1
|
Hanna R, Miron IC, Dalvi S, Arany P, Bensadoun RJ, Benedicenti S. A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials. Pharmaceuticals (Basel) 2024; 17:1011. [PMID: 39204116 PMCID: PMC11357434 DOI: 10.3390/ph17081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a debilitating adverse effect of bisphosphates, antiresorptive therapy or antiangiogenic agents that can potentially increase oxidative stress, leading to progressive osteonecrosis of the jaws. Despite the large number of published systematic reviews, there is a lack of potential MRONJ treatment protocols utilising photobiomodulation (PBM) as a single or adjunct therapy for preventive or therapeutic oncology or non-oncology cohort. Hence, this systematic review aimed to evaluate PBM laser efficacy and its dosimetry as a monotherapy or combined with the standard treatments for preventive or therapeutic approach in MRONJ management. The objectives of the review were as follows: (1) to establish PBM dosimetry and treatment protocols for preventive, therapeutic or combined approaches in MRONJ management; (2) to highlight and bridge the literature gaps in MRONJ diagnostics and management; and (3) to suggest rationalised consensus recommendations for future randomised controlled trials (RCTs) through the available evidence-based literature. This review was conducted according to the PRISMA guidelines, and the protocol was registered at PROSPERO under the ID CRD42021238175. A multi-database search was performed to identify articles of clinical studies published from their earliest records until 15 December 2023. The data were extracted from the relevant papers and analysed according to the outcomes selected in this review. In total, 12 out of 126 studies met the eligibility criteria. The striking inconsistent conclusions made by the various authors of the included studies were due to the heterogeneity in the methodology, diagnostic criteria and assessment tools, as well as in the reported outcomes, made it impossible to conduct a meta-analysis. PBM as a single or adjunct treatment modality is effective for MRONJ preventive or therapeutic management, but it was inconclusive to establish a standardised and replicable protocol due to the high risk of bias in a majority of the studies, but it was possible to extrapolate the PBM dosimetry of two studies that were close to the WALT recommended parameters. In conclusion, the authors established suggested rationalised consensus recommendations for future well-designed robust RCTs, utilising PBM as a monotherapy or an adjunct in preventive or therapeutic approach of MRONJ in an oncology and non-oncology cohort. This would pave the path for standardised PBM dosimetry and treatment protocols in MRONJ management.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Medical Faculty, University College London, London WC1E 6DE, UK
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
| | - Ioana Cristina Miron
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 440001, India
| | - Praveen Arany
- Department of Oral Biology ad Biomedical Engineering, University of Buffalo, Buffalo, NY 14215, USA;
| | | | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
| |
Collapse
|
2
|
Pickering ME, Javier RM, Malochet S, Pickering G, Desmeules J. Osteoporosis treatment and pain relief: A scoping review. Eur J Pain 2024; 28:3-20. [PMID: 37403555 DOI: 10.1002/ejp.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/11/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Anti-osteoporosis (OP) drugs have been suggested to contribute to pain reduction during OP management. This scoping review aimed at mapping the literature on pain relief with anti-OP drugs in OP treatment. DATABASES AND DATA TREATMENT Medline, Pubmed and Cochrane databases were searched by two reviewers with keywords combinations. Randomized controlled and real-life English studies, pain as an endpoint, antiosteoporosis drugs were inclusion criteria. Case reports, surveys, comment letters, conference abstracts, animal studies and grey literature were excluded. Predetermined data were extracted by two reviewers and disagreement solved through discussion. RESULTS A total of 130 articles were identified, 31 publications were included, 12 randomized clinical trials and 19 observational studies. Pain reduction was assessed by different tools: Visual Analogue Scale, Verbal Rating Scale, Facial Scale or as a domain of quality of life questionnaires including Short form 8, 36, mini-OP, Japanese OP, Qualeffo, Roland Morris Disability questionnaires. Collective data show that anti-OP drugs may display an analgesic effect that may be linked to the local mode of action of drugs on bone and consecutive modulation of pain sensitization. The methodology of the studies showed a heterogeneity of endpoints, comparators, statistical approaches and follow-up duration. CONCLUSION Considering the limitations of the literature, there is a need for more rigorous trials and larger real-life studies taking into account the recommendations published for research in rheumatology and in pain medicine. The identification of responders, patient subtypes, and of analgesic-effect doses would allow optimization and individualization for pain relief in patients with OP. SIGNIFICANCE STATEMENT This scoping review shows that anti-OP drugs may improve pain and quality of life of patients with OP. The heterogeneity in design, choice of endpoints, methodology, comparators and follow-up duration of included randomized clinical trials and real-life studies does not allow so far to identify a predominant antiosteoporosis drug or an optimal dosage for pain relief. These gaps need to be addressed and warrant further research in the future for optimizing pain improvement in the course of OP drug treatment.
