1
|
Lv F, Cai XL, Zhang XY, Zhou XH, Han XY, Li YF, Ji LN. Association between body mass index and lumbar spine volumetric bone mineral density in diabetic and non-diabetic patients. World J Diabetes 2025; 16:98085. [DOI: 10.4239/wjd.v16.i2.98085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/06/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The association between body mass index (BMI) and bone mineral density (BMD) has shown inconsistent results, varying by sex and skeletal site. Despite normal or elevated bone mass, individuals with type 2 diabetes have an increased risk of hip and vertebral fractures.
AIM To assess lumbar spine trabecular volumetric BMD (vBMD) across different BMI categories in individuals with and without diabetes.
METHODS This cross-sectional study included 966 men over 50 years old and 1001 postmenopausal women from the Pinggu Metabolic Disease Study. The vBMD of lumbar vertebrae 2 through 4 was measured using quantitative computed tomography. Total adipose tissue, subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and lumbar skeletal muscle area were also quantified.
RESULTS In men with obesity (P = 0.038) and overweight (P = 0.032), vBMD was significantly higher in the diabetes group compared to non-diabetic men. After adjusting for age and sex, no significant saturation effect between BMI and BMD was found in participants with diabetes or in women without diabetes. However, a BMI threshold of 22.33 kg/m² indicated a saturation point for vBMD in non-diabetic men. Independent predictors of vBMD in men included age (r = -0.387, P < 0.001), BMI (r = 0.130, P = 0.004), and VAT (r = -0.145, P = 0.001). For women, significant predictors were age (r = -0.594, P < 0.001), BMI (r = 0.157, P = 0.004), VAT (r = -0.112, P = 0.001), and SAT (r = -0.068, P = 0.035).
CONCLUSION The relationship between BMI and trabecular vBMD differs in individuals with and without diabetes. Overweight and obese men with diabetes exhibit higher vBMD.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Ling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiu-Ying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiang-Hai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xue-Yao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Yu-Feng Li
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Beijing 101200, China
| | - Li-Nong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Kupai K, Kang HL, Pósa A, Csonka Á, Várkonyi T, Valkusz Z. Bone Loss in Diabetes Mellitus: Diaporosis. Int J Mol Sci 2024; 25:7269. [PMID: 39000376 PMCID: PMC11242219 DOI: 10.3390/ijms25137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to examine the connection between osteoporosis and diabetes, compare the underlying causes of osteoporosis in various forms of diabetes, and suggest optimal methods for diagnosing and assessing fracture risk in diabetic patients. This narrative review discusses the key factors contributing to the heightened risk of fractures in individuals with diabetes, as well as the shared elements impacting the treatment of both diabetes mellitus and osteoporosis. Understanding the close link between diabetes and a heightened risk of fractures is crucial in effectively managing both conditions. There are several review articles of meta-analysis regarding diaporosis. Nevertheless, no review articles showed collected and well-organized medications of antidiabetics and made for inconvenient reading for those who were interested in details of drug mechanisms. In this article, we presented collected and comprehensive charts of every antidiabetic medication which was linked to fracture risk and indicated plausible descriptions according to research articles.
