1
|
Xie M, Kaiser M, Gershtein Y, Schnyder D, Deviatiiarov R, Gazizova G, Shagimardanova E, Zikmund T, Kerckhofs G, Ivashkin E, Batkovskyte D, Newton PT, Andersson O, Fried K, Gusev O, Zeberg H, Kaiser J, Adameyko I, Chagin AS. The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling. Nat Commun 2024; 15:2367. [PMID: 38531868 DOI: 10.1038/s41467-024-46030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Markéta Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Yaakov Gershtein
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Schnyder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research (IREC), UCLouvain, Woluwe, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Evgeny Ivashkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Developmental and Comparative Physiology, N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dominyka Batkovskyte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oleg Gusev
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Trompet D, Kurenkova AD, Zhou B, Li L, Dregval O, Usanova AP, Chu TL, Are A, Nedorubov AA, Kasper M, Chagin AS. Stimulation of skeletal stem cells in the growth plate promotes linear bone growth. JCI Insight 2024; 9:e165226. [PMID: 38516888 PMCID: PMC11063944 DOI: 10.1172/jci.insight.165226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1fl/fl tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling activates growth plate epSSCs, which effectively leads to increased longitudinal growth of bones. This opens therapeutic possibilities for the treatment of differences in leg length.
Collapse
Affiliation(s)
- Dana Trompet
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Baoyi Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lei Li
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ostap Dregval
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna P. Usanova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tsz Long Chu
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Are
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei A. Nedorubov
- Center for Preclinical Studies, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S. Chagin
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
H’ng CH, Khaladkar A, Rosello-Diez A. Look who's TORking: mTOR-mediated integration of cell status and external signals during limb development and endochondral bone growth. Front Cell Dev Biol 2023; 11:1153473. [PMID: 37152288 PMCID: PMC10154674 DOI: 10.3389/fcell.2023.1153473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Collapse
Affiliation(s)
- Chee Ho H’ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Ashwini Khaladkar
- Department of Biochemistry, Central University of Hyderabad, Hyderabad, India
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Alberto Rosello-Diez, ,
| |
Collapse
|
4
|
Iwahashi S, Lyu J, Tokumura K, Osumi R, Hiraiwa M, Kubo T, Horie T, Demura S, Kawakami N, Saito T, Park G, Fukasawa K, Iezaki T, Suzuki A, Tomizawa A, Ochi H, Hojo H, Ohba S, Hinoi E. Conditional inactivation of the L-type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice. J Cell Physiol 2022; 237:4292-4302. [PMID: 36161979 DOI: 10.1002/jcp.30883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L-type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal-onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5-deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1-GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.
Collapse
Affiliation(s)
- Sayuki Iwahashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Jiajun Lyu
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryoma Osumi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Hiraiwa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Takuya Kubo
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuhiro Horie
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Ichinomiya Nishi Hospital, Ichinomiya, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gyujin Park
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Akane Suzuki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Akane Tomizawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Hsieh YL, Wei X, Wang Y, Zhang H, Qi S, Xie D, Mishina Y, Mendonça D, Hatch N, Liu F. Chondrocyte Tsc1 controls cranial base bone development by restraining the premature differentiation of synchondroses. Bone 2021; 153:116142. [PMID: 34365025 PMCID: PMC8543925 DOI: 10.1016/j.bone.2021.116142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
Cranial base bones are formed through endochondral ossification. Synchondroses are growth plates located between cranial base bones that facilitate anterior-posterior growth of the skull. Coordinated proliferation and differentiation of chondrocytes in cranial base synchondroses is essential for cranial base bone growth. Herein, we report that constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling via Tsc1 (Tuberous sclerosis 1) deletion in chondrocytes causes abnormal skull development with decreased size and rounded shape. In contrast to decreased anterior-posterior growth of the cranial base, mutant mice also exhibited significant expansion of cranial base synchondroses including the intersphenoid synchondrosis (ISS) and the spheno-occipital synchondrosis (SOS). Cranial base synchondrosis expansion in TSC1-deficient mice was accounted for by an expansion of the resting zone due to increased cell number and size without alteration in cell proliferation. Furthermore, our data showed that mTORC1 activity is inhibited in the resting and proliferating zone chondrocytes of wild type mice, and Tsc1 deletion activated mTORC1 signaling of the chondrocytes in the resting zone area. Consequently, the chondrocytes in the resting zone of TSC1-deficient mice acquired characteristics generally attributed to pre-hypertrophic chondrocytes including high mTORC1 activity, increased cell size, and increased expression level of PTH1R (Parathyroid hormone 1 receptor) and IHH (Indian hedgehog). Lastly, treatment with rapamycin, an inhibitor of mTORC1, rescued the abnormality in synchondroses. Our results established an important role for TSC1-mTORC1 signaling in regulating cranial base bone development and showed that chondrocytes in the resting zone of synchondroses are maintained in an mTORC1-inhibitory environment.
