1
|
Abuohashish H, Omar O, Alrayes N, AlQahtani N, Muhamood M, Alhawaj H, Alkhamis T, Almas K. Exacerbating effects of Western dietary habits on experimentally induced periodontitis in rats. Odontology 2025:10.1007/s10266-025-01067-8. [PMID: 39937328 DOI: 10.1007/s10266-025-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
This study explored the impact of western diet (WD) on a ligature-induced periodontitis (PD) model. After either control diet (CD) or WD feeding for 16 weeks, male Wistar rats were allocated in six groups (n = 6). The first and second groups had no PD. The third and fourth groups had ligature-induced PD for 10 days, while the fifth and sixth groups had ligature-induced PD for 10 days, followed by ligature removal healing period for another 10 days. The CD contained 13.71% protein, 75.98% carbohydrate, and 10.31% fat, though WD composed of 14.7% protein, 40.7% carbohydrate, and 44.6% fat. After clinical evaluation, the maxillary alveolar bone and gingival tissues were collected for morphometric, microstructural, histological, and gene expression analyses. There were significant increases in the gingival bleeding index, periodontal probing depth, and tooth mobility in WD animals with PD and in the healing groups. The WD groups had a greater alveolar crest height, indicating greater bone resorption. Disruption of the bone microarchitecture by PD was exacerbated in WD-fed animals. The histological evaluation demonstrated a greater extent of gingival inflammation in the PD groups. The Tnf, Il6, Ctsk, and Tnfsf11/RANKL gene expression levels were increased in the WD groups, while the Bglap and Hif1a gene expression levels were decreased in the WD groups. Findings of the study are compelling preclinical evidence that WD deteriorates periodontal health and exacerbates periodontal disease and alveolar bone loss in experimental animals. Future clinical research is warranted to translate these preclinical findings.
Collapse
Affiliation(s)
- Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nabras Alrayes
- College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Norah AlQahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Muhaseena Muhamood
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Taleb Alkhamis
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Uppuganti S, Creecy A, Fernandes D, Garrett K, Donovan K, Ahmed R, Voziyan P, Rendina-Ruedy E, Nyman JS. Bone Fragility in High Fat Diet-induced Obesity is Partially Independent of Type 2 Diabetes in Mice. Calcif Tissue Int 2024; 115:298-314. [PMID: 39012489 PMCID: PMC11333511 DOI: 10.1007/s00223-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Obesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or μCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (μCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.
Collapse
Affiliation(s)
- Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, 46202, USA
| | - Daniel Fernandes
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Kate Garrett
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
| | - Kara Donovan
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Elizabeth Rendina-Ruedy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave., Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA.
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN, 37212, USA.
| |
Collapse
|
3
|
Bermudez B, Brown KC, Vahidi G, Ferreira Ruble AC, Heveran CM, Ackert-Bicknell CL, Sherk VD. Sex-specific effects of Fat-1 transgene on bone material properties, size, and shape in mice. JBMR Plus 2024; 8:ziad011. [PMID: 38523667 PMCID: PMC10958611 DOI: 10.1093/jbmrpl/ziad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 11/10/2024] [Indexed: 03/26/2024] Open
Abstract
Western diets are becoming increasingly common around the world. Western diets have high omega 6 (ω-6) and omega 3 (ω-3) fatty acids and are linked to bone loss in humans and animals. Dietary fats are not created equal; therefore, it is vital to understand the effects of specific dietary fats on bone. We aimed to determine how altering the endogenous ratios of ω-6:ω-3 fatty acids impacts bone accrual, strength, and fracture toughness. To accomplish this, we used the Fat-1 transgenic mice, which carry a gene responsible for encoding a ω-3 fatty acid desaturase that converts ω-6 to ω-3 fatty acids. Male and female Fat-1 positive mice (Fat-1) and Fat-1 negative littermates (WT) were given either a high-fat diet (HFD) or low-fat diet (LFD) at 4 wk of age for 16 wk. The Fat-1 transgene reduced fracture toughness in males. Additionally, male BMD, measured from DXA, decreased over the diet duration for HFD mice. In males, neither HFD feeding nor the presence of the Fat-1 transgene impacted cortical geometry, trabecular architecture, or whole-bone flexural properties, as detected by main group effects. In females, Fat-1-LFD mice experienced increases in BMD compared to WT-LFD mice; however, cortical area, distal femur trabecular thickness, and cortical stiffness were reduced in Fat-1 mice compared to pooled WT controls. However, reductions in stiffness were caused by a decrease in bone size and were not driven by changes in material properties. Together, these results demonstrate that the endogenous ω-6:ω-3 fatty acid ratio influences bone material properties in a sex-dependent manner. In addition, Fat-1 mediated fatty acid conversion was not able to mitigate the adverse effects of HFD on bone strength and accrual.