Collapse
Affiliation(s)
- Krisztina Kupai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Hsu Lin Kang
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6725 Szeged, Hungary;
| | - Tamás Várkonyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| | - Zsuzsanna Valkusz
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| |
Collapse
|
3
|
Rasmussen NH, Driessen JHM, Kvist AV, Souverein PC, van den Bergh J, Vestergaard P. Fracture patterns in adult onset type 1 diabetes and associated risk factors - A nationwide cohort study. Bone 2024; 179:116977. [PMID: 38006906 DOI: 10.1016/j.bone.2023.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE This study aimed to determine the hazard ratios (HR) for various fracture sites and identify associated risk factors in a cohort of relatively healthy adult people with newly diagnosed type 1 diabetes (T1D). METHODS The study utilized data from the UK Clinical Practice Research Datalink GOLD (1987-2017). Participants included people aged 20 and above with a T1D diagnosis code (n = 3281) and a new prescription for insulin. Controls without diabetes were matched based on sex, year of birth, and practice. Cox regression analysis was conducted to estimate HRs for any fracture, major osteoporotic fractures (MOFs), and peripheral fractures (lower-arm and lower-leg) in people with T1D compared to controls. Risk factors for T1D were examined and included sex, age, diabetic complications, medication usage, Charlson comorbidity index (CCI), hypoglycemia, previous fractures, falls, and alcohol consumption. Furthermore, T1D was stratified by duration of disease and presence of microvascular complications. RESULTS The proportion of any fracture was higher in T1D (10.8 %) than controls (7.3). Fully adjusted HRs for any fracture (HR: 1.43, CI95%: 1.17-1.74), MOFs (HR: 1.46, CI95%: 1.04-2.05), and lower-leg fractures (HR: 1.37, CI95%: 1.01-1.85) were statistically significantly increased in people with T1D compared to controls. The primary risk factor across all fracture sites in T1D was a previous fracture. Additional risk factors at different sites included previous falls (HR: 1.64, CI95%: 1.17-2.31), antidepressant use (HR: 1.34, CI95%: 1.02-1.76), and anxiolytic use (HR: 1.54, CI95%: 1.08-2.29) for any fracture; being female (HR: 1.65, CI95%: 1.14-2.38) for MOFs; the presence of retinopathy (HR: 1.47, CI95%: 1.02-2.11) and previous falls (HR: 2.04, CI95%: 1.16-3.59) for lower-arm and lower-leg fractures, respectively. Lipid-lowering medication use decreased the risk of MOFs (HR: 0.66, CI95%: 0.44-0.99). Stratification of T1D by disease duration showed that the relative risk of any fracture in T1D did not increase with longer diabetes duration (0-4 years: HR: 1.52, CI95%: 1.23-1.87; 5-9 years: HR: 1.30, CI95%: 0.99-1.71; <10 years: HR: 1.07, CI95%: 0.74-1.55). Similar patterns were observed for other fracture sites. Moreover, the occurrence of microvascular complications in T1D was linked to a heightened risk of fractures in comparison to controls. However, when considering the T1D cohort independently, the association was not statistically significant. CONCLUSION In a cohort of relatively healthy and newly diagnosed people with T1D HRs for any fracture, MOFs, and lower-leg fractures compared to controls were increased. A previous fracture was the most consistent risk factor for a subsequent fracture, whereas retinopathy was the only diabetes related one. We postulate a potential initial fracture risk, succeeded by a subsequent risk reduction, which might potentially increase in later years due to the accumulation of complications and other factors.
Collapse
Affiliation(s)
| | - Johanna H M Driessen
- NUTRIM Research School, Maastricht University, Maastricht, the Netherlands; Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Annika Vestergaard Kvist
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH-Zurich, Zurich, Switzerland
| | - Patrick C Souverein
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Joop van den Bergh
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark; Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
4
|
Emerzian SR, Johannesdottir F, Yu EW, Bouxsein ML. Use of noninvasive imaging to identify causes of skeletal fragility in adults with diabetes: a review. JBMR Plus 2024; 8:ziae003. [PMID: 38505529 PMCID: PMC10945731 DOI: 10.1093/jbmrpl/ziae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. Although traditional DXA-BMD does not fully capture the increased fracture risk in diabetes, recent techniques such as quantitative computed tomography, peripheral quantitative computed tomography, high-resolution quantitative computed tomography, and MRI provide insights into 3D bone density, microstructure, and strength. Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, and potential misclassification between T1D and T2D. Thus, the true nature of diabetic skeletal fragility is yet to be fully understood. As T1D and T2D are diverse conditions with heterogeneous subtypes, future research should delve deeper into skeletal fragility by diabetic phenotypes and focus on longitudinal studies in larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes.