Collapse
Affiliation(s)
- Yuan-Lynn Hsieh
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xiaoxi Wei
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin 130021, China
| | - Yating Wang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honghao Zhang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Shuqun Qi
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Di Xie
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Daniela Mendonça
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Iwahashi S, Tokumura K, Park G, Ochiai S, Okayama Y, Fusawa H, Ohta K, Fukasawa K, Iezaki T, Hinoi E. mTORC1 Overactivation Leads to Abnormalities in Skeletal Development. Biol Pharm Bull 2020; 43:1983-1986. [PMID: 33268720 DOI: 10.1248/bpb.b20-00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanistic/mammalian target of rapamycin complex-1 (mTORC1) integrates multiple signaling pathways and regulates various cellular processes. Tuberous sclerosis complex 1 (Tsc1) and complex 2 (Tsc2) are critical negative regulators of mTORC1. Mouse genetic studies, including ours, have revealed that inactivation of mTORC1 in undifferentiated mesenchymal cells and chondrocytes leads to severe skeletal abnormalities, indicating a pivotal role for mTORC1 in skeletogenesis. Here, we show that hyperactivation of mTORC1 influences skeletal development through its expression in undifferentiated mesenchymal cells at the embryonic stage. Inactivation of Tsc1 in undifferentiated mesenchymal cells by paired-related homeobox 1 (Prx1)-Cre-mediated recombination led to skeletal abnormalities in appendicular skeletons. In contrast, Tsc1 deletion in chondrocytes using collagen type II α1 (Col2a1)-Cre or in osteoprogenitors using Osterix (Osx)-Cre did not result in skeletal defects in either appendicular or axial skeletons. These findings indicate that Tsc complex-mediated chronic overactivation of mTORC1 influences skeletal development at the embryonic stage through its expression in undifferentiated mesenchymal cells but not in chondrocytes or osteoprogenitors.
Collapse
Affiliation(s)
- Sayuki Iwahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Kazuya Tokumura
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Gyujin Park
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Shinsuke Ochiai
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Yasuka Okayama
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Hiroki Fusawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Kaname Ohta
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Kazuya Fukasawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Takashi Iezaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| |
Collapse
|
8
|
Oichi T, Otsuru S, Usami Y, Enomoto-Iwamoto M, Iwamoto M. Wnt signaling in chondroprogenitors during long bone development and growth. Bone 2020; 137:115368. [PMID: 32380258 PMCID: PMC7354209 DOI: 10.1016/j.bone.2020.115368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
Wnt signaling together with other signaling pathways governs cartilage development and the growth plate function during long bone formation and growth. β-catenin-dependent Wnt signaling is a specific lineage determinant of skeletal mesenchymal cells toward chondrogenic or osteogenic direction. Once cartilage forms and the growth plate organize, Wnt signaling continues to regulate proliferation and differentiation of the growth plate chondrocytes. Although chondrocytes in the growth plate have a high capacity to proliferate, new cells must be supplied to the growth plate from chondroprogenitor population. Advances in in vivo cell tracking techniques have demonstrated the importance of Wnt signaling in driving tissue renewal. The Wnt-responsive cells, genetically marked by the Wnt-reporter system, are found as stem cells in various tissues. Similarly, Wnt-responsive cells are found in the periphery of the growth plate and expanded to constitute entire column structure, indicating that Wnt signaling participates in the regulation of chondroprogenitors in the growth plate. This review will discuss advancements in research of progenitors in the growth plate, specifically focusing on Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Takeshi Oichi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Satoru Otsuru
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
9
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