Collapse
Affiliation(s)
- Beatriz Bermudez
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80204, United States
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Kenna C Brown
- Department of Mechanical Engineering, Montana State University, Bozeman, MT 59717, United States
| | - Ghazal Vahidi
- Department of Mechanical Engineering, Montana State University, Bozeman, MT 59717, United States
| | - Ana C Ferreira Ruble
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Chelsea M Heveran
- Department of Mechanical Engineering, Montana State University, Bozeman, MT 59717, United States
| | - Cheryl L Ackert-Bicknell
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Saito MK, de Oliveira BK, Macedo AP, Sorrentino Dos Santos C, Lopes RT, Yamanaka JS, Shimano AC. Cafeteria Diet Can Affect Bone Microarchitecture in Sedentary and Trained Male Rats. J Clin Densitom 2024; 27:101467. [PMID: 38306807 DOI: 10.1016/j.jocd.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
INTRODUCTION Poor eating habits and a sedentary lifestyle can impair health. Regular physical activity improves the quality of life and is essential for bone health. Therefore, the present study aimed to evaluate the effects of the cafeteria diet on bone quality of sedentary and exercised rats. METHODS Sixty young male Wistar rats were divided into six groups (n=10) according to diet composition and activity level, being: SD+CON, standard diet and control; SD+SED, standard diet and sedentary; SD+EX, standard diet and exercised; CD+CON, cafeteria diet and control; CD+SED, cafeteria diet and sedentary; CD+EX, cafeteria diet and exercised. The exercise protocol consisted of 10 ladder-climbing sessions/day, 5 days/week, and the sedentary rats were maintained in individual cages with limited mobility. Body mass and food intake were evaluated weekly. After 10 weeks, the animals were euthanized, and white adipose tissue was collected. The bone structure was evaluated by densitometry, mechanical tests, histomorphometric, and micro-computed tomography analyses. RESULTS The cafeteria diet increased adipose tissue (p<0.001), decreased bone mineral density (p=0.004), and impaired biomechanical properties (p<0.05) and histomorphometry parameters (p=0.044). The sedentarism decreased bone mineral density (p<0.001) and biomechanical properties (p<0.05), and the exercise did not improve bone properties. CONCLUSION In this experimental model, it was concluded that the cafeteria diet and a sedentary lifestyle negatively affect bone, and ladder-climbing exercise could not prevent the effects of the unhealthy diet.
Collapse
Affiliation(s)
- Marcio Koiti Saito
- Department of Orthopedics and Anesthesiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Beatriz Kawano de Oliveira
- Department of Orthopedics and Anesthesiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prosthesis, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Ricardo Tadeu Lopes
- Nuclear Instrumentation Laboratory, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Suzuki Yamanaka
- Department of Orthopedics and Anesthesiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Carlos Shimano
- Department of Orthopedics and Anesthesiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Red Marine Algae Lithothamnion calcareum Supports Dental Enamel Mineralization. Mar Drugs 2023; 21:md21020109. [PMID: 36827150 PMCID: PMC9963885 DOI: 10.3390/md21020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The current management of oral conditions such as dental caries and erosion mostly relies on fluoride-based formulations. Herein, we proposed the use of the remaining skeleton of Lithothamnion calcareum (LC) as an alternative to fluorides. LC is a red macroalgae of the Corallinales order, occurring in the northeast coast of Brazil, whose unique feature is the abundant presence of calcium carbonates in its cell walls. Two experimental approaches tested the general hypothesis that LC could mediate enamel de-remineralization dynamics as efficiently as fluorides. Firstly, the effect of LC on enamel de-mineralization was determined in vitro by microhardness and gravimetric measurements to test the hypothesis that LC could either prevent calcium/phosphate release from intact enamel or facilitate calcium/phosphate reprecipitation on an artificially demineralized enamel surface. Subsequently, an in situ/ex vivo co-twin control study measured the effect of LC on the remineralization of chemical-demineralized enamel using microhardness and quantitative light-induced fluorescence. With this second experiment, we wanted to test whether outcomes obtained in experiment 1 would be confirmed by an in situ/ex vivo co-twin control model. Both experiments showed that LC exhibited equivalent or superior ability to modulate enamel de-remineralization when compared to fluoride solution. LC should be explored as an alternative to manage oral conditions involving the enamel demineralization.
