1
|
Fan P, Feng X, Hu N, Pu D, He L. Identifying Key Genes and Functionally Enriched Pathways in Osteoporotic Patients by Weighted Gene Co-Expression Network Analysis. Biochem Genet 2024; 62:436-451. [PMID: 37358674 DOI: 10.1007/s10528-023-10425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Osteoporosis is a systemic bone disease characterized by low bone mineral density and bone microstructure damage, resulting in increased bone fragility and fracture risk. The present study aimed to identify key genes and functionally enriched pathways in osteoporotic patients. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to microarray datasets of blood samples of osteoporotic patients from the Sao Paulo Ageing & Health [SPAH] study (26 osteoporotic samples and 31 normal samples) to construct co-expression networks and identify hub gene. The results showed that HDGF, AP2M1, DNAJC6, TMEM183B, MFSD2B, IGKV1-5, IGKV1-8, IGKV3-7, IGKV3D-11, and IGKV1D-42 are genes which were associated with the disease status of osteoporosis. Differentially expressed genes are enriched in proteasomal protein catabolic process, ubiquitin ligase complex, and ubiquitin-like protein transferase activity. Functional enrichment analysis demonstrated that genes in the tan module were enriched in immune-related functions, indicating that the immune system plays a critical role in osteoporosis. Validation assay demonstrated that the HDGF, AP2M1, TMEM183B, and MFSD2B levels were decreased in osteoporosis samples compared with healthy controls, while the levels of IGKV1-5, IGKV1-8, and IGKV1D-42 were increased in osteoporosis samples compared with healthy controls. In conclusion, our data identified and validated the association of HDGF, AP2M1, TMEM183B, MFSD2B, IGKV1-5, IGKV1-8, and IGKV1D-42 with osteoporosis in elderly women. These results suggest that these transcripts have potential clinical significance and may help to explain the molecular mechanisms and biological functions of osteoporosis.
Collapse
Affiliation(s)
- Ping Fan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, China.
| | - Xiuyuan Feng
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, China
| | - Nan Hu
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, China
| | - Dan Pu
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, China
| | - Lan He
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, China
| |
Collapse
|
2
|
Regulation of human ZNF687, a gene associated with Paget's disease of bone. Int J Biochem Cell Biol 2023; 154:106332. [PMID: 36372390 DOI: 10.1016/j.biocel.2022.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Mutations in Zinc finger 687 (ZNF687) were associated with Paget's disease of bone (PDB), a disease characterized by increased bone resorption and excessive bone formation. It was suggested that ZNF687 plays a role in bone differentiation and development. However, the mechanisms involved in ZNF687 regulation remain unknown. This study aimed to obtain novel knowledge regarding ZNF687 transcriptional and epigenetic regulation. Through in silico analysis, we hypothesized three ZNF687 promoter regions located upstream exon 1 A, 1B, and 1 C and denominated promoter regions 1, 2, and 3, respectively. Their functionality was confirmed by luciferase activity assays and positive/negative regulatory regions were identified using promoter deletions constructs. In silico analysis revealed a high density of CpG islands in these promoter regions and in vitro methylation suppressed promoters' activity. Using bioinformatic approaches, bone-associated transcription factor binding sites containing CpG dinucleotides were identified, including those for NFκB, PU.1, DLX5, and SOX9. By co-transfection in HEK293 and hFOB cells, we found that DLX5 specifically activated ZNF687 promoter region 1, and its methylation impaired DLX5-driven promoter stimulation. NFκB repressed and activated promoter regions 1 and 2, respectively, and these activities were affected by methylation. PU.1 induced ZNF687 promoter region 1 which was affected by methylation. SOX9 differentially regulated ZNF687 promoters in HEK293 and hFOB cells that were impaired after methylation. In conclusion, this study provides novel insights into ZNF687 regulation by demonstrating that NFκB, PU.1, DLX5, and SOX9 are regulators of ZNF687 promoters, and DNA methylation influences their activity. The contribution of the dysregulation of these mechanisms in PDB should be further elucidated.
Collapse
|
3
|
Zhou F, Zhang G, Wu Y, Xiong Y. Inflammasome Complexes: Crucial mediators in osteoimmunology and bone diseases. Int Immunopharmacol 2022; 110:109072. [DOI: 10.1016/j.intimp.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
4
|
A Novel lncRNA Mediates the Delayed Tooth Eruption of Cleidocranial Dysplasia. Cells 2022; 11:cells11172729. [PMID: 36078141 PMCID: PMC9454660 DOI: 10.3390/cells11172729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Delayed eruption of permanent teeth is a common symptom of cleidocranial dysplasia (CCD). Previous studies have focused on the anomaly of osteogenesis resulting from mutations in the Runt-related transcription factor-2 gene (RUNX2). However, deficiencies in osteoclastogenesis and bone resorption, and the epigenetic regulation mediated by long non-coding (lnc)RNAs in CCD remain to be elucidated. Here, a novel osteoclast-specific lncRNA (OC-lncRNA) was identified during the osteoclast differentiation of RAW 264.7 cells transfected with a RUNX2 mutation expression cassette. We further confirmed that OC-lncRNA positively regulated osteoclastogenesis and bone resorption. The OC-lncRNA promoted the expression of CXC chemokine receptor type 3 (CXCR3) by competitively binding to microRNA (miR)-221-5p. The CXCR3–CXC-motif chemokine ligand 10 (CXCL10) interaction and nuclear factor-κB constituted a positive feedback that positively regulated osteoclastogenesis and bone resorption. These results demonstrate that OC-lncRNA-mediated osteoclast dysfunction via the OC-lncRNA–miR-221-5p–CXCR3 axis, which is involved in the process of delayed tooth eruption of CCD.
