1
|
Barbaro K, Marconi G, Innocenzi E, Altigeri A, Zepparoni A, Monteleone V, Alimonti C, Marcoccia D, Ghisellini P, Rando C, Ottoboni S, Rau JV, Eggenhöffner R, Scicluna MT. Regenerative treatment of canine osteogenic lesions with Platelet-Rich Plasma and hydroxyapatite: a case report. Front Vet Sci 2024; 11:1459714. [PMID: 39376921 PMCID: PMC11456568 DOI: 10.3389/fvets.2024.1459714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction This study examined the efficacy of a therapy based on a combination of Platelet Rich Plasma and hydroxyapatite nanoparticles in a severe clinical case involving a young Rottweiler with a complex spiral fracture of the tibia. Method Following a worsening of the lesion after traditional surgical intervention, the subject was treated with the combined therapy. X-rays were taken at the following stages: immediately post-surgery, four weeks post-surgery, and 10 days post-treatment. Fracture gap and callus density measurements were obtained using ImageJ analysis, allowing for a detailed quantitative assessment of bone regeneration over time. Results Post-operative radiographs indicated a clinical worsening of the fracture, revealing an increased fracture gap due to bone loss. However, significant improvements were observed ten days following the treatment, with a marked reduction in fracture gaps and increased callus density. These results demonstrated a notable acceleration in bone healing and callus formation compared to typical recovery times for similar lesions. Conclusion The method showed potential for enhancing osteogenic regeneration, facilitating faster healing of serious orthopedic injuries compared to traditional methods.
Collapse
Affiliation(s)
- Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | | | - Elisa Innocenzi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Annalisa Altigeri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Alessia Zepparoni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Valentina Monteleone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Paola Ghisellini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genova University, Genoa, Italy
| | - Cristina Rando
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genova University, Genoa, Italy
| | - Stefano Ottoboni
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genova University, Genoa, Italy
| | - Julietta V. Rau
- Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| | - Roberto Eggenhöffner
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genova University, Genoa, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| |
Collapse
|
2
|
Sharun K, Banu SA, El-Husseiny HM, Abualigah L, Pawde AM, Dhama K, Amarpal. Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research. Connect Tissue Res 2024; 65:364-382. [PMID: 39246090 DOI: 10.1080/03008207.2024.2397657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Toukh, Elqaliobiya, Egypt
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Fuchu-shi, Japan
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk, Saudi Arabia
- MEU Research Unit, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Lodewijks A, Blokhuis T, van Griensven M, Poeze M. The Treatment of Very Large Traumatic Bone Defects of the Tibia With a Polycaprolactone-Tricalcium Phosphate 3D-Printed Cage: A Review of Three Cases. Cureus 2024; 16:e66256. [PMID: 39238727 PMCID: PMC11375482 DOI: 10.7759/cureus.66256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
The need for an artificial scaffold in very large bone defects is clear, not only to limit the risk of graft harvesting but also to improve clinical success. The use of custom osteoconductive scaffolds made from biodegradable polyester and ceramics can be a valuable patient-friendly option, especially in case of a concomitant infection. Multiple types of scaffolds for the Masquelet procedure (MP) are available. However, these frequently demonstrate central graft involution when defects exceed a certain size and the complication rates remain high. This paper describes three infected tibial defect nonunions with a segmental defect over 10 centimeters long treated with a three-dimensional (3D)-printed polycaprolactone-tricalcium phosphate (PCL-TCP) cage in combination with biological adjuncts. Three male patients, between the ages of 37 and 47, were treated for an infected tibial defect nonunion after sustaining Gustilo grade 3 open fractures. All had a segmental midshaft bone defect of more than 10 centimeters (range 11-15cm). First-stage MPs consisted of extensive debridement, external fixation, and placement of anterior lateral thigh flaps. Positive cultures were obtained from all patients during this first stage, which were treated with specific systemic antibiotics for 12 weeks. The second-stage MP was carried out at least two months after the first stage. CT scans were obtained after the first stage to manufacture defect-specific cages. In the final procedure, a custom 3D-printed PCL-TCP cage (Osteopore, Singapore) was placed in the defect in combination with biological adjuncts (BMAC, RIA-derived autograft, iFactor, and BioActive Glass). Bridging of the defect, assessed at six months by CT, was achieved in all cases. SPECT scans six months post-operatively demonstrated active bone regeneration, also involving the central part of the scaffold. All three patients regained function and reported less pain with full weight bearing. This case report shows that 3D-printed PCL-TCP cages in combination with biological adjuncts are a novel addition to the surgical treatment of very large bone defects in (infected) post-traumatic nonunion of the tibia. This combination could overcome some of the current drawbacks in this challenging indication.