Collapse
|
6
|
Moretti A, Liguori S, Paoletta M, Migliaccio S, Toro G, Gimigliano F, Iolascon G. Bone fragility during the COVID-19 pandemic: the role of macro- and micronutrients. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158200. [PMID: 36937822 PMCID: PMC10015293 DOI: 10.1177/1759720x231158200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023] Open
Abstract
Bone fragility is the susceptibility to fracture due to poor bone strength. This condition is usually associated with aging, comorbidities, disability, poor quality of life, and increased mortality. International guidelines for the management of patients with bone fragility include a nutritional approach, mainly aiming at optimal protein, calcium, and vitamin D intakes. Several biomechanical features of the skeleton, such as bone mineral density (BMD), trabecular and cortical microarchitecture, seem to be positively influenced by micro- and macronutrient intake. Patients with major fragility fractures are usually poor consumers of dairy products, fruit, and vegetables as well as of nutrients modulating gut microbiota. The COVID-19 pandemic has further aggravated the health status of patients with skeletal fragility, also in terms of unhealthy dietary patterns that might adversely affect bone health. In this narrative review, we discuss the role of macro- and micronutrients in patients with bone fragility during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Sara Liguori
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health
Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Francesca Gimigliano
- Department of Physical and Mental Health and
Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| |
Collapse
|
7
|
Zhang Z, Zhang Z, Pei L, Zhang X, Li B, Meng Y, Zhou X. How high-fat diet affects bone in mice: A systematic review and meta-analysis. Obes Rev 2022; 23:e13493. [PMID: 35822276 DOI: 10.1111/obr.13493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
High-fat diet (HFD) feeding for mice is commonly used to model obesity. However, conflicting results have been reported on the relationship between HFD and bone mass. In this systematic review and meta-analysis, we synthesized data from 80 articles to determine the alterations in cortical and trabecular bone mass of femur, tibia, and vertebrae in C57BL/6 mice after HFD. Overall, we detected decreased trabecular bone mass as well as deteriorated architecture, in femur and tibia of HFD treated mice. The vertebral trabecula was also impaired, possibly due to its reshaping into a more fragmentized pattern. In addition, pooled cortical thickness declined in femur, tibia, and vertebrae. Combined with changes in other cortical parameters, HFD could lead to a larger femoral bone marrow cavity, and a thinner and more fragile cortex. Moreover, we conducted subgroup analyses to explore the influence of mice's sex and age as well as HFD's ingredients and intervention period. Based on our data, male mice or mice aged 6-12 weeks old are relatively susceptible to HFD. HFD with > 50% of energy from fats and intervention time of 10 weeks to 5 months are more likely to induce skeletal alterations. Altogether, these findings supported HFD as an appropriate model for obesity-associated bone loss and can guide future studies.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhou Zhang
- College of Letters & Science, University of California Berkeley, Berkeley, California, USA
| | - Boyuan Li
- Fountain Valley School of Colorado, Colorado Springs, Colorado, USA
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| |
Collapse
|
8
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Trabecular Bone Microarchitecture Improvement Is Associated With Skeletal Nerve Increase Following Aerobic Exercise Training in Middle-Aged Mice. Front Physiol 2022; 12:800301. [PMID: 35273515 PMCID: PMC8902445 DOI: 10.3389/fphys.2021.800301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Advancing age is associated with bone loss and an increased risk of osteoporosis. Exercise training improves bone metabolism and peripheral nerve regeneration, and may play a critical role in osteogenesis and increase in skeletal nerve fiber density. In this study, the potential positive role of aerobic exercise training in bone metabolism and skeletal nerve regeneration was comprehensively evaluated in 14-month-old male C57BL/6 mice. The mice were divided into two groups: no exercise (non-exercise group) and 8-weeks of aerobic exercise training (exercise group), with six mice in each group. Dual-energy X-ray absorptiometry and micro-computed tomography showed that femoral and tibial bone parameters improved after aerobic exercise training. Greater skeletal nerve fiber density was also observed in the distal femoral and proximal tibial periostea, measured and analyzed by immunofluorescence staining and confocal microscopy. Pearson correlation analysis revealed a significant association between skeletal nerve densities and trabecular bone volume/total volume ratios (distal femur; R 2 = 0.82, p < 0.05, proximal tibia; R 2 = 0.59, p = 0.07) in the exercise group; while in the non-exercise group no significant correlation was found (distal femur; R 2 = 0.10, p = 0.54, proximal tibia; R 2 = 0.12, p = 0.51). Analysis of archival microarray database confirmed that aerobic exercise training changed the microRNA profiles in the mice femora. The differentially expressed microRNAs reinforce the role of aerobic exercise training in the osteogenic and neurogenic potential of femora and tibiae. In conclusion, 8-weeks of aerobic exercise training positively regulate bone metabolism, an effect that paralleled a significant increase in skeletal nerve fiber density. These findings suggest that aerobic exercise training may have dual utility, both as a direct stimulator of bone remodeling and a positive regulator of skeletal nerve regeneration.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Yun-A Shin
