1
|
Liu H, Zhao Q, Liu S, Li B, Zheng Z, Liu Y, Hu P, Luo E. Aging alters the effect of adiponectin receptor signaling on bone marrow-derived mesenchymal stem cells. Aging Cell 2024:e14390. [PMID: 39462849 DOI: 10.1111/acel.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Adiponectin receptor signaling represents a promising therapeutic target for age-related conditions such as osteoporosis and diabetes. However, the literature presents conflicting evidence regarding the role of adiponectin signaling in bone homeostasis and fracture repair across different health states, ages, and disease conditions. These inconsistencies may arise from the complex endocrine and paracrine feedback mechanisms regulating adiponectin, as well as the variability in adiponectin isoforms and receptor expressions. In this study, we observed differential expression of adiponectin receptors in the bone marrow (BM) of aged mice, characterized by elevated levels of adiponectin receptor 2 and reduced levels of receptor 1, as corroborated by both single-cell sequencing and in vivo staining. Additionally, circulating levels of adiponectin and its local expression were significantly higher in aged mice compared to younger counterparts. Treatment with adiponectin receptor agonist, AdipoRon, enhanced bone regeneration and repair in young mice by promoting osteogenesis and reducing osteoclastogenesis. Conversely, in aged mice, AdipoRon treatment led to cellular senescence, delayed bone repair, and inhibited osteogenic activity. Notably, the adiponectin receptor 1-Wnt and adiponectin receptor 2-MAPK and mTOR signaling pathways were differentially activated in AdipoRon-treated BM mesenchymal stem cells from young and aged mice. Additionally, the NF-κB, and AKT pathways were consistently downregulated in BM macrophages of both age groups following AdipoRon administration. In conclusion, aging significantly modulates the impact of adiponectin receptor signaling on BM mesenchymal stem cells. This modulation is potentially attributable to changes in receptor transcription and distribution, as well as differential activation of downstream signaling pathways.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Qiucheng Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Suzhou Stomatological Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zizhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
3
|
Prasad P, Cancelas JA. From Marrow to Bone and Fat: Exploring the Multifaceted Roles of Leptin Receptor Positive Bone Marrow Mesenchymal Stromal Cells. Cells 2024; 13:910. [PMID: 38891042 PMCID: PMC11171870 DOI: 10.3390/cells13110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFR+Sca-1+ subsets, Nestin+, or LepR+ cells. Of these, the LepR+ cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR+ cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR+ cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR+ cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR+ MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR+ cells, different subtypes, and the role of LepR+ cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact.
Collapse
Affiliation(s)
| | - Jose A. Cancelas
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
4
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
5
|
Li B, Liu S, He Z, Luo E, Liu H. The role of zinc finger proteins in the fate determination of mesenchymal stem cells during osteogenic and adipogenic differentiation. Int J Biochem Cell Biol 2024; 167:106507. [PMID: 38142772 DOI: 10.1016/j.biocel.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Zinc finger proteins (ZFPs) constitute a crucial group of transcription factors widely present in various organisms. They act as transcription factors, nucleases, and RNA-binding proteins, playing significant roles in cell differentiation, growth, and development. With extensive research on ZFPs, their roles in the determination of mesenchymal stem cells (MSCs) fate during osteogenic and adipogenic differentiation processes have become increasingly clear. ZFP521, for instance, is identified as an inhibitor of the Wnt signaling pathway and RUNX2's transcriptional activity, effectively suppressing osteogenic differentiation. Moreover, ZFP217 contributes to the inhibition of adipogenic differentiation by reducing the M6A level of the cell cycle regulator cyclin D1 (CCND1). In addition, other ZFPs can also influence the fate of mesenchymal stem cells (MSCs) during osteogenic and adipogenic differentiation through various signaling pathways, transcription factors, and epigenetic controls, participating in the subsequent differentiation and maturation of precursor cells. Given the prevalent occurrence of osteoporosis, obesity, and related metabolic disorders, a comprehensive understanding of the regulatory mechanisms balancing bone and fat metabolism is essential, with a particular focus on the fate determination of MSCs in osteogenic and adipogenic differentiation. In this review, we provide a detailed summary of how zinc finger proteins influence the osteogenic and adipogenic differentiation of MSCs through different signaling pathways, transcription factors, and epigenetic mechanisms. Additionally, we outline the regulatory mechanisms of ZFPs in controlling osteogenic and adipogenic differentiation based on various stages of MSC differentiation.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