Collapse
Affiliation(s)
- Anna Lodewijks
- Department of Traumatology, Maastricht UMC+ (University Medical Center), Maastricht, NLD
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, NLD
| | - Taco Blokhuis
- Department of Traumatology, Maastricht UMC+ (University Medical Center), Maastricht, NLD
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, NLD
| | - Martijn van Griensven
- Institute for Technology-Inspired Regenerative Medicine (MERLN), Maastricht University, Maastricht, NLD
| | - Martijn Poeze
- Department of Traumatology, Maastricht UMC+ (University Medical Center), Maastricht, NLD
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, NLD
| |
Collapse
|
4
|
Liu Y, Wang Y, Lin M, Liu H, Pan Y, Wu J, Guo Z, Li J, Yan B, Zhou H, Fan Y, Hu G, Liang H, Zhang S, Siu MFF, Wu Y, Bai J, Liu C. Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization. Adv Healthc Mater 2024:e2401667. [PMID: 38923234 DOI: 10.1002/adhm.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Critical-sized segmental bone defects cannot heal spontaneously, leading to disability and significant increase in mortality. However, current treatments utilizing bone grafts face a variety of challenges from donor availability to poor osseointegration. Drugs such as growth factors increase cancer risk and are very costly. Here, a porous bioceramic scaffold that promotes bone regeneration via solely mechanobiological design is reported. Two types of scaffolds with high versus low pore curvatures are created using high-precision 3D printing technology to fabricate pore curvatures radius in the 100s of micrometers. While both are able to support bone formation, the high-curvature pores induce higher ectopic bone formation and increased vessel invasion. Scaffolds with high-curvature pores also promote faster regeneration of critical-sized segmental bone defects by activating mechanosensitive pathways. High-curvature pore recruits skeletal stem cells and type H vessels from both the periosteum and the marrow during the early phase of repair. High-curvature pores have increased survival of transplanted GFP-labeled skeletal stem cells (SSCs) and recruit more host SSCs. Taken together, the bioceramic scaffolds with defined micrometer-scale pore curvatures demonstrate a mechanobiological approach for orthopedic scaffold design.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongzhi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ziyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiawei Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanhao Fan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ganqing Hu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Shibo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yongbo Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
6
|
Chua SKK, Wong WSY, Koh DTS, Sultana R, Soong J, Lee KH, Bin Abd Razak HR. Faster Bone Gap Union in Medial Opening Wedge High Tibial Osteotomy With 3D-Printed Synthetic Bioresorbable Polycaprolactone and Tricalcium Phosphate Osteotomy Gap Fillers Compared to Allogeneic Osteotomy Gap Fillers: A Retrospective Matched-Pair Cohort Study. Cartilage 2024:19476035241246609. [PMID: 38624072 DOI: 10.1177/19476035241246609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE The use of synthetic bone substitute material (BSM) as osteotomy gap fillers have been reported to improve outcomes in medial opening wedge high tibial osteotomy (MOWHTO). This study aims to evaluate the early radiological outcomes (bone union) and complication rates of the novel patient-specific 3D-printed honeycomb-structured polycaprolactone and tricalcium phosphate (PCL-TCP) synthetic graft compared to allogeneic bone grafts as an osteotomy gap filler in MOWHTO. METHODS A retrospective matched-pair analysis of patients who underwent MOWHTO with either PCL-TCP synthetic graft or allogenic femoral head allograft as osteotomy gap filler was performed. The osteotomy gap was split into equal zones (Zone 1-5), and bone union was evaluated on anteroposterior radiographs based on the van Hemert classification at 1, 3, 6, and 12 months postoperatively. Postoperative complications including infection, lateral hinge fractures, and persistent pain was measured. The study and control group were matched for age, smoking status, diabetes mellitus, and osteotomy gap size. RESULTS Significantly greater bone union progression was observed in the PCL-TCP group than in the allograft group at 1 month (Zones 1-3), 3 months (Zones 1-4), 6 months (Zones 1-2, 4), and 12 months (Zones 2-3, 5) postoperatively (P < 0.05). No significant difference in complications rates was noted between the two groups at 1 year. CONCLUSIONS Bone union rates observed in patients who underwent MOWHTO with the PCL-TCP synthetic graft osteotomy gap filler were superior to those in the allograft group at 1 year postoperatively, with no significant difference in complication rates (postoperative infection, lateral hinge fractures, and persistent pain).
Collapse
Affiliation(s)
| | | | | | - Rehena Sultana
- Duke-National University of Singapore Medical School, Singapore
| | - Junwei Soong
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Kong Hwee Lee
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Hamid Rahmatullah Bin Abd Razak
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore
- SingHealth Duke-National University of Singapore Musculoskeletal Sciences Academic Clinical Programme, Singapore
| |
Collapse
|
7
|
Mommsen P, März V, Krezdorn N, Aktas G, Sehmisch S, Vogt PM, Großner T, Omar Pacha T. Reconstruction of an Extensive Segmental Radial Shaft Bone Defect by Vascularized 3D-Printed Graft Cage. J Pers Med 2024; 14:178. [PMID: 38392611 PMCID: PMC10890561 DOI: 10.3390/jpm14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
We report here a 46-year-old male patient with a 14 cm segmental bone defect of the radial shaft after third degree open infected fracture caused by a shrapnel injury. The patient underwent fixed-angle plate osteosynthesis and bone reconstruction of the radial shaft by a vascularized 3D-printed graft cage, including plastic coverage with a latissimus dorsi flap and an additional central vascular pedicle. Bony reconstruction of segmental defects still represents a major challenge in musculo-skeletal surgery. Thereby, 3D-printed scaffolds or graft cages display a new treatment option for bone restoration. As missing vascularization sets the limits for the treatment of large-volume bone defects by 3D-printed scaffolds, in the present case, we firstly describe the reconstruction of an extensive radial shaft bone defect by using a graft cage with additional vascularization.
