1
|
Sherman KM, Silveira CJ, Yan M, Yu L, Leon A, Klages K, White LG, Smith HM, Wolff SM, Falck A, Muneoka K, Brunauer R, Gaddy D, Suva LJ, Dawson LA. Male Down syndrome Ts65Dn mice have impaired bone regeneration. Bone 2024; 192:117374. [PMID: 39675408 DOI: 10.1016/j.bone.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Trisomy of human chromosome 21 (Ts21) individuals present with a spectrum of low bone mineral density (BMD) that predisposes this vulnerable group to skeletal injuries. To determine the bone regenerative capacity of Down syndrome (DS) mice, male and female Dp16 and Ts65Dn DS mice underwent amputation of the digit tip (the terminal phalanx (P3)). This is a well-established mammalian model of bone regeneration that restores the amputated skeletal segment and all associated soft tissues. P3 amputation was performed in 8-week-old male and female DS mice and WT controls and followed by in vivo μCT, histology and immunofluorescence. Following P3 amputation, the bone degradation phase was attenuated in both Dp16 and Ts65Dn males. In Dp16 males, P3 regeneration was delayed but complete by 63 days post amputation (DPA); however, male Ts65Dn exhibited attenuated regeneration by 63 DPA. In both Dp16 and Ts65Dn female DS mice, P3 regenerates were indistinguishable from WT by 42 DPA. In Ts65Dn males, osteoclasts and eroded bone surface were significantly reduced, and osteoblast number significantly decreased in the regenerating digit. In Ts65Dn females, no significant differences were observed in any osteoclast or osteoblast parameter. Like Ts21 individuals and DS mice with sex differences in bone mass, these data expand the characteristic sexually dimorphism to include bone resorption and regeneration in response to skeletal injury in Ts65Dn mice. These observations suggest that sex differences contribute to the poor bone healing of DS and compound the increased risk of bone injury in the Ts21 population.
Collapse
Affiliation(s)
- Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Catrina J Silveira
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Abigail Leon
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Kasey Klages
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lauren G White
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Sarah M Wolff
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America; LBG Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
2
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Bishop F, Wallace JM, Roper RJ. Sex-specific trisomic Dyrk1a-related skeletal phenotypes during development in a Down syndrome model. Dis Model Mech 2024; 17:dmm050914. [PMID: 39136051 PMCID: PMC11449447 DOI: 10.1242/dmm.050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with trisomy 21.
Collapse
Affiliation(s)
- Jonathan M LaCombe
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN 46140, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared R Thomas
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew P Blackwell
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Isabella Crawford
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Flannery Bishop
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Wallace JM, Roper RJ. Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595804. [PMID: 38826419 PMCID: PMC11142220 DOI: 10.1101/2024.05.24.595804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.
Collapse
Affiliation(s)
- Jonathan M. LaCombe
- Department of Biology, Indiana University-Indianapolis, IN, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | - Jared R. Thomas
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | | | | | - Joseph M. Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN, USA
| | | |
Collapse
|
4
|
Lamantia J, Sloan K, Wallace JM, Roper RJ. Compromised femoral and lumbovertebral bone in the Dp(16)1Yey Down syndrome mouse model. Bone 2024; 181:117046. [PMID: 38336158 PMCID: PMC11000152 DOI: 10.1016/j.bone.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine. While the femur has been studied in DS mouse models, there is little research done on the vertebrae despite evidence that humans with DS have affected vertebrae. Additionally, it is important to establish when skeletal deficits occur to find times of potential intervention. The Dp(16)1Yey DS mouse model has all genes triplicated on mouse chromosome 16 orthologous to Hsa21 and displayed deficits in long bone, including trabecular and cortical deficits in male but not female mice, at 12 weeks. We hypothesized that the long bone and lumbovertebral microarchitecture would exhibit sexually dimorphic deficits in Dp(16)1Yey mice compared to control mice and long bone strength would be diminished in Dp(16)1Yey mice at 6 weeks. The trabecular region of the 4th lumbar (L4) vertebra and the trabecular and cortical regions of the femur were analyzed via micro-computed tomography and 3-point bending in 6-week-old male and female Dp(16)1Yey and control mice. Trabecular and cortical deficits were observed in femurs from male Dp(16)1Yey mice, and cortical deficits were seen in femurs of male and female Dp(16)1Yey mice. Male Dp(16)1Yey femurs had more deficits in bone strength at whole bone and tissue-estimate level properties, but female Dp(16)1Yey mice were also affected. Additionally, the L4 of male and female Dp(16)1Yey mice show trabecular deficits, which have not been previously reported in a DS mouse model. Our results indicate that skeletal deficits associated with DS occur early in skeletal development, are dependent on skeletal compartment and site, are sex dependent, and potential interventions should likely begin early in skeletal development of DS mouse models.