Collapse
Affiliation(s)
- Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Elaine W Yu
- Department of Medicine, Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
- Department of Medicine, Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
5
|
Vilaca T, Eastell R. Efficacy of Osteoporosis Medications in Patients with Type 2 Diabetes. Curr Osteoporos Rep 2024; 22:1-10. [PMID: 38093031 PMCID: PMC10912145 DOI: 10.1007/s11914-023-00833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 03/05/2024]
Abstract
PURPOSE OF THE REVIEW The purpose of the review is to summarise the current scientific evidence on the efficacy of osteoporosis medications in patients with type 2 diabetes. RECENT FINDINGS Type 2 diabetes (T2D) is a growing global epidemic. The highest prevalence is observed in the elderly, the same population affected by osteoporosis. Despite normal or even increased bone mineral density and low bone turnover, T2D is associated with an increased risk of fractures in most skeletal sites. These findings raised concerns over the efficacy of anti-osteoporosis drugs in this population. There is no randomised controlled trial designed specifically for people with T2D. However, observational studies and post-hoc analyses of randomised controlled trials have provided valuable insights into the effects of various anti-osteoporosis treatments in this population. Overall, most anti-osteoporosis drugs seem to have similar efficacy and safety profiles for people with and without type 2 diabetes. However, continued research and long-term safety data are needed to optimise treatment strategies and improve bone health outcomes in this population. The current evidence suggests that most anti-osteoporosis drugs exhibit comparable efficacy in people with and without T2D.
Collapse
Affiliation(s)
- Tatiane Vilaca
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Metabolic Bone Centre - Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| | - Richard Eastell
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Whittier DE, Bevers MSAM, Geusens PPMM, van den Bergh JP, Gabel L. Characterizing Bone Phenotypes Related to Skeletal Fragility Using Advanced Medical Imaging. Curr Osteoporos Rep 2023; 21:685-697. [PMID: 37884821 PMCID: PMC10724303 DOI: 10.1007/s11914-023-00830-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Summarize the recent literature that investigates how advanced medical imaging has contributed to our understanding of skeletal phenotypes and fracture risk across the lifespan. RECENT FINDINGS Characterization of bone phenotypes on the macro-scale using advanced imaging has shown that while wide bones are generally stronger than narrow bones, they may be more susceptible to age-related declines in bone strength. On the micro-scale, HR-pQCT has been used to identify bone microarchitecture phenotypes that improve stratification of fracture risk based on phenotype-specific risk factors. Adolescence is a key phase for bone development, with distinct sex-specific growth patterns and significant within-sex bone property variability. However, longitudinal studies are needed to evaluate how early skeletal growth impacts adult bone phenotypes and fracture risk. Metabolic and rare bone diseases amplify fracture risk, but the interplay between bone phenotypes and disease remains unclear. Although bone phenotyping is a promising approach to improve fracture risk assessment, the clinical availability of advanced imaging is still limited. Consequently, alternative strategies for assessing and managing fracture risk include vertebral fracture assessment from clinically available medical imaging modalities/techniques or from fracture risk assessment tools based on clinical risk factors. Bone fragility is not solely determined by its density but by a combination of bone geometry, distribution of bone mass, microarchitecture, and the intrinsic material properties of bone tissue. As such, different individuals can exhibit distinct bone phenotypes, which may predispose them to be more vulnerable or resilient to certain perturbations that influence bone strength.
Collapse
Affiliation(s)
- Danielle E Whittier
- McCaig Institute for Bone and Joint Health and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada.
| | - Melissa S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Piet P M M Geusens
- Subdivision of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Subdivision of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leigh Gabel
- McCaig Institute for Bone and Joint Health and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Wang T, Wang J, Hu X, Hao K, Xiang G, Wu Z, Ma Z, Li T, Chen Y, Zhao X, Zhang Y, Ma T, Ren J, Lei W, Feng Y. Diabetes-related Screw Loosening: The Distinction of Surgical Sites and the Relationship among Diabetes, Implant Stabilization and Clinical Outcomes. Orthop Surg 2023; 15:3136-3145. [PMID: 37853938 PMCID: PMC10694010 DOI: 10.1111/os.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is correlated with poor clinical outcomes in spinal surgery. However, the effect of it on screw stabilization has not been investigated. The aim of this study was to evaluate the screw loosening rate and postoperative outcomes in diabetic patients and to identify potential risk factors associated with loosening. METHODS This was a retrospective study. Two hundred and forty-three patients who received cervical or lumbar internal fixation between 2015 and 2019 were enrolled. Screw loosening was assessed on radiography, and clinical outcomes were evaluated by the improvement of visual analogue scale (VAS), Oswestry disability index (ODI) or Japanese Orthopaedic Association (JOA) scores. The relationship of DM, screw loosening and clinical outcomes were analyzed with chi-square tests and regression analyses. RESULTS One hundred and twenty-two patients (50.2%) with diabetes were included in this study. Diabetes led to the increase of the rate of screw loosening in the lumbar spine, while the loosening rate did not vary significantly in the cervical spine. The occurrence of screw loosening in the lumbar spine was more likely to be associated with clinical outcomes for motor performance including walking and sitting. However, no significant effect on JOA and VAS scores in the cervical spine of screw loosening was found. Moreover, the history of DM affected the outcomes of the patients who underwent spinal surgery. CONCLUSION DM had an adverse effect on screw stabilization. The impaired improvement of clinical outcomes in diabetics after spinal surgery was related to screw loosening. In addition to the direct effects on operative wounds and neural function, the impact on the screws due to DM was also worth noting.