Collapse
Affiliation(s)
- Philipp Mommsen
- Department of Trauma Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Vincent März
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Nicco Krezdorn
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
- Department of Plastic and Breast Surgery, Roskilde University Hospital, 4000 Roskilde, Denmark
| | - Gökmen Aktas
- Department of Trauma Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Peter Maria Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Großner
- BellaSeno GmbH, 04103 Leipzig, Germany
- BellaSeno Pty Ltd., Brisbane, QLD 4220, Australia
| | - Tarek Omar Pacha
- Department of Trauma Surgery, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
8
|
Lu Y, Wang X, Chen H, Li X, Liu H, Wang J, Qian Z. "Metal-bone" scaffold for accelerated peri-implant endosseous healing. Front Bioeng Biotechnol 2024; 11:1334072. [PMID: 38268934 PMCID: PMC10806160 DOI: 10.3389/fbioe.2023.1334072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Restoring bone defects caused by conditions such as tumors, trauma, or inflammation is a significant clinical challenge. Currently, there is a need for the development of bone tissue engineering scaffolds that meet clinical standards to promote bone regeneration in these defects. In this study, we combined the porous Ti6Al4V scaffold in bone tissue engineering with advanced bone grafting techniques to create a novel "metal-bone" scaffold for enhanced bone regeneration. Utilizing 3D printing technology, we fabricated a porous Ti6Al4V scaffold with an average pore size of 789 ± 22.69 μm. The characterization and biocompatibility of the scaffold were validated through in vitro experiments. Subsequently, the scaffold was implanted into the distal femurs of experimental animals, removed after 3 months, and transformed into a "metal-bone" scaffold. When this "metal-bone" scaffold was re-implanted into bone defects in the animals, the results demonstrated that, in comparison to a plain porous Ti6Al4V scaffold, the scaffold containing bone tissue achieved accelerated early-stage bone regeneration. The experimental group exhibited more bone tissue generation in the early stages at the defect site, resulting in superior bone integration. In conclusion, the "metal-bone" scaffold, containing bone tissue, proves to be an effective bone-promoting scaffold with promising clinical applications.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Hao Chen
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Xin Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
9
|
Alavi SE, Gholami M, Shahmabadi HE, Reher P. Resorbable GBR Scaffolds in Oral and Maxillofacial Tissue Engineering: Design, Fabrication, and Applications. J Clin Med 2023; 12:6962. [PMID: 38002577 PMCID: PMC10672220 DOI: 10.3390/jcm12226962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Guided bone regeneration (GBR) is a promising technique in bone tissue engineering that aims to replace lost or injured bone using resorbable scaffolds. The promotion of osteoblast adhesion, migration, and proliferation is greatly aided by GBR materials, and surface changes are critical in imitating the natural bone structure to improve cellular responses. Moreover, the interactions between bioresponsive scaffolds, growth factors (GFs), immune cells, and stromal progenitor cells are essential in promoting bone regeneration. This literature review comprehensively discusses various aspects of resorbable scaffolds in bone tissue engineering, encompassing scaffold design, materials, fabrication techniques, and advanced manufacturing methods, including three-dimensional printing. In addition, this review explores surface modifications to replicate native bone structures and their impact on cellular responses. Moreover, the mechanisms of bone regeneration are described, providing information on how immune cells, GFs, and bioresponsive scaffolds orchestrate tissue healing. Practical applications in clinical settings are presented to underscore the importance of these principles in promoting tissue integration, healing, and regeneration. Furthermore, this literature review delves into emerging areas of metamaterials and artificial intelligence applications in tissue engineering and regenerative medicine. These interdisciplinary approaches hold immense promise for furthering bone tissue engineering and improving therapeutic outcomes, leading to enhanced patient well-being. The potential of combining material science, advanced manufacturing, and cellular biology is showcased as a pathway to advance bone tissue engineering, addressing a variety of clinical needs and challenges. By providing this comprehensive narrative, a detailed, up-to-date account of resorbable scaffolds' role in bone tissue engineering and their transformative potential is offered.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran;
| | - Peter Reher
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia; (S.E.A.); (M.G.)
| |
Collapse
|
10
|
Singh S, Zhou Y, Farris AL, Whitehead EC, Nyberg EL, O’Sullivan AN, Zhang NY, Rindone AN, Achebe CC, Zbijewski W, Grundy W, Garlick D, Jackson ND, Kraitchman D, Izzi JM, Lopez J, Grant MP, Grayson WL. Geometric Mismatch Promotes Anatomic Repair in Periorbital Bony Defects in Skeletally Mature Yucatan Minipigs. Adv Healthc Mater 2023; 12:e2301944. [PMID: 37565378 PMCID: PMC10840722 DOI: 10.1002/adhm.202301944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Porous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery. Such ectopic bone formation in the periorbital region can affect vision and cause disfigurement. To enhance anatomic reconstruction, geometric mismatches are introduced in the scaffolds used to treat full thickness zygomatic defects created bilaterally in adult Yucatan minipigs. 3D-printed, anatomically-mirrored scaffolds are used in combination with autologous stromal vascular fraction of cells (SVF) for treatment. An advanced image-registration workflow is developed to quantify the post-surgical geometric mismatch and correlate it with the spatial pattern of the regenerating bone. Osteoconductive bone growth on the dorsal and ventral aspect of the defect enhances scaffold integration with the native bone while medio-lateral bone growth leads to failure of the scaffolds to integrate. A strong positive correlation is found between geometric mismatch and orthotopic bone deposition at the defect site. The data suggest that strategic mismatch >20% could improve bone scaffold design to promote enhanced regeneration, osseointegration, and long-term scaffold survivability.
Collapse
Affiliation(s)
- Srujan Singh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Zhou
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley L. Farris
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma C. Whitehead
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan L. Nyberg
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aine N. O’Sullivan
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Y. Zhang
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chukwuebuka C. Achebe
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Dara Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica M. Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Lopez
- Division of Plastic Surgery, Yale-New Haven Hospital, New Haven, CT, USA
| | - Michael P. Grant
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Plastic & Reconstructive Surgery, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Warren L. Grayson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Finze R, Laubach M, Russo Serafini M, Kneser U, Medeiros Savi F. Histological and Immunohistochemical Characterization of Osteoimmunological Processes in Scaffold-Guided Bone Regeneration in an Ovine Large Segmental Defect Model. Biomedicines 2023; 11:2781. [PMID: 37893154 PMCID: PMC10604530 DOI: 10.3390/biomedicines11102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large-volume bone defect regeneration is complex and demands time to complete. Several regeneration phases with unique characteristics, including immune responses, follow, overlap, and interdepend on each other and, if successful, lead to the regeneration of the organ bone's form and function. However, during traumatic, infectious, or neoplastic clinical cases, the intrinsic bone regeneration capacity may exceed, and surgical intervention is indicated. Scaffold-guided bone regeneration (SGBR) has recently shown efficacy in preclinical and clinical studies. To investigate different SGBR strategies over periods of up to three years, we have established a well-characterized ovine large segmental tibial bone defect model, for which we have developed and optimized immunohistochemistry (IHC) protocols. We present an overview of the immunohistochemical characterization of different experimental groups, in which all ovine segmental defects were treated with a bone grafting technique combined with an additively manufactured medical-grade polycaprolactone/tricalcium phosphate (mPCL-TCP) scaffold. The qualitative dataset was based on osteoimmunological findings gained from IHC analyses of over 350 sheep surgeries over the past two decades. Our systematic and standardized IHC protocols enabled us to gain further insight into the complex and long-drawn-out bone regeneration processes, which ultimately proved to be a critical element for successful translational research.
