1
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
2
|
Bai Y, Wang L, Xu R, Cui Y. Mesenchymal stem cells with p38 mitogen-activated protein kinase interference ameliorate mouse ischemic stroke. Exp Biol Med (Maywood) 2023; 248:2481-2491. [PMID: 38158804 PMCID: PMC10903255 DOI: 10.1177/15353702231220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the treatment of ischemic stroke. However, factors such as high glucose, oxidative stress, and aging can lead to the reduced function of donor MSCs. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is associated with various functions, such as cell proliferation, apoptosis, senescence, differentiation, and paracrine secretion. This study examined the hypothesis that the downregulation of p38 MAPK expression in MSCs improves the prognosis of mice with ischemic stroke. Lentiviral vector-mediated short hairpin RNA (shRNA) was constructed to downregulate the expression level of p38 MAPK in mouse bone marrow-derived MSCs. The growth cycle, apoptosis, and senescence of MSCs after infection were examined. A mouse model of ischemic stroke was constructed. After MSC transplantation, the recovery of neurological function in the mice was evaluated. Lentivirus-mediated shRNA significantly downregulated the mRNA and protein expression levels of p38 MAPK. The senescence of MSCs in the p38 MAPK downregulation group was significantly reduced, but the growth cycle and apoptosis did not significantly change. Compared with the control group, the infarct volume was reduced, and the neurological function and the axonal remodeling were improved in mice with ischemic stroke after transplantation of MSCs with downregulated p38 MAPK. Immunohistochemistry confirmed that in the p38 MAPK downregulation group, apoptotic cells were reduced, and the number of neuronal precursors and the formation of white matter myelin were increased. In conclusion, downregulation of p38 MAPK expression in MSCs improves the therapeutic effect in mice with ischemic stroke, an effect that may be related to a reduction in MSC senescence. This method is expected to improve the efficacy of MSCs in patients, especially in patients with underlying diseases such as diabetes, thus providing a basis for clinical individualized treatment for cerebral infarction.
Collapse
Affiliation(s)
- Yingying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Lishan Wang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Rong Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Ying Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Ballesteros J, Rivas D, Duque G. The Role of the Kynurenine Pathway in the Pathophysiology of Frailty, Sarcopenia, and Osteoporosis. Nutrients 2023; 15:3132. [PMID: 37513550 PMCID: PMC10383689 DOI: 10.3390/nu15143132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tryptophan is an essential nutrient required to generate vitamin B3 (niacin), which is mainly involved in energy metabolism and DNA production. Alterations in tryptophan metabolism could have significant effects on aging and musculoskeletal health. The kynurenine pathway, essential in tryptophan catabolism, is modulated by inflammatory factors that are increased in older persons, a process known as inflammaging. Osteoporosis, sarcopenia, osteosarcopenia, and frailty have also been linked with chronically increased levels of inflammatory factors. Due to the disruption of the kynurenine pathway by chronic inflammation and/or changes in the gut microbiota, serum levels of toxic metabolites are increased and are associated with the pathophysiology of those conditions. In contrast, anabolic products of this pathway, such as picolinic acid, have demonstrated a positive effect on skeletal muscle and bone. In addition, physical activity can modulate this pathway by promoting the secretion of anabolic kynurenines. According to the evidence collected, kynurenines could have a promising role as biomarkers for osteoporosis sarcopenia, osteosarcopenia, and frailty in older persons. In addition, some of these metabolites could become important targets for developing new pharmacological treatments for these conditions.
Collapse
Affiliation(s)
- Juan Ballesteros
- Servicio de Geriatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Rivas
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Feng X, Wang L, Zhou R, Zhou R, Chen L, Peng H, Huang Y, Guo Q, Luo X, Zhou H. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat Commun 2023; 14:3208. [PMID: 37268694 DOI: 10.1038/s41467-023-38842-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Brown adipose tissue (BAT)-mediated thermogenesis declines with age. However, the underlying mechanism remains unclear. Here we reveal that bone marrow-derived pro-inflammatory and senescent S100A8+ immune cells, mainly T cells and neutrophils, invade the BAT of male rats and mice during aging. These S100A8+ immune cells, coupled with adipocytes and sympathetic nerves, compromise axonal networks. Mechanistically, these senescent immune cells secrete abundant S100A8 to inhibit adipose RNA-binding motif protein 3 expression. This downregulation results in the dysregulation of axon guidance-related genes, leading to impaired sympathetic innervation and thermogenic function. Xenotransplantation experiments show that human S100A8+ immune cells infiltrate mice BAT and are sufficient to induce aging-like BAT dysfunction. Notably, treatment with S100A8 inhibitor paquinimod rejuvenates BAT axon networks and thermogenic function in aged male mice. Our study suggests that targeting the bone marrow-derived senescent immune cells presents an avenue to improve BAT aging and related metabolic disorders.