- Department of Exercise Prescription and Rehabilitation, College of Sports Science, Dankook University, Cheonan, South Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women's University, Seoul, South Korea
| |
Collapse
|
9
|
Herrera-Rodríguez SE, García-Márquez E, Padilla-Camberos E, Espinosa-Andrews H. Evaluation of an Ionic Calcium Fiber Supplement and Its Impact on Bone Health Preservation in a Dietary Calcium Deficiency Mice Model. Nutrients 2022; 14:422. [PMID: 35276779 PMCID: PMC8838215 DOI: 10.3390/nu14030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ionic calcium can help in the prevention of the process of osseous decalcification. This study aimed to evaluate the physicochemical properties and toxic effects of ionic calcium-fiber supplement (ICa+) and its impact on bone health preservation in mice C57/BL6 fed a calcium-deficient diet. Physicochemical properties include FTIR, apparent calcium solubility estimated by the calcium ratio obtained by ionization chromatography and atomic absorption. In vitro genotoxicity and cytotoxicity of the ICa+ were assessed. Twenty-five 7-week-old C57/BL6 mice were fed calcium-free diet (CFD) or CFD plus CaCO3 (1.33 mg Ca) or CFD plus ICa+ (1.33-6.66 mg Ca) for six weeks. After that, bone mass and microstructure parameters were assessed. Histological staining was performed to determine calcium deposits. ICa+ (100%) exhibited an apparent calcium solubility higher than CaCO3 (12.3%). ICa+ showed no cytotoxic and genotoxic in vitro activities. Histomorphometry analysis showed that the ICa+ treated group displayed a higher trabecular number than the trabecular space. Also, the ratio BV/TV was increased compared with all treatments. Ionic calcium-fiber supplementation prevents bone deterioration compared to mice fed a calcium-deficient diet.
Collapse
Affiliation(s)
- Sara Elisa Herrera-Rodríguez
- Unidad Sureste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Km 5.5 Carretera, Sierra Papacal-Chuburná, Chuburná, Mérida 97302, Yucatán, Mexico;
| | - Eristeo García-Márquez
- Unidad Noreste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Autopista Mty-Aeropuerto, Vía de la Innovación 404, Parque PIIT, Cd Apodaca 66628, Nuevo León, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de La Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., CIATEJ, Cam. Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
10
|
Sides R, Griess-Fishheimer S, Zaretsky J, Shitrit A, Kalev-Altman R, Rozner R, Beresh O, Dumont M, Penn S, Shahar R, Monsonego-Ornan E. The Use of Mushrooms and Spirulina Algae as Supplements to Prevent Growth Inhibition in a Pre-Clinical Model for an Unbalanced Diet. Nutrients 2021; 13:nu13124316. [PMID: 34959867 PMCID: PMC8705242 DOI: 10.3390/nu13124316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Today’s eating patterns are characterized by the consumption of unbalanced diets (UBDs) resulting in a variety of health consequences on the one hand, and the consumption of dietary supplements in order to achieve overall health and wellness on the other. Balanced nutrition is especially crucial during childhood and adolescence as these time periods are characterized by rapid growth and development of the skeleton. We show the harmful effect of UBD on longitudinal bone growth, trabecular and cortical bone micro-architecture and bone mineral density; which were analyzed by micro-CT scanning. Three point bending tests demonstrate the negative effect of the diet on the mechanical properties of the bone material as well. Addition of Spirulina algae or Pleurotus eryngii or Agaricus bisporus mushrooms, to the UBD, was able to improve growth and impaired properties of the bone. 16SrRNA Sequencing identified dysbiosis in the UBD rats’ microbiota, with high levels of pro-inflammatory associated bacteria and low levels of bacteria associated with fermentation processes and bone related mechanisms. These results provide insight into the connection between diet, the skeletal system and the gut microbiota, and reveal the positive impact of three chosen dietary supplements on bone development and quality presumably through the microbiome composition.
Collapse
Affiliation(s)
- Roni Sides
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Shelley Griess-Fishheimer
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Janna Zaretsky
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Astar Shitrit
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Rotem Kalev-Altman
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.D.); (R.S.)
| | - Reut Rozner
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Olga Beresh
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Maïtena Dumont
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.D.); (R.S.)
| | - Svetlana Penn
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
| | - Ron Shahar
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.D.); (R.S.)
| | - Efrat Monsonego-Ornan
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.S.); (S.G.-F.); (J.Z.); (A.S.); (R.K.-A.); (R.R.); (O.B.); (S.P.)