Collapse
Affiliation(s)
- Ronja Finze
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany;
| | - Markus Laubach
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mairim Russo Serafini
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao 49100-000, Brazil;
| | - Ulrich Kneser
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany;
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
12
|
Laubach M, Herath B, Bock N, Suresh S, Saifzadeh S, Dargaville BL, McGovern J, Wille ML, Hutmacher DW, Medeiros Savi F. In vivo characterization of 3D-printed polycaprolactone-hydroxyapatite scaffolds with Voronoi design to advance the concept of scaffold-guided bone regeneration. Front Bioeng Biotechnol 2023; 11:1272348. [PMID: 37860627 PMCID: PMC10584154 DOI: 10.3389/fbioe.2023.1272348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Three-dimensional (3D)-printed medical-grade polycaprolactone (mPCL) composite scaffolds have been the first to enable the concept of scaffold-guided bone regeneration (SGBR) from bench to bedside. However, advances in 3D printing technologies now promise next-generation scaffolds such as those with Voronoi tessellation. We hypothesized that the combination of a Voronoi design, applied for the first time to 3D-printed mPCL and ceramic fillers (here hydroxyapatite, HA), would allow slow degradation and high osteogenicity needed to regenerate bone tissue and enhance regenerative properties when mixed with xenograft material. We tested this hypothesis in vitro and in vivo using 3D-printed composite mPCL-HA scaffolds (wt 96%:4%) with the Voronoi design using an ISO 13485 certified additive manufacturing platform. The resulting scaffold porosity was 73% and minimal in vitro degradation (mass loss <1%) was observed over the period of 6 months. After loading the scaffolds with different types of fresh sheep xenograft and ectopic implantation in rats for 8 weeks, highly vascularized tissue without extensive fibrous encapsulation was found in all mPCL-HA Voronoi scaffolds and endochondral bone formation was observed, with no adverse host-tissue reactions. This study supports the use of mPCL-HA Voronoi scaffolds for further testing in future large preclinical animal studies prior to clinical trials to ultimately successfully advance the SGBR concept.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Buddhi Herath
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Jamieson Trauma Institute, Metro North Hospital and Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Nathalie Bock
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Biomechanics and Spine Research Group at the Centre of Children’s Health Research, Queensland University of Technology, Brisbane, QLD, Australia
| | - Siamak Saifzadeh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Bronwin L. Dargaville
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marie-Luise Wille
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Flavia Medeiros Savi
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Asbai-Ghoudan R, Nasello G, Pérez MÁ, Verbruggen SW, Ruiz de Galarreta S, Rodriguez-Florez N. In silico assessment of the bone regeneration potential of complex porous scaffolds. Comput Biol Med 2023; 165:107381. [PMID: 37611419 DOI: 10.1016/j.compbiomed.2023.107381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Mechanical environment plays a crucial role in regulating bone regeneration in bone defects. Assessing the mechanobiological behavior of patient-specific orthopedic scaffolds in-silico could help guide optimal scaffold designs, as well as intra- and post-operative strategies to enhance bone regeneration and improve implant longevity. Additively manufactured porous scaffolds, and specifically triply periodic minimal surfaces (TPMS), have shown promising structural properties to act as bone substitutes, yet their ability to induce mechanobiologially-driven bone regeneration has not been elucidated. The aim of this study is to i) explore the bone regeneration potential of TPMS scaffolds made of different stiffness biocompatible materials, to ii) analyze the influence of pre-seeding the scaffolds and increasing the post-operative resting period, and to iii) assess the influence of patient-specific parameters, such as age and mechanosensitivity, on outcomes. To perform this study, an in silico model of a goat tibia is used. The bone ingrowth within the scaffold pores was simulated with a mechano-driven model of bone regeneration. Results showed that the scaffold's architectural properties affect cellular diffusion and strain distribution, resulting in variations in the regenerated bone volume and distribution. The softer material improved the bone ingrowth. An initial resting period improved the bone ingrowth but not enough to reach the scaffold's core. However, this was achieved with the implantation of a pre-seeded scaffold. Physiological parameters like age and health of the patient also influence the bone regeneration outcome, though to a lesser extent than the scaffold design. This analysis demonstrates the importance of the scaffold's geometry and its material, and highlights the potential of using mechanobiological patient-specific models in the design process for bone substitutes.
Collapse
Affiliation(s)
- Reduan Asbai-Ghoudan
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain.