The resting zone houses a group of slowly proliferating 'reserve' chondrocytes and has long been speculated to serve as the stem cell niche of the postnatal growth plate. But are these resting chondrocytes bona fide stem cells? Recent technological advances in lineage tracing and next-generation sequencing have finally allowed researchers to answer this question. Several recent studies have also shed light into the signaling pathways and molecular mechanisms involved in the maintenance of resting chondrocytes, thus providing us with important new insights into the role of the resting zone in the paracrine and endocrine regulation of childhood bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy ShriverNational Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 2020; 464:24-34. [PMID: 32446700 DOI: 10.1016/j.ydbio.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Development of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development. We show that Gcn5 is required cell autonomously in the cranial neural crest. Moreover, GCN5 is required for chondrocyte development following the arrival of the cranial neural crest within the pharyngeal arches. Using a combination of in vivo and in vitro inhibition of GCN5 acetyltransferase activity, we demonstrate that GCN5 is a potent activator of chondrocyte maturation, acting to control chondrocyte maturation and size increase during pre-hypertrophic maturation to hypertrophic chondrocytes. Rather than acting as an epigenetic regulator of histone H3K9 acetylation, our findings suggest GCN5 primarily acts as a non-histone acetyltransferase to regulate chondrocyte development. Here, we investigate the contribution of GCN5 acetylation to the activity of the mTORC1 pathway. Our findings indicate that GCN5 acetylation is required for activation of this pathway, either via direct activation of mTORC1 or through indirect mechanisms. We also investigate one possibility of how mTORC1 activity is regulated through RAPTOR acetylation, which is hypothesized to enhance mTORC1 downstream phosphorylation. This study contributes to our understanding of the specificity of acetyltransferases, and the cell type specific roles in which these enzymes function.
Collapse
Affiliation(s)
- Sofia A Pezoa
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program. University of Colorado Anschutz School of Medicine, Aurora, CO, USA, 80045; Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz School of Dentistry, Aurora, CO, USA, 80045
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309.
| |
Collapse
|
12
|
Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4572687. [PMID: 32309432 PMCID: PMC7140121 DOI: 10.1155/2020/4572687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/09/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Background TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis. This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development. Materials and Methods. TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively. Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth. Results No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1. Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice. In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice. Conclusion Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages. Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.
Collapse
|
13
|
Postnatal skeletal growth is driven by the epiphyseal stem cell niche: potential implications to pediatrics. Pediatr Res 2020; 87:986-990. [PMID: 31830758 PMCID: PMC7196937 DOI: 10.1038/s41390-019-0722-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022]
Abstract
Children's longitudinal growth is facilitated by the activity of the growth plates, cartilage discs located near the ends of the long-bones. In order to elongate these bones, growth plates must continuously generate chondrocytes. Two recent studies have demonstrated that there are stem cells and a stem cell niche in the growth plate, which govern the generation of chondrocytes during the postnatal growth period. The niche, which allows stem cells to renew, appears at the same time as the secondary ossification center (SOC) matures into a bone epiphysis. Thus, the mechanism of chondrocyte generation differs substantially between neonatal and postnatal age, i.e., before and after the formation of the mineralized epiphyses. Hence, at the neonatal age bone growth is based on a consumption of chondro-progenitors whereas postnatally it is based on the activity of the stem cell niche. Here we discuss potential implications of these observations in relation to longitudinal growth, including the effects of estrogens, nutrition and growth hormone.