Collapse
|
5
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
6
|
Jones TL, Esa MS, Li KHC, Krishnan SRG, Elgallab GM, Pearce MS, Young DA, Birrell FN. Osteoporosis, fracture, osteoarthritis & sarcopenia: A systematic review of circulating microRNA association. Bone 2021; 152:116068. [PMID: 34166859 DOI: 10.1016/j.bone.2021.116068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Circulating microRNAs (c-miRs) show promise as biomarkers. This systematic review explores their potential association with age-related fracture/osteoporosis (OP), osteoarthritis (OA) and sarcopenia (SP), as well as cross-disease association. Most overlap occurred between OA and OP, suggesting potentially shared microRNA activity. There was little agreement in results across studies. Few reported receiver operating characteristic analysis (ROC) and many identified significant dysregulation in disease, but direction of effect was commonly conflicting. c-miRs with most evidence for consistency in dysregulation included miR-146a, miR-155 and miR-98 for OA (upregulated). Area under the curve (AUC) for miR-146a biomarker performance was AUC 0.92, p = 0.028. miR-125b (AUC 0.76-0.89), miR-100, miR-148a and miR-24 were consistently upregulated in OP. Insufficient evidence exists for c-miRs in SP. Study quality was typically rated intermediate/high risk of bias. Wide study heterogeneity meant meta-analysis was not possible. We provide detailed critique and recommendations for future approaches in c-miR analyses based on this review.
Collapse
Affiliation(s)
- Tania L Jones
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - Mohammed S Esa
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - K H Christien Li
- Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - S R Gokul Krishnan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - George M Elgallab
- Faculty of Health Sciences and Wellbeing, Sciences Complex, City Campus, Chester Road, University of Sunderland, Sunderland SR1 3SD, United Kingdom
| | - Mark S Pearce
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - David A Young
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - Fraser N Birrell
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom; Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
7
|
Wolyncewicz B, Major TJ, Delahunt B, Thunders M. The epigenome: key to understanding and predicting gout flares. Pathology 2021; 53:824-829. [PMID: 34657735 DOI: 10.1016/j.pathol.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Gout is a form of arthritis, resulting from an inflammatory reaction to the deposition of monosodium urate (MSU) crystals in the synovial fluid of the joint space. It is characterised by periods of acute inflammation in the affected joint, or joints (known as gout flares), separated by asymptomatic periods. There seems to be substantial overlap between environmental triggers of gout flares and common environmental modifiers (diet, pharmaceuticals, and stress) of epigenetic markers (DNA methylation, histone modifications, and ncRNA). Very few studies have looked at whether environment is influencing gout through epigenetic mechanisms. The pathogenesis of gouty inflammation is well understood but understanding the variation of response to hyperuricaemia in terms of gout flare initiation is less well known. In this review, we will examine the potential of epigenomics in understanding how gout flares may occur, both in terms of development of hyperuricaemia and the inflammatory response. Looking at the epigenome and its intersection with lifestyle could help identify new targets and strategies for effective management of gout flares.
Collapse
Affiliation(s)
- Ben Wolyncewicz
- Otago Medical School, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand.
| |
Collapse
|
8
|
Kim JH, Yang YR, Kwon KS, Kim N. Anti-Müllerian Hormone Negatively Regulates Osteoclast Differentiation by Suppressing the Receptor Activator of Nuclear Factor-κB Ligand Pathway. J Bone Metab 2021; 28:223-230. [PMID: 34520656 PMCID: PMC8441534 DOI: 10.11005/jbm.2021.28.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Multiple members of the transforming growth factor-β (TGF-β) superfamily have well-established roles in bone homeostasis. Anti-Müllerian hormone (AMH) is a member of TGF-β superfamily of glycoproteins that is responsible for the regression of fetal Müllerian ducts and the transcription inhibition of gonadal steroidogenic enzymes. However, the involvement of AMH in bone remodeling is unknown. Therefore, we investigated whether AMH has an effect on bone cells as other TGF-β superfamily members do. Methods To identify the roles of AMH in bone cells, we administered AMH during osteoblast and osteoclast differentiation, cultured the cells, and then stained the cultured cells with Alizarin red and tartrate-resistant acid phosphatase, respectively. We analyzed the expression of osteoblast- or osteoclast-related genes using real-time polymerase chain reaction and western blot. Results AMH does not affect bone morphogenetic protein 2-mediated osteoblast differentiation but inhibits receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation. The inhibitory effect of AMH on osteoclast differentiation is mediated by IκB-NF-κB signaling. Conclusions AMH negatively regulates osteoclast differentiation without affecting osteoblast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
9
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|