| | - Gabriele Nasello
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018, Zaragoza, Spain
| | - Stefaan W Verbruggen
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK; Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, S1 3JD, UK
| | - Sergio Ruiz de Galarreta
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain
| | - Naiara Rodriguez-Florez
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
14
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
15
|
Sparks DS, Savi FM, Dlaska CE, Saifzadeh S, Brierly G, Ren E, Cipitria A, Reichert JC, Wille ML, Schuetz MA, Ward N, Wagels M, Hutmacher DW. Convergence of scaffold-guided bone regeneration principles and microvascular tissue transfer surgery. SCIENCE ADVANCES 2023; 9:eadd6071. [PMID: 37146134 PMCID: PMC10162672 DOI: 10.1126/sciadv.add6071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A preclinical evaluation using a regenerative medicine methodology comprising an additively manufactured medical-grade ε-polycaprolactone β-tricalcium phosphate (mPCL-TCP) scaffold with a corticoperiosteal flap was undertaken in eight sheep with a tibial critical-size segmental bone defect (9.5 cm3, M size) using the regenerative matching axial vascularization (RMAV) approach. Biomechanical, radiological, histological, and immunohistochemical analysis confirmed functional bone regeneration comparable to a clinical gold standard control (autologous bone graft) and was superior to a scaffold control group (mPCL-TCP only). Affirmative bone regeneration results from a pilot study using an XL size defect volume (19 cm3) subsequently supported clinical translation. A 27-year-old adult male underwent reconstruction of a 36-cm near-total intercalary tibial defect secondary to osteomyelitis using the RMAV approach. Robust bone regeneration led to complete independent weight bearing within 24 months. This article demonstrates the widely advocated and seldomly accomplished concept of "bench-to-bedside" research and has weighty implications for reconstructive surgery and regenerative medicine more generally.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia M Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Constantin E Dlaska
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Gary Brierly
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Edward Ren
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Johannes C Reichert
- Department of Orthopaedics and Orthopaedic Surgery, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Marie-Luise Wille
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael A Schuetz
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Michael Wagels
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
16
|
Sparks DS, Wiper J, Lloyd T, Wille ML, Sehu M, Savi FM, Ward N, Hutmacher DW, Wagels M. Protocol for the BONE-RECON trial: a single-arm feasibility trial for critical sized lower limb BONE defect RECONstruction using the mPCL-TCP scaffold system with autologous vascularised corticoperiosteal tissue transfer. BMJ Open 2023; 13:e056440. [PMID: 37137563 PMCID: PMC10163528 DOI: 10.1136/bmjopen-2021-056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Reconstruction of critical bone defects is challenging. In a substantial subgroup of patients, conventional reconstructive techniques are insufficient. Biodegradable scaffolds have emerged as a novel tissue engineering strategy for critical-sized bone defect reconstruction. A corticoperiosteal flap integrates the hosts' ability to regenerate bone and permits the creation of a vascular axis for scaffold neo-vascularisation (regenerative matching axial vascularisation-RMAV). This phase IIa study evaluates the application of the RMAV approach alongside a custom medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold (Osteopore) to regenerate bone sufficient to heal critical size defects in lower limb defects. METHODS AND ANALYSIS This open-label, single-arm feasibility trial will be jointly coordinated by the Complex Lower Limb Clinic (CLLC) at the Princess Alexandra Hospital in Woolloongabba (Queensland, Australia), the Australian Centre for Complex Integrated Surgical Solutions (Queensland, Australia) and the Faculty of Engineering, Queensland University of Technology in Kelvin Grove (Queensland, Australia). Aiming for limb salvage, the study population (n=10) includes any patient referred to the CLLC with a critical-sized bone defect not amenable to conventional reconstructive approaches, after discussion by the interdisciplinary team. All patients will receive treatment using the RMAV approach using a custom mPCL-TCP implant. The primary study endpoint will be safety and tolerability of the reconstruction. Secondary end points include time to bone union and weight-bearing status on the treated limb. Results of this trial will help shape the role of scaffold-guided bone regenerative approaches in complex lower limb reconstruction where current options remain limited. ETHICS AND DISSEMINATION Approval was obtained from the Human Research Ethics Committee at the participating centre. Results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ACTRN12620001007921.
Collapse
Affiliation(s)
- David S Sparks
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- The University of Queensland PA Southside Clinical School, Woolloongabba, Queensland, Australia
| | - Jay Wiper
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Thomas Lloyd
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marie-Luise Wille
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Marjoree Sehu
- Department of Infectious Diseases, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Flavia M Savi
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Dietmar W Hutmacher
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Siences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Translational Research Institute Australia Ghrelin Research Group, South Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Baumer V, Gunn E, Riegle V, Bailey C, Shonkwiler C, Prawel D. Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14050251. [PMID: 37233361 DOI: 10.3390/jfb14050251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and tricalcium phosphate, are very popular scaffold biomaterials due to their biocompatibility, bioactivity, compositional similarities to bone mineral, non-immunogenicity, and tunable biodegradation. Their brittle nature can be partially mitigated by 3D printing them in TPMS topologies such as gyroids, which are widely studied for bone regeneration, as evidenced by their presence in popular 3D-printing slicers, modeling systems, and topology optimization tools. Although structural and flow simulations have predicted promising properties of other TPMS scaffolds, such as Fischer-Koch S (FKS), to the best of our knowledge, no one has explored these possibilities for bone regeneration in the laboratory. One reason for this is that fabrication of the FKS scaffolds, such as by 3D printing, is challenged by a lack of algorithms to model and slice this topology for use by low-cost biomaterial printers. This paper presents an open-source software algorithm that we developed to create 3D-printable FKS and gyroid scaffold cubes, with a framework that can accept any continuous differentiable implicit function. We also report on our successful 3D printing of hydroxyapatite FKS scaffolds using a low-cost method that combines robocasting with layer-wise photopolymerization. Dimensional accuracy, internal microstructure, and porosity characteristics are also presented, demonstrating promising potential for the 3D printing of TPMS ceramic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Gunn
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Valerie Riegle
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Claire Bailey
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Clayton Shonkwiler
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
18
|
Ganguly P, Jones E, Panagiotopoulou V, Panagiotopoulos E, Giannoudis PV. Author response to: Letter to the editor concerning "Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent advances". Injury 2023; 54:S0020-1383(23)00107-9. [PMID: 36870815 DOI: 10.1016/j.injury.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | | | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Academic Department of Trauma and Orthopaedics, Floor D, Clarendon Wing, LGI, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
19
|
Laubach M, Hutmacher DW. Letter to the editor concerning "Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances". Injury 2023; 54:802. [PMID: 36379741 DOI: 10.1016/j.injury.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| |
Collapse
|
20
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
21
|
Sato M, Shah FA. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering. Calcif Tissue Int 2023; 112:525-542. [PMID: 36611094 PMCID: PMC10106349 DOI: 10.1007/s00223-022-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Recent years have witnessed an evolution of imaging technologies towards sophisticated approaches for visualising cells within their natural environment(s) and for investigating their interactions with other cells, with adjacent anatomical structures, and with implanted biomaterials. Resin cast etching (RCE) is an uncomplicated technique involving sequential acid etching and alkali digestion of resin embedded bone to observe the osteocyte lacuno-canalicular network using scanning electron microscopy. This review summarises the applicability of RCE to bone and the bone-implant interface. Quantitative parameters such as osteocyte size, osteocyte density, and number of canaliculi per osteocyte, and qualitative metrics including osteocyte shape, disturbances in the arrangement of osteocytes and canaliculi, and physical communication between osteocytes and implant surfaces can be investigated. Ageing, osteoporosis, long-term immobilisation, spinal cord injury, osteoarthritis, irradiation, and chronic kidney disease have been shown to impact osteocyte lacuno-canalicular network morphology. In addition to titanium, calcium phosphates, and bioactive glass, observation of direct connectivity between osteocytes and cobalt chromium provides new insights into the osseointegration potential of materials conventionally viewed as non-osseointegrating. Other applications include in vivo and in vitro testing of polymer-based tissue engineering scaffolds and tissue-engineered ossicles, validation of ectopic osteochondral defect models, ex vivo organ culture of whole bones, and observing the effects of gene dysfunction/deletion on the osteocyte lacuno-canalicular network. Without additional contrast staining, any resin embedded specimen (including clinical biopsies) can be used for RCE. The multitude of applications described here attest to the versatility of RCE for routine use within correlative analytical workflows, particularly in biomaterials science.