Collapse
Affiliation(s)
- Joshua Lamantia
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America.
| |
Collapse
|
5
|
Derry PJ, Liopo AV, Mouli K, McHugh EA, Vo ATT, McKelvey A, Suva LJ, Wu G, Gao Y, Olson KR, Tour JM, Kent TA. Oxidation of Hydrogen Sulfide to Polysulfide and Thiosulfate by a Carbon Nanozyme: Therapeutic Implications with an Emphasis on Down Syndrome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211241. [PMID: 37272655 PMCID: PMC10696138 DOI: 10.1002/adma.202211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Hydrogen sulfide (H2 S) is a noxious, potentially poisonous, but necessary gas produced from sulfur metabolism in humans. In Down Syndrome (DS), the production of H2 S is elevated and associated with degraded mitochondrial function. Therefore, removing H2 S from the body as a stable oxide could be an approach to reducing the deleterious effects of H2 S in DS. In this report we describe the catalytic oxidation of hydrogen sulfide (H2 S) to polysulfides (HS2+n - ) and thiosulfate (S2 O3 2- ) by poly(ethylene glycol) hydrophilic carbon clusters (PEG-HCCs) and poly(ethylene glycol) oxidized activated charcoal (PEG-OACs), examples of oxidized carbon nanozymes (OCNs). We show that OCNs oxidize H2 S to polysulfides and S2 O3 2- in a dose-dependent manner. The reaction is dependent on O2 and the presence of quinone groups on the OCNs. In DS donor lymphocytes we found that OCNs increased polysulfide production, proliferation, and afforded protection against additional toxic levels of H2 S compared to untreated DS lymphocytes. Finally, in Dp16 and Ts65DN murine models of DS, we found that OCNs restored osteoclast differentiation. This new action suggests potential facile translation into the clinic for conditions involving excess H2 S exemplified by DS.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- EnMed, School of Engineering Medicine, Texas A&M University, 1020 W. Holcombe Boulevard, Houston, Texas, USA
| | - Anton V Liopo
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
| | - Karthik Mouli
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
| | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Smalley-Curl Institute, Rice University, Houston, 77005, Texas, USA
| | - Anh T T Vo
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
| | - Ann McKelvey
- Center for Inflammation and Infectious Disease, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, 77030, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, Texas, USA
| | - Gang Wu
- Division of Hematology, Internal Medicine, John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, 77005, Texas, USA
| | - Yan Gao
- Indiana University School of Medicine-South Bend, South Bend, 46617, Indiana, USA
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, 46617, Indiana, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Smalley-Curl Institute, Rice University, Houston, 77005, Texas, USA
- Welch Institute for Advanced Materials, Rice University, Houston, 77005, Texas, USA
- The NanoCarbon Center, Rice University, Houston, 77005, Texas, USA
| | - Thomas A Kent
- Center for Genomic and Precision Medicine, Department of Translational Medical Science, Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, 77005, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, 6560 Fannin Street, Houston, 77030, Texas, USA
| |
Collapse
|
6
|
O' Malley BGJ, Duong H, Kafer G, Maugham-Macan M. The aetiology of atypical bone health in individuals with Down syndrome. Arch Osteoporos 2023; 18:140. [PMID: 37996656 DOI: 10.1007/s11657-023-01348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE Trisomy 21 (T21), more commonly known as Down syndrome (DS) is a genetic condition where every cell in the body has an additional copy of chromosome 21. Despite improvements in our management of DS-associated health risks, we still do not understand how T21 impacts human bone health. This is a critical area of research owing to increased life expectancy of people with DS, and the predisposition of individuals with DS to early-onset osteoporosis and osteopenia. METHODS We have conducted a scoping review using the methodological framework of Arksey and O'Malley (2005) which analysed the existing data on bone growth, development, maintenance and repair in T21 using the Medical Subject Headings (MeSH) terms: Trisomy 21, Down syndrome, Down's syndrome, bone development, bone growth, bone maintenance, fracture risk, osteoporosis, bone mineral density, bone strength, bone mineral content, bone formation, bone repair, osteoblast, osteoclast, osteocyte, osteomacs. A total of 31 papers were identified. After screening, 16 articles were included in full-text review. RESULTS There was a total of eleven in vivo animal model studies identified and included in the scoping review. Of those eleven, ten revealed a difference in bone growth and development in animal models of DS, and two found that bone maintenance and repair in animal models of DS is reduced with both studies reporting an osteoporotic bone phenotype in male and female mice. All five studies that included human participants reported impacts on bone growth and development with reduced bone growth rates and delayed bone maturation in individuals with DS. At the time of review, there were no human studies directly investigating bone maintenance and repair in individuals with DS. CONCLUSION We found documented evidence that T21 impacts bone growth and development, maintenance and repair in both animal models and human studies.