Collapse
Affiliation(s)
- Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Liwen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Ruoyu Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Linyun Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008, Changsha, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008, Changsha, Hunan, China.
| |
Collapse
|
5
|
Zhen Y, Lu X, Cui J. C-X-C Chemokine Receptor Type 4 (CXCR-4) Selective Allosteric Agonist ATI2341 TFA Promotes Uterine Repair in Asherman Syndrome. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study elucidated the therapeutic effect and mechanism of CXCR4 functional selective allosteric agonist ATI2341 TFA on treating Asherman syndrome (AS). AS was established by damaging mouse uterus and the bone marrow cells from ubiquitin-GFP mice were transplanted into AS mice. After
2 weeks, PBS, CXCR4 agonist ATI2341 TFA, CXCR4 antagonist or combined drugs were administrated into mice followed by analysis of detect pregnancy rate, litter size and pregnancy cycle. In AS model, ATI2341 TFA administration promoted BMSCs recruitment into uterine, which was inhibited by CXCL12
receptor antagonist ADM3100. In addition, ATI2341 TFA administration mitigated the degree of endometrial fibrosis, which was exacerbated by ADM3100. ATI2341 TFA administration also improved the fertility and the number of litter and shorten the pregnancy cycle of mice, while ADM3100 exhibited
the opposite impacts. In conclusion, CXCR4 receptor agonist alleviates the infertility or adverse pregnancy outcomes possibly through promoting the recruitment of BMSCs in AS mice.
Collapse
Affiliation(s)
- Yanhua Zhen
- Department of Ultrasound, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| | - Xuefeng Lu
- Department of Ultrasound, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| |
Collapse
|
6
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
7
|
Eisa NH, Sudharsan PT, Herrero SM, Herberg SA, Volkman BF, Aguilar-Pérez A, Kondrikov D, Elmansi AM, Reitman C, Shi X, Fulzele S, McGee-Lawrence ME, Isales CM, Hamrick MW, Johnson MH, Chen J, Hill WD. Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone 2021; 153:116154. [PMID: 34403754 PMCID: PMC8935397 DOI: 10.1016/j.bone.2021.116154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Periyasamy T Sudharsan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sergio Mas Herrero
- Universitat de Barcelona, Unitat Farmacologia, Dpt. Fonaments Clínics, 08036 Barcelona, Spain
| | - Samuel A Herberg
- Departments of Ophthalmology and Visual Sciences, and Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexandra Aguilar-Pérez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America
| | - Xingming Shi
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Carlos M Isales
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Maribeth H Johnson
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Jie Chen
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
8
|
Disner GR, Lopes-Ferreira M, Lima C. Where the Aryl Hydrocarbon Receptor Meets the microRNAs: Literature Review of the Last 10 Years. Front Mol Biosci 2021; 8:725044. [PMID: 34746229 PMCID: PMC8566438 DOI: 10.3389/fmolb.2021.725044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally responsive ligand-activated transcription factor, identified in the ‘70s for its toxic responses to halogenated polycyclic aromatic hydrocarbons, such as dioxin. Recently, AhR has been recognized as engaged in multiple physiological processes in health and diseases, particularly in the immune system, inflammatory response, tumorigenesis, and cellular differentiation by epigenetic mechanisms involving miRNAs. However, there is still scarce information about AhR-dependent miRNA regulation and miRNA-mediated epigenetic control in pathologies and therapies. In this review, we explore the mutual regulation of AhR and miRNA over the last decade of studies since many miRNAs have dioxin response elements (DRE) in their 3’ UTR, as well as AhR might contain binding sites of miRNAs. TCDD is the most used ligand to investigate the impact of AhR activation, and the immune system is one of the most sensitive of its targets. An association between TCDD-activated AhR and epigenetic mechanisms like post-transcriptional regulation by miRNAs, DNA methylation, or histone modification has already been confirmed. Besides, several studies have shown that AhR-induced miR-212/132 cluster suppresses cancers, attenuates autoimmune diseases, and has an anti-inflammatory role in different immune responses by regulating cytokine levels and immune cells. Together the ever-expanding new AhR roles and the miRNA therapeutics are a prominent segment among biopharmaceuticals. Additionally, AhR-activated miRNAs can serve as valuable biomarkers of diseases, notably cancer progression or suppression and chemical exposure. Once AhR-dependent gene expression may hinge on the ligand, cell type, and context singularity, the reviewed outcomes might help contextualize state of the art and support new trends and emerging opportunities in the field.