115551. [PMID: 32730930 DOI: 10.1016/j.bone.2020.115551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) are known to induce new bone formation in vivo but treating trabecular bone defects with a BMP based therapeutic remains controversial. Here, we evaluated the safety and efficacy of a novel Autologous Bone Graft Substitute (ABGS) comprised of recombinant human BMP6 (rhBMP6) dispersed within an autologous blood coagulum (ABC) as a physiological natural carrier in patients with a closed distal radial fracture (DRF). We enrolled 32 patients in a randomized, standard of care (SoC) and placebo (PBO) controlled, double-blinded Phase I First in Human (FiH) clinical trial. ABGS was prepared from peripheral blood as 250 μg rhBMP6/mL ABC or PBO (1 mL ABC containing excipients only) and was administered dorsally via a syringe injection into the fracture site following closed fracture fixation with 3 Kirschner wires. Patients carried an immobilization for 5 weeks and were followed-up for 0 to 26 weeks by clinical examination, safety, serial radiographic analyses and CT. During the 13 weeks follow-up and at 26 weeks post study there were no serious adverse reactions recorded. The results showed that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 32 patients at 13- and 26-weeks following treatment. Pharmacokinetic analyses of plasma from patients treated with ABGS showed no detectable rhBMP6 at any time point within the first 24 h following administration. The CT image and radiographic analyses score from patients treated with AGBS showed significantly accelerated bone healing as compared to PBO and SoC at 5 and 9 weeks (with high effect sizes and P = 0.027), while at week 13 all patients had similar healing outcomes. In conclusion, we show that intraosseous administration of ABGS (250 μg rhBMP6/mL ABC) into the distal radial fracture site demonstrated a good tolerability with no serious adverse reactions as well as early accelerated trabecular bone healing as compared to control PBO and SoC patients.
Collapse
Affiliation(s)
- Dragan Durdevic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Tomislav Vlahovic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Sanja Pehar
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Dina Miklic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Hermann Oppermann
- Genera Research, Svetonedeljska 2, Kalinovica, 10436, Rakov Potok, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Ismet Gavrankapetanovic
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mehmed Jamakosmanovic
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Milan Milosevic
- School of Public Health "Andrija Stampar", University of Zagreb School of Medicine, Rockefellerova 4, 10000 Zagreb, Croatia
| | | | | | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 2, 10000 Zagreb, Croatia
| | - Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Stokovic N, Ivanjko N, Milesevic M, Matic Jelic I, Bakic K, Rumenovic V, Oppermann H, Shimp L, Sampath TK, Pecina M, Vukicevic S. Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats. INTERNATIONAL ORTHOPAEDICS 2020; 45:1097-1107. [PMID: 33052447 DOI: 10.1007/s00264-020-04847-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats. METHODS ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test. RESULTS MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM. CONCLUSION We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Ivona Matic Jelic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Kristian Bakic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | | | | | | | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia. .,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|