Collapse
Affiliation(s)
| | - Rose-Marie Javier
- Centre d'Evaluation et de Traitement de la Douleur et Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sandrine Malochet
- Rheumatology Department, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Gisele Pickering
- Clinical Investigation Center, PIC/CIC, University Hospital, CHU, Clermont-Ferrand, France
| | - Jules Desmeules
- Service de Pharmacologie et Toxicologie Cliniques, Centre multidisciplinaire de la douleur, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
3
|
Budzinska A, Galganski L, Jarmuszkiewicz W. The bisphosphonates alendronate and zoledronate induce adaptations of aerobic metabolism in permanent human endothelial cells. Sci Rep 2023; 13:16205. [PMID: 37758809 PMCID: PMC10533870 DOI: 10.1038/s41598-023-43377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Nitrogen-containing bisphosphonates (NBPs), compounds that are widely used in the treatment of bone disorders, may cause side effects related to endothelial dysfunction. The aim of our study was to investigate the effects of chronic 6-day exposure to two common bone-preserving drugs, alendronate and zoledronate, on endothelial function and oxidative metabolism of cultured human endothelial cells (EA.hy926). NBPs reduced cell viability, induced oxidative stress and a pro-inflammatory state and downregulated the prenylation-dependent ERK1/2 signaling pathway in endothelial cells. In addition, NBPs induced increased anaerobic respiration and slightly increased oxidative mitochondrial capacity, affecting mitochondrial turnover through reduced mitochondrial fission. Moreover, by blocking the mevalonate pathway, NBPs caused a significant decrease in the level of coenzyme Q10, thereby depriving endothelial cells of an important antioxidant and mitochondrial electron carrier. This resulted in increased formation of reactive oxygen species (ROS), upregulation of antioxidant enzymes, and impairment of mitochondrial respiratory function. A general decrease in mitochondrial respiration occurred with stronger reducing fuels (pyruvate and glutamate) in NBP-treated intact endothelial cells, and significantly reduced phosphorylating respiration was observed during the oxidation of succinate and especially malate in NBP-treated permeabilized endothelial cells. The observed changes in oxidative metabolism caused a decrease in ATP levels and an increase in oxygen levels in NBP-treated cells. Thus, NBPs modulate the energy metabolism of endothelial cells, leading to alterations in the cellular energy state, coenzyme Q10 redox balance, mitochondrial respiratory function, and mitochondrial turnover.
Collapse
Affiliation(s)
- Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Lukasz Galganski
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Xia B, Zheng L, Li Y, Sun W, Liu Y, Li L, Pang J, Chen J, Li J, Cheng H. The brief overview, antivirus and anti-SARS-CoV-2 activity, quantitative methods, and pharmacokinetics of cepharanthine: a potential small-molecule drug against COVID-19. Front Pharmacol 2023; 14:1098972. [PMID: 37583901 PMCID: PMC10423819 DOI: 10.3389/fphar.2023.1098972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
To effectively respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an increasing number of researchers are focusing on the antiviral activity of cepharanthine (CEP), which is a clinically approved drug being used for over 70 years. This review aims to provide a brief overview of CEP and summarize its recent findings in quantitative analysis, pharmacokinetics, therapeutic potential, and mechanism in antiviral and anti-SARS-CoV-2 activity. Given its remarkable capacity against SARS-CoV-2 infection in vitro and in vivo, with its primary target organ being the lungs, and its good pharmacokinetic profile; mature and stable manufacturing technique; and its advantages of safety, effectiveness, and accessibility, CEP has become a promising drug candidate for treating COVID-19 despite being an old drug.