- Correspondence:
| |
Collapse
|
11
|
de Souza FB, Novaes RD, Santos CFF, de Deus FA, Santos FC, Ladeira LCM, Gonçalves RV, Bastos DSS, Souza ACF, Machado-Neves M, Dos Santos EC. High-fat diet and caffeine interact to modulate bone microstructure and biomechanics in mice. Life Sci 2021; 276:119450. [PMID: 33798548 DOI: 10.1016/j.lfs.2021.119450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
AIMS Although excessive fat and caffeine intake are independent risk factors for bone microstructural and functional disturbances, their association remains overlooked. Thus, we investigated the impact of high-fat diet (HFD) and caffeine alone and combined on serum lipid profile, bone microstructure, micromineral distribution and biomechanical properties. METHODS Forty female C57BL/6 mice were randomized into 4 groups daily treated for seventeen weeks with standard diet (SD) or HFD (cafeteria diet) alone or combined with 50 mg/kg caffeine. KEY FINDINGS The association between HFD and caffeine reduced the weight gain compared to animals receiving HFD alone. Caffeine alone or combined with HFD increases total and HDL cholesterol circulating levels. HFD also reduced calcium, phosphorus and magnesium bone levels compared to the groups receiving SD, and this reduction was aggravated by caffeine coadministration. From biomechanical assays, HFD combined with caffeine increased bending strength and stiffness of tibia, a finding aligned with the marked microstructural remodeling of the cortical and cancellous bone in animals receiving this combination. SIGNIFICANCE Our findings indicated that HFD and caffeine interact to induce metabolic changes and bone microstructural remodeling, which are potentially related to bone biomechanical adaptations in response to HFD and caffeine coadministration.
Collapse
Affiliation(s)
- Fernanda Batista de Souza
- Postgraduate Program in Rehabilitation and Functional Performance, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Minas Gerais, Brazil
| | | | - Franciele Angelo de Deus
- Department of Physiotherapy, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Felipe Couto Santos
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Ana Cláudia Ferreira Souza
- Department of Animal Biology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eliziária Cardoso Dos Santos
- Postgraduate Program in Rehabilitation and Functional Performance, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil; School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Tangseefa P, Martin SK, Arthur A, Panagopoulos V, Page AJ, Wittert GA, Proud CG, Fitter S, Zannettino ACW. Deletion of Rptor in Preosteoblasts Reveals a Role for the Mammalian Target of Rapamycin Complex 1 (mTORC1) Complex in Dietary-Induced Changes to Bone Mass and Glucose Homeostasis in Female Mice. JBMR Plus 2021; 5:e10486. [PMID: 33977204 PMCID: PMC8101617 DOI: 10.1002/jbm4.10486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) complex is the major nutrient sensor in mammalian cells that responds to amino acids, energy levels, growth factors, and hormones, such as insulin, to control anabolic and catabolic processes. We have recently shown that suppression of the mTORC1 complex in bone‐forming osteoblasts (OBs) improved glucose handling in male mice fed a normal or obesogenic diet. Mechanistically, this occurs, at least in part, by increasing OB insulin sensitivity leading to upregulation of glucose uptake and glycolysis. Given previously reported sex‐dependent differences observed upon antagonism of mTORC1 signaling, we investigated the metabolic and skeletal effects of genetic inactivation of preosteoblastic‐mTORC1 in female mice. Eight‐week‐old control diet (CD)‐fed Rptorob−/− mice had a low bone mass with a significant reduction in trabecular bone volume and trabecular number, reduced cortical bone thickness, and increased marrow adiposity. Despite no changes in body composition, CD‐fed Rptorob−/− mice exhibited significant lower fasting insulin and glucose levels and increased insulin sensitivity. Upon high‐fat diet (HFD) feeding, Rptorob−/− mice were resistant to a diet‐induced increase in whole‐body and total fat mass and protected from the development of diet‐induced insulin resistance. Notably, although 12 weeks of HFD increased marrow adiposity, with minimal changes in both trabecular and cortical bone in the female control mice, marrow adiposity was significantly reduced in HFD‐fed Rptorob−/− compared to both HFD‐fed control and CD‐fed Rptorob−/− mice. Collectively, our results demonstrate that mTORC1 function in preosteoblasts is crucial for skeletal development and skeletal regulation of glucose homeostasis in both male and female mice. Importantly, loss of mTORC1 function in OBs results in metabolic and physiological adaptations that mirror a caloric restriction phenotype (under CD) and protects against HFD‐induced obesity, associated insulin resistance, and marrow adiposity expansion. These results highlight the critical contribution of the skeleton in the regulation of whole‐body energy homeostasis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Sally K Martin