Collapse
Affiliation(s)
- Mari Sato
- Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Cornish J, Oreffo ROC. Editorial overview: Scaffolds and applications for bone regeneration/tissue engineering. Bone 2023; 166:116593. [PMID: 36244655 DOI: 10.1016/j.bone.2022.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Duan J, Shao H, Liu H, Xu J, Cong M, Zhao K, Lin T. 3D gel-printing of hierarchically porous BCP scaffolds for bone tissue engineering. Ann Ital Chir 2023. [DOI: 10.1016/j.jeurceramsoc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Echeverria Molina MI, Chen CA, Martinez J, Tran P, Komvopoulos K. Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 16:136. [PMID: 36614475 PMCID: PMC9821731 DOI: 10.3390/ma16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
After decades of research, fully functional skin regeneration is still a challenge. Skin is a multilayered complex organ exhibiting a cascading healing process affected by various mechanisms. Specifically, nutrients, oxygen, and biochemical signals can lead to specific cell behavior, ultimately conducive to the formation of high-quality tissue. This biomolecular exchange can be tuned through scaffold engineering, one of the leading fields in skin substitutes and equivalents. The principal objective of this investigation was the design, fabrication, and evaluation of a new class of three-dimensional fibrous scaffolds consisting of poly(ε-caprolactone) (PCL)/calcium alginate (CA), with the goal to induce keratinocyte differentiation through the action of calcium leaching. Scaffolds fabricated by electrospinning using a PCL/sodium alginate solution were treated by immersion in a calcium chloride solution to replace alginate-linked sodium ions by calcium ions. This treatment not only provided ion replacement, but also induced fiber crosslinking. The scaffold morphology was examined by scanning electron microscopy and systematically assessed by measurements of the pore size and the diameter, alignment, and crosslinking of the fibers. The hydrophilicity of the scaffolds was quantified by contact angle measurements and was correlated to the augmentation of cell attachment in the presence of CA. The in vitro performance of the scaffolds was investigated by seeding and staining fibroblasts and keratinocytes and using differentiation markers to detect the evolution of basal, spinous, and granular keratinocytes. The results of this study illuminate the potential of the PCL/CA scaffolds for tissue engineering and suggest that calcium leaching out from the scaffolds might have contributed to the development of a desirable biological environment for the attachment, proliferation, and differentiation of the main skin cells (i.e., fibroblasts and keratinocytes).
Collapse
|
25
|
Cometta S, Jones RT, Juárez-Saldivar A, Donose BC, Yasir M, Bock N, Dargaville TR, Bertling K, Brünig M, Rakić AD, Willcox M, Hutmacher DW. Melimine-Modified 3D-Printed Polycaprolactone Scaffolds for the Prevention of Biofilm-Related Biomaterial Infections. ACS NANO 2022; 16:16497-16512. [PMID: 36245096 PMCID: PMC9620410 DOI: 10.1021/acsnano.2c05812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Biomaterial-associated infections are one of the major causes of implant failure. These infections result from persistent bacteria that have adhered to the biomaterial surface before, during, or after surgery and have formed a biofilm on the implant's surface. It is estimated that 4 to 10% of implant surfaces are contaminated with bacteria; however, the infection rate can be as high as 30% in intensive care units in developed countries and as high as 45% in developing countries. To date, there is no clinical solution to prevent implant infection without relying on the use of high doses of antibiotics supplied systemically and/or removal of the infected device. In this study, melimine, a chimeric cationic peptide that has been tested in Phase I and II human clinical trials, was immobilized onto the surface of 3D-printed medical-grade polycaprolactone (mPCL) scaffolds via covalent binding and adsorption. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of melimine-treated surfaces confirmed immobilization of the peptide, as well as its homogeneous distribution throughout the scaffold surface. Amino acid analysis showed that melimine covalent and noncovalent immobilization resulted in a peptide density of ∼156 and ∼533 ng/cm2, respectively. Furthermore, we demonstrated that the immobilization of melimine on mPCL scaffolds by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride (EDC) coupling and noncovalent interactions resulted in a reduction of Staphylococcus aureus colonization by 78.7% and 76.0%, respectively, in comparison with the nonmodified control specimens. Particularly, the modified surfaces maintained their antibacterial properties for 3 days, which resulted in the inhibition of biofilm formation in vitro. This system offers a biomaterial strategy to effectively prevent biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty
of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian
Research Council Training Centre for Multiscale 3D Imaging, Modelling
and Manufacturing (M3D Innovation), Queensland
University of Technology, Kelvin
Grove, QLD 4059, Australia
- Max
Planck Queensland Centre, Queensland University
of Technology, Brisbane, QLD 4000, Australia
| | - Robert T. Jones
- Central
Analytical Research Facility (CARF), Queensland
University of Technology, Brisbane, QLD 4000, Australia
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica
Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Mexico
| | - Bogdan C. Donose
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Muhammad Yasir
- School
of Optometry and Vision Science, University
of New South Wales, Sydney, NSW 2033, Australia
| | - Nathalie Bock
- Australian
Research Council Training Centre for Multiscale 3D Imaging, Modelling
and Manufacturing (M3D Innovation), Queensland
University of Technology, Kelvin
Grove, QLD 4059, Australia
- Max
Planck Queensland Centre, Queensland University
of Technology, Brisbane, QLD 4000, Australia
- Faculty
of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research
Institute, Woolloongabba, QLD 4102, Australia
| | - Tim R. Dargaville
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Karl Bertling
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Brünig
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandar D. Rakić
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Willcox
- School