Collapse
Affiliation(s)
- Binbin Xia
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yali Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenfang Sun
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liushui Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingyao Pang
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiaxin Li
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li Z, Wang H, Zhang K, Yang B, Xie X, Yang Z, Kong L, Shi P, Zhang Y, Ho YP, Zhang ZY, Li G, Bian L. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioact Mater 2022; 13:9-22. [PMID: 35224288 PMCID: PMC8844702 DOI: 10.1016/j.bioactmat.2021.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
The intricate dynamic feedback mechanisms involved in bone homeostasis provide valuable inspiration for the design of smart biomaterial scaffolds to enhance in situ bone regeneration. In this work, we assembled a biomimetic hyaluronic acid nanocomposite hydrogel (HA-BP hydrogel) by coordination bonds with bisphosphonates (BPs), which are antiosteoclastic drugs. The HA-BP hydrogel exhibited expedited release of the loaded BP in response to an acidic environment. Our in vitro studies showed that the HA-BP hydrogel inhibits mature osteoclastic differentiation of macrophage-like RAW264.7 cells via the released BP. Furthermore, the HA-BP hydrogel can support the initial differentiation of primary macrophages to preosteoclasts, which are considered essential during bone regeneration, whereas further differentiation to mature osteoclasts is effectively inhibited by the HA-BP hydrogel via the released BP. The in vivo evaluation showed that the HA-BP hydrogel can enhance the in situ regeneration of bone. Our work demonstrates a promising strategy to design biomimetic biomaterial scaffolds capable of regulating bone homeostasis to promote bone regeneration. HA-BP hydrogel can mediate the expedited release of BP in response to the acidic microenvironment created by osteoclasts. HA-BP hydrogel supports preosteoclastic differentiation, but inhibits the further osteoclastic maturation. The implantation of HA-BP hydrogel in critical-sized bone defects significantly promotes in situ bone regeneration in vivo.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, China
- Corresponding author.
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077, Hong Kong, China
- Corresponding author.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Cardiovascular Safety and Effectiveness of Bisphosphonates: From Intervention Trials to Real-Life Data. Nutrients 2022; 14:nu14122369. [PMID: 35745099 PMCID: PMC9227734 DOI: 10.3390/nu14122369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Both osteoporosis with related fragility fractures and cardiovascular diseases are rapidly outspreading worldwide. Since they are often coexistent in elderly patients and may be related to possible common pathogenetic mechanisms, the possible reciprocal effects of drugs employed to treat these diseases have to be considered in clinical practice. Bisphosphonates, the agents most largely employed to decrease bone fragility, have been shown to be overall safe with respect to cardiovascular diseases and even capable of reducing cardiovascular morbidity in some settings, as mainly shown by real life studies. No randomized controlled trials with cardiovascular outcomes as primary endpoints are available. While contradictory results have emerged about a possible BSP-mediated reduction of overall mortality, it is undeniable that these drugs can be employed safely in patients with high fracture risk, since no increased mortality has ever been demonstrated. Although partial reassurance has emerged from meta-analysis assessing the risk of cardiac arrhythmias during bisphosphonates treatment, caution is warranted in administering this class of drugs to patients at risk for atrial fibrillation, possibly preferring other antiresorptives or anabolics, according to osteoporosis guidelines. This paper focuses on the complex relationship between bisphosphonates use and cardiovascular disease and possible co-management issues.