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Agnieszka Arthur
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Vasilios Panagopoulos
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Amanda J Page
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Nutrition, Diabetes & Gut Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Gary A Wittert
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Nutrition, Diabetes & Gut Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia.,Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide South Australia Australia
| | - Christopher G Proud
- Nutrition, Diabetes & Gut Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia.,School of Biological Sciences, University of Adelaide Adelaide South Australia Australia
| | - Stephen Fitter
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia
| | - Andrew C W Zannettino
- Adelaide Medical School, Faculty of Health and Medical Science University of Adelaide Adelaide South Australia Australia.,Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute Adelaide South Australia Australia.,Central Adelaide Local Health Network Adelaide South Australia Australia
| |
Collapse
|
13
|
A Multi-Mineral Intervention to Modulate Colonic Mucosal Protein Profile: Results from a 90-Day Trial in Human Subjects. Nutrients 2021; 13:nu13030939. [PMID: 33799486 PMCID: PMC8002192 DOI: 10.3390/nu13030939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
The overall goal of this study was to determine whether Aquamin®, a calcium-, magnesium-, trace element-rich, red algae-derived natural product, would alter the expression of proteins involved in growth-regulation and differentiation in colon. Thirty healthy human subjects (at risk for colorectal cancer) were enrolled in a three-arm, 90-day interventional trial. Aquamin® was compared to calcium alone and placebo. Before and after the interventional period, colonic biopsies were obtained. Biopsies were evaluated by immunohistology for expression of Ki67 (proliferation marker) and for CK20 and p21 (differentiation markers). Tandem mass tag-mass spectrometry-based detection was used to assess levels of multiple proteins. As compared to placebo or calcium, Aquamin® reduced the level of Ki67 expression and slightly increased CK20 expression. Increased p21 expression was observed with both calcium and Aquamin®. In proteomic screen, Aquamin® treatment resulted in many more proteins being upregulated (including pro-apoptotic, cytokeratins, cell–cell adhesion molecules, and components of the basement membrane) or downregulated (proliferation and nucleic acid metabolism) than placebo. Calcium alone also altered the expression of many of the same proteins but not to the same extent as Aquamin®. We conclude that daily Aquamin® ingestion alters protein expression profile in the colon that could be beneficial to colonic health.
Collapse
|
14
|
Ying Z, Ruotao T, Haili W, Shuqin L, Linxiu B, Xuemin L, Qing L. A study of the genetic and prenatal developmental toxicity potential of lithothamnion sp. Drug Chem Toxicol 2020; 45:1644-1651. [PMID: 33297793 DOI: 10.1080/01480545.2020.1853150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Due to its calcium-rich and diverse multimineral profile, Aquamin (derived from the red seaweed Lithothamnion sp.) is used globally as a dietary food supplement. Published reports on the genetic and prenatal developmental toxicity of Lithothamnion sp. do not exist. In accordance with the standardized protocols set by the Ministry of Health of the People's Republic of China (GB-15193), the following studies were performed: the Ames test, the mammalian erythrocyte micronucleus test, the mammalian spermatocyte chromosome test, and prenatal developmental toxicity testing. The results showed that Lithothamnion sp. did not induce a significant increase in the following: revertant colony numbers for Salmonella typhimurium strains TA 97, 98, 100, 102 and 1535; frequency of micronucleated polychromatic erythrocytes (MNPCE); spermatocyte chromosomal aberration rate. In the prenatal developmental toxicity study, no mortality, no abnormal changes in behavior and activities, and the absence of toxic symptoms and abnormalities in macroscopic autopsy were observed in each dam/all pups. Compared to the negative control group, Lithothamnion sp. at all tested doses had no effects on body weight gain, number of corpora lutea and implantations, fetal body weight and length, external, visceral and skeletal malformations. In conclusion, Lithothamnion sp. did not cause genetic toxicity. Furthermore, the prenatal developmental toxicity no observed adverse effect level (NOAEL) was determined to be greater than 2000 mg/kg.bw.