of Optometry and Vision Science, University
of New South Wales, Sydney, NSW 2033, Australia
| | - Dietmar W. Hutmacher
- Faculty
of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian
Research Council Training Centre for Multiscale 3D Imaging, Modelling
and Manufacturing (M3D Innovation), Queensland
University of Technology, Kelvin
Grove, QLD 4059, Australia
- Max
Planck Queensland Centre, Queensland University
of Technology, Brisbane, QLD 4000, Australia
- Translational Research
Institute, Woolloongabba, QLD 4102, Australia
- Australian
Research Council Industrial Transformation Training Centre in Additive
Biomanufacturing, Queensland University
of Technology, Brisbane, QLD 4059, Australia
- Australian
Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
26
|
Sun Q, Yu L, Zhang Z, Qian C, Fang H, Wang J, Wu P, Zhu X, Zhang J, Zhong L, He R. A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications. Front Chem 2022; 10:958420. [PMID: 36157039 PMCID: PMC9493496 DOI: 10.3389/fchem.2022.958420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Hydroxyapatite (HA) and tricalcium phosphate (TCP) constitute 60% of the content of the bone, and their combination has a better effect on bone tissue engineering than either single element. This study demonstrates a new degradable gelatin/carboxymethyl chitosan (CMC) bone scaffold loaded with both nano-HA and β-TCP (hereinafter referred to as HCP), and freeze drying combined with stir foaming was used to obtain highly connected macropores. Only a few studies have used these components to synthesize a four-component osteogenic scaffold. The aim of this study was to comprehensively assess the biocompatibility and osteoinductivity of the nanocomposites. Three HCP/CMC/gelatin scaffolds were made with different HCP contents: group A (10 wt% HCP), group B (30 wt% HCP), and group C (50 wt% HCP) (the ratio of nano-HA and β-TCP was fixed at 3:2). The scaffolds were macroporous with a high porosity and pore connectivity, as observed by morphological analysis by scanning electron microscopy. Additionally, the pore size of groups A and B was more homogeneous than that of group C. There were no significant differences in physicochemical characterization among the three groups. The Fourier-transform infrared (FTIR) spectroscopy test indicated that the scaffold contained active groups, such as hydroxyl, amino, or peptide bonds, corresponding to gelatin and CMC. The XRD results showed that the phase structures of HA and β-TCP did not change in the nanocomposite. The scaffolds had biodegradation potential and an appreciable swelling ratio, as demonstrated with the in vitro test. The scaffolds were cultured in vitro with MC3T3-E1 cells, showing that osteoinduction and osteoconduction increased with the HCP content. None of the scaffolds showed cytotoxicity. However, cell adhesion and growth in group B were better than those in group A and group C. Therefore, freeze drying combined with a stir foaming method may have a solid component limit. This study demonstrates a novel four-component scaffold via a simple manufacturing process. Group B (30% HCP) had the best characteristics for bone scaffold materials.
Collapse
Affiliation(s)
- Qiushuo Sun
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Lu Yu
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Zhuocheng Zhang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Hongzhe Fang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jintao Wang
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Wu
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Rui He
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Rui He,
| |
Collapse
|
27
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
28
|
Jankauskaite L, Malinauskas M, Aukstikalne L, Dabasinskaite L, Rimkunas A, Mickevicius T, Pockevičius A, Krugly E, Martuzevicius D, Ciuzas D, Baniukaitiene O, Usas A. Functionalized Electrospun Scaffold-Human-Muscle-Derived Stem Cell Construct Promotes In Vivo Neocartilage Formation. Polymers (Basel) 2022; 14:polym14122498. [PMID: 35746068 PMCID: PMC9229929 DOI: 10.3390/polym14122498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL–scaffolds were functionalized with ozone and loaded with TGF-β3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated (“naïve” (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-β3 and hMDSC compared to NO and scaffolds without TGF-β3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-β3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-β3-loaded scaffold with hMDSC is a promising tool in neocartilage formation.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
- Correspondence:
| | - Mantas Malinauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Lauryna Aukstikalne
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Lauryna Dabasinskaite
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Augustinas Rimkunas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Tomas Mickevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Alius Pockevičius
- Pathology Center, Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania;
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Darius Ciuzas
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Odeta Baniukaitiene
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| |
Collapse
|
29
|
Sparks DS, Medeiros Savi F, Saifzadeh S, Wille ML, Wagels M, Hutmacher DW. Bone Regeneration Exploiting Corticoperiosteal Tissue Transfer for Scaffold-Guided Bone Regeneration. Tissue Eng Part C Methods 2022; 28:202-213. [PMID: 35262425 DOI: 10.1089/ten.tec.2022.0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contemporary reconstructive approaches for critical size bone defects carry significant disadvantages. As a result, clinically driven research has focused on the development and translation of alternative therapeutic concepts. Scaffold-guided tissue regeneration (SGTR) is an emerging technique to heal critical size bone defects. However, issues synchronizing scaffold vascularization with bone-specific regenerative processes currently limit bone regeneration for extra large (XL, 19 cm3) critical bone defects. To address this issue, we developed a large animal model that incorporates a corticoperiosteal flap (CPF) for sustained scaffold neovascularization and bone regeneration. In 10 sheep, we demonstrated the efficacy of this approach for healing medium (M, 9 cm3) size critical bone defects as demonstrated on plain radiography, microcomputed tomography, and histology. Furthermore, in two sheep, we demonstrate how this approach can be safely extended to heal XL critical size defects. This article presents an original CPF technique in a well-described preclinical model, which can be used in conjunction with the SGTR concept, to address challenging critical size bone defects in vivo. Impact statement This article describes a novel scaffold-guided tissue engineering approach utilizing a corticoperiosteal flap for bone healing in critical size long bone defects. This approach will be of use for tissue engineers and surgeons exploring vascularized tissue transfer as an option to regenerate large volumes of bone for extensive critical size bone defects both in vivo and in the clinical arena.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