Collapse
|
14
|
Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond. Int J Mol Sci 2019; 20:ijms20236009. [PMID: 31795305 PMCID: PMC6929081 DOI: 10.3390/ijms20236009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/01/2023] Open
Abstract
Growth plate chondrocytes play central roles in the proper development and growth of endochondral bones. Particularly, a population of chondrocytes in the resting zone expressing parathyroid hormone-related protein (PTHrP) is now recognized as skeletal stem cells, defined by their ability to undergo self-renewal and clonally give rise to columnar chondrocytes in the postnatal growth plate. These chondrocytes also possess the ability to differentiate into a multitude of cell types including osteoblasts and bone marrow stromal cells during skeletal development. Using single-cell transcriptomic approaches and in vivo lineage tracing technology, it is now possible to further elucidate their molecular properties and cellular fate changes. By discovering the fundamental molecular characteristics of these cells, it may be possible to harness their functional characteristics for skeletal growth and regeneration. Here, we discuss our current understanding of the molecular signatures defining growth plate chondrocytes.
Collapse
|
15
|
Marín-Llera JC, Garciadiego-Cázares D, Chimal-Monroy J. Understanding the Cellular and Molecular Mechanisms That Control Early Cell Fate Decisions During Appendicular Skeletogenesis. Front Genet 2019; 10:977. [PMID: 31681419 PMCID: PMC6797607 DOI: 10.3389/fgene.2019.00977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/13/2019] [Indexed: 12/02/2022] Open
Abstract
The formation of the vertebrate skeleton is orchestrated in time and space by a number of gene regulatory networks that specify and position all skeletal tissues. During embryonic development, bones have two distinct origins: bone tissue differentiates directly from mesenchymal progenitors, whereas most long bones arise from cartilaginous templates through a process known as endochondral ossification. Before endochondral bone development takes place, chondrocytes form a cartilage analgen that will be sequentially segmented to form joints; thus, in the cartilage template, either the cartilage maturation programme or the joint formation programme is activated. Once the cartilage differentiation programme starts, the growth plate begins to form. In contrast, when the joint formation programme is activated, a capsule begins to form that contains special articular cartilage and synovium to generate a functional joint. In this review, we will discuss the mechanisms controlling the earliest molecular events that regulate cell fate during skeletogenesis in long bones. We will explore the initial processes that lead to the recruitment of mesenchymal stem/progenitor cells, the commitment of chondrocyte lineages, and the formation of skeletal elements during morphogenesis. Thereafter, we will review the process of joint specification and joint morphogenesis. We will discuss the links between transcription factor activity, cell–cell interactions, cell–extracellular matrix interactions, growth factor signalling, and other molecular interactions that control mesenchymal stem/progenitor cell fate during embryonic skeletogenesis.
Collapse
Affiliation(s)
- Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
16
|
Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc Natl Acad Sci U S A 2019; 116:15068-15073. [PMID: 31285319 PMCID: PMC6660740 DOI: 10.1073/pnas.1900038116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multipotent Schwann cell precursors (SCPs) generate numerous cell types. Here, in both mouse and zebrafish, SCPs contributed to the generation of mesenchymal, chondroprogenitor, and osteoprogenitor cells during embryonic development. These findings reveal a source of cartilage and bone cells and previously unanticipated interactions between the nervous system and skeleton during development. Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.
Collapse
|
17
|
Newton PT, Li L, Zhou B, Schweingruber C, Hovorakova M, Xie M, Sun X, Sandhow L, Artemov AV, Ivashkin E, Suter S, Dyachuk V, El Shahawy M, Gritli-Linde A, Bouderlique T, Petersen J, Mollbrink A, Lundeberg J, Enikolopov G, Qian H, Fried K, Kasper M, Hedlund E, Adameyko I, Sävendahl L, Chagin AS. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 2019; 567:234-238. [PMID: 30814736 DOI: 10.1038/s41586-019-0989-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.
Collapse
Affiliation(s)
- Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Lei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Baoyi Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Artem V Artemov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Evgeny Ivashkin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Suter
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Vyacheslav Dyachuk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Maha El Shahawy
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Thibault Bouderlique
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Annelie Mollbrink
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|