7
|
Liu H, Wada A, Le I, Le PT, Lee AWF, Zhou J, Gori F, Baron R, Rosen CJ. PTH regulates osteogenesis and suppresses adipogenesis through Zfp467 in a feed-forward, PTH1R-cyclic AMP-dependent manner. eLife 2023; 12:e83345. [PMID: 37159501 PMCID: PMC10171860 DOI: 10.7554/elife.83345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Conditional deletion of the PTH1R in mesenchymal progenitors reduces osteoblast differentiation, enhances marrow adipogenesis, and increases zinc finger protein 467 (Zfp467) expression. In contrast, genetic loss of Zfp467 increased Pth1r expression and shifts mesenchymal progenitor cell fate toward osteogenesis and higher bone mass. PTH1R and ZFP467 could constitute a feedback loop that facilitates PTH-induced osteogenesis and that conditional deletion of Zfp467 in osteogenic precursors would lead to high bone mass in mice. Prrx1Cre; Zfp467fl/fl but not AdipoqCre; Zfp467fl/fl mice exhibit high bone mass and greater osteogenic differentiation similar to the Zfp467-/- mice. qPCR results revealed that PTH suppressed Zfp467 expression primarily via the cyclic AMP/PKA pathway. Not surprisingly, PKA activation inhibited the expression of Zfp467 and gene silencing of Pth1r caused an increase in Zfp467 mRNA transcription. Dual fluorescence reporter assays and confocal immunofluorescence demonstrated that genetic deletion of Zfp467 resulted in higher nuclear translocation of NFκB1 that binds to the P2 promoter of the Pth1r and increased its transcription. As expected, Zfp467-/- cells had enhanced production of cyclic AMP and increased glycolysis in response to exogenous PTH. Additionally, the osteogenic response to PTH was also enhanced in Zfp467-/- COBs, and the pro-osteogenic effect of Zfp467 deletion was blocked by gene silencing of Pth1r or a PKA inhibitor. In conclusion, our findings suggest that loss or PTH1R-mediated repression of Zfp467 results in a pathway that increases Pth1r transcription via NFκB1 and thus cellular responsiveness to PTH/PTHrP, ultimately leading to enhanced bone formation.
Collapse
Affiliation(s)
- Hanghang Liu
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- West China Hospital of Stomatology, Sichuan UniversitySichuanChina
| | - Akane Wada
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Isabella Le
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- Graduate Medical Sciences, Boston University School of MedicineBostonUnited States
| | - Phuong T Le
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
| | - Andrew WF Lee
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- University of New England, College of Osteopathic MedicineBiddefordUnited States
| | - Jun Zhou
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Francesca Gori
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
| | - Roland Baron
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
| |
Collapse
|
8
|
Li B, Xiao L, Ye D, Zhong S, Yan Q. The expression of NOTUM in replantation of severed fingers may be an important treatment factor. Ann Hum Genet 2023; 87:18-27. [PMID: 36465015 DOI: 10.1111/ahg.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND After years of development, digital replantation has become a mature treatment. Although the NOTUM gene has been shown to be involved in the formation of vertebrate nerves, whether it contributes to the osteogenic mechanism of severed finger replantation remains unknown. In response to this, this study investigates the specific details of NOTUM involvement in replantation of severed fingers. METHODS The experimental subjects are patients with replantation of severed fingers from Shulan International Medical College of Shulan (Hangzhou) Hospital affiliated to Zhejiang Shuren University. In addition to using bone marrow mesenchymal stem cells (BMSCs) as an in vitro system, this experiment also involves quantitative polymerase chain reaction, microarray analysis, cell counting Kit-8, ethynyl deoxyuridine staining and Western blot analysis. RESULTS The expression level of NOTUM in the severed finger replantation group is lower than that in the normal group. NOTUM inhibits cell growth and cell transfer, osteogenic differentiation and β-catenin gene expression in BMSCs. Luciferase reporter assay illustrated that β-catenin wild type closely correlated with NOTUM. The inhibition of β-catenin increases the effects of NOTUM on cell growth, cell transfer and osteogenic differentiation of BMSCs. CONCLUSIONS Considering that NOTUM can inhibit cell growth, cell transfer, osteogenic differentiation of BMSCs, as well as the gene expression of β-catenin, it may be a biomarker of osteogenic differentiation and a potential therapeutic target for replantation of severed fingers.