| | - Siamak Saifzadeh
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, Australia
| | - Marie-Luise Wille
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Australia.,Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
30
|
Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat 2022; 34:73-84. [PMID: 35782964 PMCID: PMC9213234 DOI: 10.1016/j.jot.2022.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Background Bone defects after trauma, infection, or tumour resection present a challenge for patients and clinicians. To date, autologous bone graft (ABG) is the gold standard for bone regeneration. To address the limitations of ABG such as limited harvest volume as well as overly fast remodelling and resorption, a new treatment strategy of scaffold-guided bone regeneration (SGBR) was developed. In a well-characterized sheep model of large to extra-large tibial segmental defects, three-dimensional (3D) printed composite scaffolds have shown clinically relevant biocompatibility and osteoconductive capacity in SGBR strategies. Here, we report four challenging clinical cases with large complex posttraumatic long bone defects using patient-specific SGBR as a successful treatment. Methods After giving informed consent computed tomography (CT) images were used to design patient-specific biodegradable medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP, 80:20 wt%) scaffolds. The CT scans were segmented using Materialise Mimics to produce a defect model and the scaffold parts were designed with Autodesk Meshmixer. Scaffold prototypes were 3D-printed to validate robust clinical handling and bone defect fit. The final scaffold design was additively manufactured under Food and Drug Administration (FDA) guidelines for patient-specific and custom-made implants by Osteopore International Pte Ltd. Results Four patients (age: 23–42 years) with posttraumatic lower extremity large long bone defects (case 1: 4 cm distal femur, case 2: 10 cm tibia shaft, case 3: complex malunion femur, case 4: irregularly shaped defect distal tibia) are presented. After giving informed consent, the patients were treated surgically by implanting a custom-made mPCL-TCP scaffold loaded with ABG (case 2: additional application of recombinant human bone morphogenetic protein-2) harvested with the Reamer-Irrigator-Aspirator system (RIA, Synthes®). In all cases, the scaffolds matched the actual anatomical defect well and no perioperative adverse events were observed. Cases 1, 3 and 4 showed evidence of bony ingrowth into the large honeycomb pores (pores >2 mm) and fully interconnected scaffold architecture with indicative osseous bridges at the bony ends on the last radiographic follow-up (8–9 months after implantation). Comprehensive bone regeneration and full weight bearing were achieved in case 2 at follow-up 23 months after implantation. Conclusion This study shows the bench to bedside translation of guided bone regeneration principles into scaffold-based bone tissue engineering. The scaffold design in SGBR should have a tissue-specific morphological signature which stimulates and directs the stages from the initial host response towards the full regeneration. Thereby, the scaffolds provide a physical niche with morphology and biomaterial properties that allow cell migration, proliferation, and formation of vascularized tissue in the first one to two months, followed by functional bone formation and the capacity for physiological bone remodelling. Great design flexibility of composite scaffolds to support the one to three-year bone regeneration was observed in four patients with complex long bone defects. The translational potential of this article This study reports on the clinical efficacy of SGBR in the treatment of long bone defects. Moreover, it presents a comprehensive narrative of the rationale of this technology, highlighting its potential for bone regeneration treatment regimens in patients with any type of large and complex osseous defects.
Collapse
|
31
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects. Front Bioeng Biotechnol 2022; 10:825831. [PMID: 35372306 PMCID: PMC8971796 DOI: 10.3389/fbioe.2022.825831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 01/17/2023] Open
Abstract
The reconstruction of critical-sized segmental bone defects is a key challenge in orthopedics because of its intractability despite technological advancements. To overcome this challenge, scaffolds that promote rapid bone ingrowth and subsequent bone replacement are necessary. In this study, we fabricated three types of carbonate apatite honeycomb (HC) scaffolds with uniaxial channels bridging the stumps of a host bone. These HC scaffolds possessed different channel and micropore volumes. The HC scaffolds were implanted into the defects of rabbit ulnar shafts to evaluate the effects of channels and micropores on bone reconstruction. Four weeks postoperatively, the HC scaffolds with a larger channel volume promoted bone ingrowth compared to that with a larger micropore volume. In contrast, 12 weeks postoperatively, the HC scaffolds with a larger volume of the micropores rather than the channels promoted the scaffold resorption by osteoclasts and bone formation. Thus, the channels affected bone ingrowth in the early stage, and micropores affected scaffold resorption and bone formation in the middle stage. Furthermore, 12 weeks postoperatively, the HC scaffolds with large volumes of both channels and micropores formed a significantly larger amount of new bone than that attained using HC scaffolds with either large volume of channels or micropores, thereby bridging the host bone stumps. The findings of this study provide guidance for designing the pore structure of scaffolds.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|