Collapse
|
7
|
Characteristics Associated with Acute-Phase Response following First Zoledronic Acid Infusion in Brazilian Population with Osteoporosis. J Osteoporos 2021; 2021:9492883. [PMID: 35003621 PMCID: PMC8731262 DOI: 10.1155/2021/9492883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to evaluate characteristics associated with acute-phase response (APR) following first zoledronic acid infusion in a Brazilian cohort. This retrospective cohort study enrolled all adults with osteoporosis who underwent a first zoledronic acid infusion at our centre between June 2015 and June 2019. Clinical demographics (age, sex, diabetes, smoking, body mass index, and previous oral bisphosphonate use) and laboratory data (calcium, parathyroid hormone, renal function, and serum 25-hydroxyvitamin D and carboxy-terminal crosslinked telopeptide of type 1 collagen [CTX], both before and after infusion) were compared between patients with and without APR. We evaluated association magnitude between the presence of APR and clinical variables through logistic regression. This study enrolled 400 patients (women, 80%). APR was observed in 24.5% (n = 98) of patients. The mean symptom duration in days was 3.5 ± 2.8. Patients with APR were younger (67 ± 12 vs. 71 ± 11 years; p=0.001), used oral bisphosphonates less frequently (34% × 50%; p=0.005), and had greater baseline CTX (0.535 ng/mL [0.375, 0.697] × 0.430 [0.249, 0.681]; p=0.03) and ΔCTX (-69 [-76; -50] × -54 [-72; -23]; p=0.002) than those without APR. The other variables were similar between the groups. Only ΔCTX was associated (OR, 0.62; 95% CI 0.41-0.98) with APR after accounting for age and bisphosphonate use. APR occurred in 24.5% of the cohort. Younger age and absence of prior oral bisphosphonate use were associated with APR following first zoledronic acid infusion. APR was associated with ΔCTX (but no other variables) after adjusting for these factors.
Collapse
|
8
|
Teixeira S, Santos MM, Branco LC, Costa-Rodrigues J. Etidronate-based organic salts and ionic liquids: In vitro effects on bone metabolism. Int J Pharm 2021; 610:121262. [PMID: 34748807 DOI: 10.1016/j.ijpharm.2021.121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Bisphosphonates are a class of drugs widely used for the treatment of several pathologies associated with increased bone resorption. Although displaying low oral bioavailability, these drugs have the ability to accumulate in bone matrix, where the biological effects are exerted. In the present work, four mono- and dianionic Etidronate-based Organic Salts and Ionic Liquids (Eti-OSILs) were developed by combination of this drug with the superbases 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) as cations, aiming to improve not only the physicochemical properties of this seminal bisphosphonate, but also its efficacy in the modulation of cellular behavior, particularly on human osteoclasts and osteoblasts. It was observed that some of the developed compounds, in particular the dianionic ones, presented very high water solubility and diminished or absent polymorphism. Also, several of them appeared to be more cytotoxic against human breast and osteosarcoma cancer cell lines while retaining low toxicity to normal cells. Regarding bone cells, a promotion of an anabolic state was observed for all Eti-OSILs, primarily for the dianionic ones, which leads to an inhibition of osteoclastogenesis and an increase in osteoblastogenesis. The observed effects resulted from differential modulation of intracellular signaling pathways by the Eti-OSILs in comparison with Etidronate. Hence, these results pave the way for the development of more efficient and bioavailable ionic formulations of bisphosphonates aiming to effectively modulate bone metabolism, particularly in the case of increased bone resorption.