Collapse
Affiliation(s)
- Bridgette G J O' Malley
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Huong Duong
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Georgia Kafer
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Michelle Maugham-Macan
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Xing Z, Li Y, Cortes-Gomez E, Jiang X, Gao S, Pao A, Shan J, Song Y, Perez A, Yu T, Highsmith MR, Boadu F, Conroy JM, Singh PK, Bakin AV, Cheng J, Duan Z, Wang J, Liu S, Tycko B, Yu YE. Dissection of a Down syndrome-associated trisomy to separate the gene dosage-dependent and -independent effects of an extra chromosome. Hum Mol Genet 2023; 32:2205-2218. [PMID: 37014740 PMCID: PMC10281752 DOI: 10.1093/hmg/ddad056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
As an aneuploidy, trisomy is associated with mammalian embryonic and postnatal abnormalities. Understanding the underlying mechanisms involved in mutant phenotypes is broadly important and may lead to new strategies to treat clinical manifestations in individuals with trisomies, such as trisomy 21 [Down syndrome (DS)]. Although increased gene dosage effects because of a trisomy may account for the mutant phenotypes, there is also the possibility that phenotypic consequences of a trisomy can arise because of the presence of a freely segregating extra chromosome with its own centromere, i.e. a 'free trisomy' independent of gene dosage effects. Presently, there are no reports of attempts to functionally separate these two types of effects in mammals. To fill this gap, here we describe a strategy that employed two new mouse models of DS, Ts65Dn;Df(17)2Yey/+ and Dp(16)1Yey/Df(16)8Yey. Both models carry triplications of the same 103 human chromosome 21 gene orthologs; however, only Ts65Dn;Df(17)2Yey/+ mice carry a free trisomy. Comparison of these models revealed the gene dosage-independent impacts of an extra chromosome at the phenotypic and molecular levels for the first time. They are reflected by impairments of Ts65Dn;Df(17)2Yey/+ males in T-maze tests when compared with Dp(16)1Yey/Df(16)8Yey males. Results from the transcriptomic analysis suggest the extra chromosome plays a major role in trisomy-associated expression alterations of disomic genes beyond gene dosage effects. This model system can now be used to deepen our mechanistic understanding of this common human aneuploidy and obtain new insights into the effects of free trisomies in other human diseases such as cancers.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yichen Li
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eduardo Cortes-Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoling Jiang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Shuang Gao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Bioinformatics, OmniSeq Inc., Buffalo, NY, USA
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jidong Shan
- Molecular Cytogenetics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yinghui Song
- Molecular Cytogenetics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amanda Perez
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Max R Highsmith
- Department of Electric Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Frimpong Boadu
- Department of Electric Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jeffrey M Conroy
- Research and Development, OmniSeq Inc., Buffalo, NY, USA
- Research Support Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Prashant K Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrei V Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianlin Cheng
- Department of Electric Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Y Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Beraún-Coronel L, Cardenas-Escalante J, Sinti-Paredes DA, Chamorro-Robles F, Porres-Varona W. Nonunion of Diaphyseal Humerus Fracture in an Infant: A Case Report. JBJS Case Connect 2023; 13:01709767-202306000-00012. [PMID: 37071735 DOI: 10.2106/jbjs.cc.22.00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
CASE A 9-month-old infant girl with Down syndrome presented with an atrophic nonunion of the right humerus diaphysis secondary to birth trauma. Surgical intervention included open reduction and external fixation plus cadaveric cancellous bone allograft and platelet-rich plasma and then was changed to an external fixator in axial compression. At 16 months after surgery, bone healing was achieved. CONCLUSION Nonunions in infants are rare, and their treatment is a challenge; an adequate vascular supply with good stabilization and reduction are keys to management. We believe that the improvement in reduction and stability under axial compression were the keys to achieve consolidation.
Collapse
Affiliation(s)
- Luis Beraún-Coronel
- Division of Orthopaedic Surgery, Hospital II-2 Tarapoto, Tarapoto, Peru
- Faculty of Medicine, Universidad Nacional de San Martín, Tarapoto, Peru
- Postgraduate Department, Faculty of Medicine, Universidad de San Martín de Porres, Lima, Peru
| | | | | | | | | |
Collapse
|