Collapse
Affiliation(s)
- Zhang Ying
- Institute of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Tian Ruotao
- Institute of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Wu Haili
- College of Life Science, Shanxi University, Taiyuan, China
| | - Li Shuqin
- Institute of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Bian Linxiu
- Institute of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Li Xuemin
- Institute of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Li Qing
- Institute of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Osteoporosis is commonly diagnosed through the clinical assessment of bone quantity using bone mineral density; however, the primary clinical concern is bone fragility. Bone fragility is determined by both bone quantity and bone quality. Over the past decade, the gut microbiome has emerged as a factor that can regulate diseases throughout the body. This review discusses how microbial organisms and their genetic products that inhabit the gastrointestinal tract influence bone quantity, bone quality, and bone strength. RECENT FINDINGS Recent studies have shown that the gut microbiome regulates bone loss during estrogen depletion and glucocorticoid treatment. A series of studies has also shown that the gut microbiome influences whole bone strength by modifying bone tissue quality. The possible links between the gut microbiome and bone tissue quality are discussed focusing on the effects of microbiome-derived vitamin K. We provide a brief introduction to the gut microbiome and how modifications to the gut microbiome may lead to changes in bone. The gut microbiome is a promising target for new therapeutic approaches that address bone quality in ways not possible with current interventions.
Collapse
Affiliation(s)
- Macy Castaneda
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, 355 Upson Hall, Ithaca, NY, 14850, USA
| | - Jasmin M Strong
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, 355 Upson Hall, Ithaca, NY, 14850, USA
| | - Denise A Alabi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, 355 Upson Hall, Ithaca, NY, 14850, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, 355 Upson Hall, Ithaca, NY, 14850, USA.
| |
Collapse
|
16
|
Chen F, Wang Y, Wang H, Dong Z, Wang Y, Zhang M, Li J, Shao S, Yu C, Huan Z, Xu J. Flaxseed oil ameliorated high-fat-diet-induced bone loss in rats by promoting osteoblastic function in rat primary osteoblasts. Nutr Metab (Lond) 2019; 16:71. [PMID: 31636691 PMCID: PMC6798477 DOI: 10.1186/s12986-019-0393-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background α-Linolenic acid (ALA) is a plant-derived omega-3 unsaturated fatty acid that is rich in flaxseed oil (FO). The effect of FO on bone health is controversial. This study aims to evaluate the effect of FO on bone damage induced by a high-fat diet (HFD) and to explore the possible mechanism. Methods Male Sprague-Dawley rats were fed a normal control diet (NC, 10% fat), FO diet (NY, 10% fat), HFD (60% fat), or HFD containing 10% FO (HY, 60% fat) for 22 weeks. Micro CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. Serum was collected for the detection of ALP, P1NP, and CTX-1. Rat primary osteoblasts (OBs) were treated with different concentrations of ALA with or without palmitic acid (PA) treatment. The ALP activity, osteogenic-related gene and protein expression were measured. Results Rats in the HFD group displayed decreased biomechanical properties, such as maximum load, maximum fracture load, ultimate tensile strength, stiffness, energy absorption, and elastic modulus, compared with the NC group (p < 0.05). However, HY attenuated the HFD-induced decreases in bone biomechanical properties, including maximum load, maximum fracture load, and ultimate tensile strength (p < 0.05). Trabecular bone markers such as trabecular volume bone mineral density (Tb. vBMD), trabecular bone volume/total volume (Tb. BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) were decreased, trabecular separation (Tb. Sp) and the structure model index (SMI) were increased in the HFD group compared with the NC group, and all parameters were remarkably improved in the HY group compared to the HFD group (p < 0.05). However, cortical bone markers such as cortical volume bone mineral density (Ct. vBMD), cortical bone volume/total volume (Ct. BV/TV) and cortical bone thickness (Ct. Th) were not significantly different among all groups. Moreover, the serum bone formation markers ALP and P1NP were higher and the bone resorption marker CTX-1 was lower in the HY group compared with levels in the HFD group. Compared with the NC group, the NY group had no difference in the above indicators. In rat primary OBs, PA treatment significantly decreased ALP activity and osteogenic gene and protein (β-catenin, RUNX2, and osterix) expression, and ALA dose-dependently restored the inhibition induced by PA. Conclusions FO might be a potential therapeutic agent for HFD-induced bone loss, most likely by promoting osteogenesis.