Collapse
Affiliation(s)
- Sónia Teixeira
- Instituto de Ciências Biomédicas Abel Salazar, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Miguel M Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - João Costa-Rodrigues
- ESS - Escola Superior de Saúde, Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal; i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
9
|
Dussart-Gautheret J, Deschamp J, Legigan T, Monteil M, Migianu-Griffoni E, Lecouvey M. One-Pot Synthesis of Phosphinylphosphonate Derivatives and Their Anti-Tumor Evaluations. Molecules 2021; 26:molecules26247609. [PMID: 34946699 PMCID: PMC8703271 DOI: 10.3390/molecules26247609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
This paper reports on the synthesis of new hydroxymethylene-(phosphinyl)phosphonates (HMPPs). A methodology has been developed to propose an optimized one-pot procedure without any intermediate purifications. Various aliphatic and (hetero)aromatic HMPPs were synthesized in good to excellent yields (53–98%) and the influence of electron withdrawing/donating group substitution on aromatic substrates was studied. In addition, the one-pot synthesis of HMPP was monitored by 31P NMR spectroscopy, allowing effective control of the end of the reaction and identification of all phosphorylated intermediate species, which enabled us to propose a reaction mechanism. Optimized experimental conditions were applied to the preparation of biological relevant aminoalkyl-HMPPs. A preliminary study of the complexation to hydroxyapatite (bone matrix) was carried out in order to verify its lower affinity towards bone compared to bisphosphonate molecules. Moreover, in vitro anti-tumor activity study revealed encouraging antiproliferative activities on three human cancer cell lines (breast, pancreas and lung).
Collapse
|
10
|
Cardozo B, Karatza E, Karalis V. Osteoporosis treatment with risedronate: a population pharmacokinetic model for the description of its absorption and low plasma levels. Osteoporos Int 2021; 32:2313-2321. [PMID: 34002251 DOI: 10.1007/s00198-021-05944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
UNLABELLED To develop a population pharmacokinetic model that describes the absorption and low plasma levels of risedronate in the body. The impact of patients' characteristics on risedronate kinetics is investigated. Simulations revealed the high variability in the concentration levels after different dosage schemes. No dosage adjustment is required in renal impairment. INTRODUCTION Risedronate exhibits very low plasma levels and high residence time in the body. The aim of this study is to describe and explain the risedronate transit through the body. The impact of volunteers' characteristics on the kinetics of risedronate is also investigated. Simulations are used to compare the risedronate plasma levels after different dosage schemes and assess the need for dose adjustment in patients with impaired kidney functionality. METHODS Plasma concentration-time data were obtained from a four-period, two sequence, single-dose, crossover bioequivalence study. The effects of several covariates (e.g., weight, albumin, creatinine, alkaline phosphatase, and calcium) on model parameters were tested. Non-linear mixed-effect modeling was applied and a variety of models were evaluated placing emphasis on absorption and disposition properties. The modeling and simulation work was implemented in MonolixTM 2020R1. RESULTS Following oral administration, the kinetics of risedronate was best described by a two-compartment model with lag time, first-order absorption, and elimination. The extent of peripheral distribution (i.e., bones) was found to be remarkably high. No volunteer characteristics were identified to affect significantly the disposition of risedronate. Using simulations, risedronate plasma profiles were obtained for different doses and frequencies of administration. CONCLUSION The absorption and disposition kinetics of risedronate were successfully characterized. Simulations revealed the high discrepancy in the concentration levels observed after different dosage regimens, implying the safety profile of risedronate. In virtual patients with renal impairment, the blood levels of risedronate are increased, but not in an extent requiring dose adaptation.