Collapse
Affiliation(s)
- Bin Li
- Department of Plastic Surgery and Hand Microsurgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Libing Xiao
- Department of Plastic Surgery and Hand Microsurgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Danhong Ye
- Department of Emergency, Chouzhou Hospital, Yiwu, China
| | - Siyi Zhong
- Department of Plastic Surgery and Hand Microsurgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Qiaoyu Yan
- Department of Plastic Surgery, Hangzhou Maternity Hospital, Hangzhou, China
| |
Collapse
|
9
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
10
|
Parathyroid hormone (PTH) regulation of metabolic homeostasis: An old dog teaches us new tricks. Mol Metab 2022; 60:101480. [PMID: 35338013 PMCID: PMC8980887 DOI: 10.1016/j.molmet.2022.101480] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Late in the nineteenth century, it was theorized that a circulating product produced by the parathyroid glands could negatively impact skeletal homeostasis. A century later, intermittent administration of that protein, namely parathyroid hormone (PTH), was approved by the FDA and EMA as the first anabolic agent to treat osteoporosis. Yet, several unanswered but important questions remain about the skeletal actions of PTH. SCOPE OF REVIEW Current research efforts have focused on improving the efficacy of PTH treatment by designing structural analogs and identifying other targets (e.g., the PTH or the calcium sensing receptor). A unique but only recently described aspect of PTH action is its regulation of cellular bioenergetics and metabolism, namely in bone and adipose tissue but also in other tissues. The current review aims to provide a brief background on PTH's previously described actions on bone and highlights how PTH regulates osteoblast bioenergetics, contributing to greater bone formation. It will also shed light on how PTH could alter metabolic homeostasis through its actions in other cells and tissues, thereby impacting the skeleton in a cell non-autonomous manner. MAJOR CONCLUSIONS PTH administration enhances bone formation by targeting the osteoblast through transcriptional changes in several pathways; the most prominent is via adenyl cyclase and PKA. PTH and its related protein, PTHrP, also induce glycolysis and fatty acid oxidation in bone cells and drive lipolysis and thermogenic programming in adipocytes; the latter may indirectly but positively influence skeletal metabolism. While much work remains, alterations in cellular metabolism may also provide a novel mechanism related to PTH's temporal actions. Thus, the bioenergetic impact of PTH can be considered another of the myriad anabolic effects of PTH on the skeleton. Just as importantly from a translational perspective, the non-skeletal metabolic effects may lead to a better understanding of whole-body homeostasis along with new and improved therapies to treat musculoskeletal conditions.
Collapse
|
11
|
Scheller EL, McGee-Lawrence ME, Lecka-Czernik B. Report From the 6 th International Meeting on Bone Marrow Adiposity (BMA2020). Front Endocrinol (Lausanne) 2021; 12:712088. [PMID: 34335478 PMCID: PMC8323480 DOI: 10.3389/fendo.2021.712088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The 6th International Meeting on Bone Marrow Adiposity (BMA) entitled "Marrow Adiposity: Bone, Aging, and Beyond" (BMA2020) was held virtually on September 9th and 10th, 2020. The mission of this meeting was to facilitate communication and collaboration among scientists from around the world who are interested in different aspects of bone marrow adiposity in health and disease. The BMA2020 meeting brought together 198 attendees from diverse research and clinical backgrounds spanning fields including bone biology, endocrinology, stem cell biology, metabolism, oncology, aging, and hematopoiesis. The congress featured an invited keynote address by Ormond MacDougald and ten invited speakers, in addition to 20 short talks, 35 posters, and several training and networking sessions. This report summarizes and highlights the scientific content of the meeting and the progress of the working groups of the BMA society (http://bma-society.org/).
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|