Collapse
Affiliation(s)
- Fulian Chen
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,2Department of Endocrinology, Affiliated Yidu Central Hospital of Weifang Medical College, Weifang, Shandong 262500 People's Republic of China
| | - Yan Wang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000 People's Republic of China
| | - Hongwei Wang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,4Department of Endocrinology, People's Hospital of Rizhao, Rizhao, Shandong 276800 People's Republic of China
| | - Zhenhua Dong
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,5Department of Endocrinology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong 250021 People's Republic of China
| | - Yan Wang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Mengqi Zhang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Jiaxuan Li
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Shanshan Shao
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Chunxiao Yu
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Zhikun Huan
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Jin Xu
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| |
Collapse
|
17
|
Shidara K, Mohan G, Evan Lay YA, Jepsen KJ, Yao W, Lane NE. Strain-specific differences in the development of bone loss and incidence of osteonecrosis following glucocorticoid treatment in two different mouse strains. J Orthop Translat 2018; 16:91-101. [PMID: 30723686 PMCID: PMC6350024 DOI: 10.1016/j.jot.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022] Open
Abstract
Objective Glucocorticoids (GCs) are commonly prescribed as treatment for chronic inflammatory diseases. Prolonged use of GCs is a common cause of atraumatic osteonecrosis (ON) and secondary osteoporosis. Currently, there is no effective treatment for this disease; therefore, a reliable animal model would be useful to study both the pathology and novel treatment strategies for patients with the disease. The aim of this study was to establish a validated, reproducible model of GC-induced ON and bone loss in two different mouse strains (BALB/c and C57BL/6). Methods Seven-week-old male BALB/c (n = 32) and male C57BL/6 mice (n = 32) were randomised into placebo or GC groups and treated with daily 4 mg/L oral dexamethasone in drinking water for 90 days. Study outcome measures included histologic assessment of ON of the distal femur, bone mass and mechanical strength of tibia and lumbar vertebral body, osteoclast number, biochemical measure of bone formation and bone marrow fat quantitation. Results GC-induced ON lesions were observed in the distal femur in 47% of the male BALB/c mice and 25% of the male C57BL/6 mice. GC treatment decreased the trabecular bone volume and serum pro-collagen type 1N-protease (P1NP) in BALB/c mice compared with the placebo (p < 0.05) and reduced tibial bone strength in both BALB/c and C57BL/6 mice. GC-treated BALB/c mice had significantly greater marrow fat levels compared to the placebo group. Conclusion GC-induced ON was more prevalent in the male BALB/c mice compared to the male C57BL/6 mice. GC treatment significantly reduced bone mass, bone formation measured by P1NP, bone strength and increased marrow fat levels in male BALB/c mice. Therefore, the use of male BALB/c mice strain is recommended for both diagnostic and therapeutic studies for the prevention and treatment of ON and bone loss following prolonged treatment with GCs. The Translational Potential of this Article GCs are commonly used to treat patients with various chronic inflammatory diseases, and this is associated with both the development of ON and bone loss. Our study confirmed that the BALB/c mouse strain treated for 90 days with GC may be useful for developing novel treatments for ON.
Collapse
Affiliation(s)
- Kie Shidara
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - Geetha Mohan
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - Yan-An Evan Lay
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - Karl J. Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - Nancy E. Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
- Corresponding author. Present address: 4625 2nd Avenue Suite 2000 Sacramento, CA, 95817, United States.
| |
Collapse
|
18
|
Bott KN, Gittings W, Fajardo VA, Baranowski BJ, Vandenboom R, LeBlanc PJ, Ward WE, Peters SJ. Musculoskeletal structure and function in response to the combined effect of an obesogenic diet and age in male C57BL/6J mice. Mol Nutr Food Res 2017; 61. [PMID: 28556515 DOI: 10.1002/mnfr.201700137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022]
Abstract
SCOPE The effects of a long-term high fat and sucrose diet (HFS) superimposed with aging on bone and muscle structure and/or function. METHODS AND RESULTS Male C57BL/6J mice (20 weeks of age) were randomized to 1 of 3 groups: baseline (BSL, n = 12), or assigned to a control (AGE, n = 12) or HFS (HFS-AGE, n = 11) diet for 13 weeks. Trabecular bone structure, volumetric bone mineral density (vBMD), and body composition, were measured longitudinally at 20, 24, and 32 weeks of age. In vitro contractile measures were performed on isolated soleus and extensor digitorum longus (EDL) muscles for each group. Both AGE and HFS-AGE had similar declines in trabecular bone structure, while HFS-AGE resulted in increased soleus cross-sectional area (CSA) compared to AGE, but this did not translate to greater twitch or tetanic peak force. The ratio of outcomes of bone to muscle declined in both AGE and HFS-AGE compared to BSL as a result of greater declines in trabecular bone structure than muscle function. CONCLUSION Consumption of a 13-week HFS diet at 20 weeks of age did not exacerbate age-related declines in bone or muscle, but these tissues do not decline in a coordinate manner with greater declines in bone than muscle.
Collapse
Affiliation(s)
- Kirsten N Bott
- Department of Kinesiology & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - William Gittings
- Department of Kinesiology & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val Andrew Fajardo
- Department of Health Sciences & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Bradley J Baranowski
- Department of Kinesiology & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rene Vandenboom
- Department of Kinesiology & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.,Department of Health Sciences & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J Peters
- Department of Kinesiology & Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|