Collapse
Affiliation(s)
- B Cardozo
- Aix-Marseille University, Marseille, France
| | - E Karatza
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - V Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
11
|
Rodríguez-Nogales C, Desmaële D, Sebastián V, Couvreur P, Blanco-Prieto MJ. Decoration of Squalenoyl-Gemcitabine Nanoparticles with Squalenyl-Hydroxybisphosphonate for the Treatment of Bone Tumors. ChemMedChem 2021; 16:3730-3738. [PMID: 34581019 PMCID: PMC9298071 DOI: 10.1002/cmdc.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Therapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene‐based nanomedicine with bone affinity and retention capacity. A squalenyl‐hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1‐hydroxyl‐1,1‐bisphosphonate moiety to the squalene chain. This amphiphilic compound was inserted onto squalenoyl‐gemcitabine nanoparticles using the nanoprecipitation method. The co‐assembly led to nanoconstructs of 75 nm, with different morphology and colloidal properties. The presence of squalenyl‐hydroxybisphosphonate enhanced the nanoparticles binding affinity for hydroxyapatite, a mineral present in the bone. Moreover, the in vitro anticancer activity was preserved when tested in commercial and patient‐treated derived pediatric osteosarcoma cells. Further in vivo studies will shed light on the potential of these nanomedicines for the treatment of bone sarcomas.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Navarra-IdisNA, Irunlarrea 1, 31008, Pamplona, Spain
| | - Didier Desmaële
- Institut Galien Paris-Sud UMR CNRS 8612, Université Paris-Saclay, Jean Baptiste Clément 5, 92290, Châtenay-Malabry Cedex, France
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor López, 50008, Zaragoza, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612, Université Paris-Saclay, Jean Baptiste Clément 5, 92290, Châtenay-Malabry Cedex, France
| | - María J Blanco-Prieto
- Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Navarra-IdisNA, Irunlarrea 1, 31008, Pamplona, Spain
| |
Collapse
|
12
|
Bădilă AE, Rădulescu DM, Niculescu AG, Grumezescu AM, Rădulescu M, Rădulescu AR. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers (Basel) 2021; 13:4229. [PMID: 34439383 PMCID: PMC8392383 DOI: 10.3390/cancers13164229] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the treatment of primary and secondary bone tumors has faced a slow-down in its development, being mainly based on chemotherapy, radiotherapy, and surgical interventions. However, these conventional therapeutic strategies present a series of disadvantages (e.g., multidrug resistance, tumor recurrence, severe side effects, formation of large bone defects), which limit their application and efficacy. In recent years, these procedures were combined with several adjuvant therapies, with different degrees of success. To overcome the drawbacks of current therapies and improve treatment outcomes, other strategies started being investigated, like carrier-mediated drug delivery, bone substitutes for repairing bone defects, and multifunctional scaffolds with bone tissue regeneration and antitumor properties. Thus, this paper aims to present the types of bone tumors and their current treatment approaches, further focusing on the recent advances in new therapeutic alternatives.
Collapse
Affiliation(s)
- Adrian Emilian Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Dragoș Mihai Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Adrian Radu Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
13
|
Shapiro CL. Bone-modifying Agents (BMAs) in Breast Cancer. Clin Breast Cancer 2021; 21:e618-e630. [PMID: 34045175 DOI: 10.1016/j.clbc.2021.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Bone-modifying agents (BMAs) are mainstays in breast cancer and prevent and treat osteoporosis in early-stage disease and reduce skeletal metastases complications in advanced disease. There is some evidence to support that BMA also prevents skeletal metastases and improves overall survival. Bone loss occurs with chemotherapy-induced ovarian failure, gonadotrophin-releasing hormone (GnRH) agonists, and aromatase inhibitors. In some women, the bone loss will be of sufficient magnitude to increase the risks of osteoporosis or fractures. Recommended steps in osteoporosis prevention or treatment include risk factor assessment, taking adequate amounts of calcium and vitamin D3, and periodic evaluations with dual-energy x-ray absorptiometry scanning. If clinically indicated by the T-scores and fracture-risk prediction algorithms treat with oral, IV bisphosphonates or subcutaneous denosumab (DEN). Zoledronic acid (ZA) or DEN reduces skeletal metastases complications, including pathological fracture, spinal cord compression, or the necessity for radiation or surgery to bone. Also, both of these drugs have the side-effect of osteonecrosis at a similar incidence. Monthly administration of ZA or DEN is standard, but several recent randomized trials show noninferiority between ZA monthly and every 3-month ZA. Every 3-month ZA is a new standard of care. Similar trials of the schedule of DEN are ongoing. ZA anticancer effect is only in postmenopausal women or premenopausal women rendered postmenopausal by GnRH agonists or bilateral oopherectomy. High-risk women, either postmenopausal or premenopausal, receiving GnRH/oopherctomy should consider adjuvant ZA. There are insufficient data to support DEN in this setting. Herein, this narrative review covers the mechanism of action of BMA, randomized clinical trials, and adverse events, both common and rare.