Collapse
Affiliation(s)
- Tianji Wang
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Jing Wang
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Xiaofan Hu
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Kaili Hao
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Geng Xiang
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Zixiang Wu
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Zhensheng Ma
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Tianqing Li
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yu Chen
- Department of Critical Care MedicineXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Xiong Zhao
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yang Zhang
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Tiancheng Ma
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Jingjuan Ren
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Wei Lei
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yafei Feng
- Department of OrthopedicsXijing Hospital, The Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
8
|
Trandafir AI, Sima OC, Gheorghe AM, Ciuche A, Cucu AP, Nistor C, Carsote M. Trabecular Bone Score (TBS) in Individuals with Type 2 Diabetes Mellitus: An Updated Review. J Clin Med 2023; 12:7399. [PMID: 38068450 PMCID: PMC10707110 DOI: 10.3390/jcm12237399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2025] Open
Abstract
Bone fragility is a complication of type 2 diabetes mellitus (T2DM) that has been identified in recent decades. Trabecular bone score (TBS) appears to be more accurate than bone mineral density (BMD) in diabetic bone disease, particularly in menopausal women with T2DM, to independently capture the fracture risk. Our purpose was to provide the most recent overview on TBS-associated clinical data in T2DM. The core of this narrative review is based on original studies (PubMed-indexed journals, full-length, English articles). The sample-based analysis (n = 11, N = 4653) confirmed the use of TBS in T2DM particularly in females (females/males ratio of 1.9), with ages varying between 35 and 91 (mean 65.34) years. With concern to the study design, apart from the transversal studies, two others were prospective, while another two were case-control. These early-post-pandemic data included studies of various sample sizes, such as: males and females (N of 245, 361, 511, and 2294), only women (N of 80, 96, 104, 243, 493, and 887), and only men (N = 169). Overall, this 21-month study on published data confirmed the prior profile of BMD-TBS in T2DM, while the issue of whether checking the fracture risk is mandatory in adults with uncontrolled T2DM remains to be proven or whether, on the other hand, a reduced TBS might function as a surrogate marker of complicated/uncontrolled T2DM. The interventional approach with bisphosphonates for treating T2DM-associated osteoporosis remains a standard one (n = 2). One control study on 4 mg zoledronic acid showed after 1 year a statistically significant increase of lumbar BMD in both diabetic and non-diabetic groups (+3.6%, p = 0.01 and +6.2%, p = 0.01, respectively). Further studies will pinpoint additive benefits on glucose status of anti-osteoporotic drugs or will confirm if certain glucose-lowering regimes are supplementarily beneficial for fracture risk reduction. The novelty of this literature research: these insights showed once again that the patients with T2DM often have a lower TBS than those without diabetes or with normal glucose levels. Therefore, the decline in TBS may reflect an early stage of bone health impairment in T2DM. The novelty of the TBS as a handy, non-invasive method that proved to be an index of bone microarchitecture confirms its practicality as an easily applicable tool for assessing bone fragility in T2DM.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Oana-Claudia Sima
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Ana-Maria Gheorghe
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Anca-Pati Cucu
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Shah VN, Qui S, Stoneback J, Qamar L, Ferguson VL, Kohrt WM, Snell‐Bergeon JK, Rao SD. Bone Structure and Turnover in Postmenopausal Women With Long-Standing Type 1 Diabetes. JBMR Plus 2023; 7:e10831. [PMID: 38025041 PMCID: PMC10652172 DOI: 10.1002/jbm4.10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Compromised bone structural and mechanical properties are implicated in the increased fracture risk in type 1 diabetes (T1D). We investigated bone structure and turnover by histomorphometry in postmenopausal women with T1D and controls without diabetes using tetracycline double-labeled transiliac bone biopsy. After in vivo tetracycline double labeling, postmenopausal women with T1D of at least 10 years and without diabetes underwent transiliac bone biopsy. An expert blinded to the study group performed histomorphometry. Static and dynamic histomorphometry measurements were performed and compared between the two groups. The analysis included 9 postmenopausal women with T1D (mean age 58.4 ± 7.1 years with 37.9 ± 10.9 years of diabetes and HbA1c 7.1% ± 0.4%) and 7 postmenopausal women without diabetes (mean age 60.9 ± 3.3 years and HbA1c 5.4% ± 0.2%). There were no significant differences in serum PTH (38.6 ± 8.1 versus 51.9 ± 23.9 pg/mL), CTX (0.4 ± 0.2 versus 0.51 ± 0.34 ng/mL), or P1NP (64.5 ± 26.2 versus 87.3 ± 45.3 ng/mL). Serum 25-hydroxyvitamin D levels were higher in T1D than in controls (53.1 ± 20.8 versus 30.9 ± 8.2 ng/mL, p < 0.05). Bone structure metrics (bone volume, trabecular thickness, trabecular number, and cortical thickness) were similar between the groups. Indices of bone formation (osteoid volume, osteoid surface, and bone formation rate) were 40% lower in T1D and associated with lower activation frequency. However, the differences in bone formation were not statistically significant. Long-standing T1D may affect bone turnover, mainly bone formation, without significantly affecting bone structure. Further research is needed to understand bone turnover and factors affecting bone turnover in people with T1D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Viral N Shah
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Shijing Qui
- Division of Endocrinology, Diabetes, and Bone & Mineral Disorders, Bone and Mineral Research LaboratoryHenry Ford HealthDetroitMIUSA
| | - Jason Stoneback
- Department of OrthopedicsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Lubna Qamar
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Wendy M Kohrt
- Department of GeriatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Janet K Snell‐Bergeon
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Sudhaker D Rao
- Division of Endocrinology, Diabetes, and Bone & Mineral Disorders, Bone and Mineral Research LaboratoryHenry Ford HealthDetroitMIUSA
| |
Collapse
|
10
|
Viggers R, Rasmussen NH, Vestergaard P. Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes-A Systematic Review. JBMR Plus 2023; 7:e10817. [PMID: 38025038 PMCID: PMC10652182 DOI: 10.1002/jbm4.10817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes poses a significant risk to bone health, with Type 1 diabetes (T1D) having a more detrimental impact than Type 2 diabetes (T2D). The group of hormones known as incretins, which includes gastric inhibitory peptide (GIP) and glucagon-like peptide 1 (GLP-1), play a role in regulating bowel function and insulin secretion during feeding. GLP-1 receptor agonists (GLP-1 RAs) are emerging as the primary treatment choice in T2D, particularly when atherosclerotic cardiovascular disease is present. Dipeptidyl peptidase 4 inhibitors (DPP-4is), although less potent than GLP-1 RAs, can also be used. Additionally, GLP-1 RAs, either alone or in combination with GIP, may be employed to address overweight and obesity. Since feeding influences bone turnover, a relationship has been established between incretins and bone health. To explore this relationship, we conducted a systematic literature review following the PRISMA guidelines. While some studies on cells and animals have suggested positive effects of incretins on bone cells, turnover, and bone density, human studies have yielded either no or limited and conflicting results regarding their impact on bone mineral density (BMD) and fracture risk. The effect on fracture risk may vary depending on the choice of comparison drug and the duration of follow-up, which was often limited in several studies. Nevertheless, GLP-1 RAs may hold promise for people with T2D who have multiple fracture risk factors and poor metabolic control. Furthermore, a potential new area of interest is the use of GLP-1 RAs in fracture prevention among overweight and obese people. Based on this systematic review, existing evidence remains insufficient to support a positive or a superior effect on bone health to reduce fracture risk in people with T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rikke Viggers
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| | | | - Peter Vestergaard
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| |
Collapse
|