Collapse
|
14
|
Fuggle NR, Curtis B, Clynes M, Zhang J, Ward K, Javaid MK, Harvey NC, Dennison E, Cooper C. The treatment gap: The missed opportunities for osteoporosis therapy. Bone 2021; 144:115833. [PMID: 33359889 PMCID: PMC7116600 DOI: 10.1016/j.bone.2020.115833] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Despite substantial advances in delineation of the epidemiology, pathophysiology, risk assessment and treatment of osteoporosis over the last three decades, a substantial proportion of men and women at high risk of fracture remain untreated - the so-called "treatment gap". This review summarises the important patient-, physician- and policyrelated causes of this treatment gap, before discussing in greater detail: (a) the evidence base for the efficacy of bisphosphonates in osteoporosis; (b) recent evidence relating to the adverse effects of this widely used therapeutic class, most notably atypical femoral fracture and osteonecrosis of the jaw; (c) available strategies to improve both secondary and primary prevention pathways for the management of this disorder.
Collapse
Affiliation(s)
- Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Beth Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Michael Clynes
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Jean Zhang
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Kate Ward
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Muhammad Kassim Javaid
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; Rheumatology Department, University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospitals Southampton NHS Foundation Trust, Southampton, UK; NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Osteoporosis: A Long-Term and Late-Effect of Breast Cancer Treatments. Cancers (Basel) 2020; 12:cancers12113094. [PMID: 33114141 PMCID: PMC7690788 DOI: 10.3390/cancers12113094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Osteoporosis is a prevalent condition affecting 200 million individuals world-wide. Estimates are about one in three women will experience a fragility fracture of hip, spine or wrist. Common breast cancer treatments, such as aromatase inhibitors in postmenopausal women and chemotherapy-induced ovarian failure in premenopausal women, cause bone loss that in some women will lead to osteoporosis and fragility fractures. Fragility fractures cause morbidity and mortality and are entirely preventable. Prevention or treatment of osteoporosis includes lifestyle modifications (e.g., reducing smoking and excessive alcohol consumption, and increasing physical activity), taking calcium and vitamin D3, screening for osteoporosis with dual-energy absorptiometry, and treatment, if clinically indicated, with ether oral bisphosphonates, intravenous zoledronic acid, or subcutaneous denosumab. This chapter reviews the pathogenesis of osteoporosis, the magnitude of bone loss related to common breast cancer treatments, osteoporosis risk factor assessment and screening, and the specific drugs to treat or prevent osteoporosis. Abstract Osteoporosis is both a long-term effect (occurs during treatment and extends after treatment) and a late-effect (occurs after treatment ends) of breast cancer treatments. The worldwide prevalence of osteoporosis is estimated to be some 200 million patients. About one in three postmenopausal women will experience an osteoporotic (or fragility) fracture of the hip, spine, or wrist. breast cancer treatments, including gonadotropin-releasing hormone (GnRH) agonists, chemotherapy-induced ovarian failure (CIOF), and aromatase inhibitors (AIs), cause bone loss and increase the risks of osteoporosis. Also, breast cancer is a disease of aging, and most of the “one in eight” lifetime risks of breast cancer are in women in their sixth, seventh, and eighth decades. The majority of women diagnosed with breast cancers today will be long-term survivors and experience personal cures. It is the coalescence of osteoporosis with breast cancer, two common and age-related conditions that make osteoporosis relevant in women with breast cancer throughout the continuum from diagnosis, treatment, and survivorship. It is critical to remember that women (and men) will lose bone after age thirty years. However, only certain women will lose bone of sufficient magnitude to merit treatment with anti-osteoporosis drugs. The narrative review is intended for medical, surgical, radiation oncologists, and other mid-level providers, and provides an overview of bone loss and the prevention and treatment of osteoporosis.
Collapse
|