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
9
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
10
|
Budgude P, Kale V, Vaidya A. Pharmacological Inhibition of p38 MAPK Rejuvenates Bone Marrow Derived-Mesenchymal Stromal Cells and Boosts their Hematopoietic Stem Cell-Supportive Ability. Stem Cell Rev Rep 2021; 17:2210-2222. [PMID: 34420158 DOI: 10.1007/s12015-021-10240-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/12/2023]
Abstract
The therapeutic value of mesenchymal stromal cells (MSCs) for various regenerative medicine applications, including hematopoietic stem cell transplantations (HSCT), has been well-established. Owing to their small numbers in vivo, it becomes necessary to expand them in vitro, which leads to a gradual loss of their regenerative capacity. Stress-induced mitogen-activated protein kinase p38 (p38 MAPK) signaling has been shown to compromise the MSC functions. Therefore, we investigated whether pharmacological inhibition of p38 MAPK signaling rejuvenates the cultured MSCs and boosts their functionality. Indeed, we found that the ex vivo expanded MSCs show activated p38 MAPK signaling and exhibit increased oxidative stress. These MSCs show a decreased ability to secrete salutary niche factors, thereby compromising their ability to support hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation. We, therefore, attempted to rejuvenate the cultured MSCs by pharmacological inhibition of p38 MAPK - a strategy broadly known as "priming of MSCs". We demonstrate that priming of MSCs with a p-38 MAPK inhibitor, PD169316, boosts their niche-supportive functions via upregulation of various HSC-supportive transcription factors. These primed MSCs expand multipotent HSCs having superior homing and long-term reconstitution ability. These findings shed light on the significance of non-cell-autonomous mechanisms operative in the hematopoietic niche and point towards the possible use of pharmacological compounds for rejuvenation of ex vivo cultured MSCs. Such approaches could improve the outcome of regenerative therapies involving in vitro cultured MSCs.
Collapse
Affiliation(s)
- Pallavi Budgude
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India. .,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India.
| |
Collapse
|
11
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Eisa NH, Reddy SV, Elmansi AM, Kondrikova G, Kondrikov D, Shi XM, Novince CM, Hamrick MW, McGee-Lawrence ME, Isales CM, Fulzele S, Hill WD. Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway. Int J Mol Sci 2020; 21:ijms21217931. [PMID: 33114603 PMCID: PMC7662708 DOI: 10.3390/ijms21217931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Nada H. Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sakamuri V. Reddy
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Xing-Ming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark W. Hamrick
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Meghan E. McGee-Lawrence
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Carlos M. Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.W.H.); (M.E.M.-L.); (C.M.I.); (S.F.)
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William D. Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA; (N.H.E.); (A.M.E.); (G.K.); (D.K.)
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
- Correspondence: ; Tel.: +1-(843)-792-6623
| |
Collapse
|
13
|
Anaya JM, Bollag WB, Hamrick MW, Isales CM. The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging. Int J Mol Sci 2020; 21:ijms21186670. [PMID: 32933099 PMCID: PMC7555967 DOI: 10.3390/ijms21186670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.
Collapse
Affiliation(s)
- Jordan Marcano Anaya
- Universidad Central Del Caribe Laurel, Av. Sta. Juanita, Bayamón PR 00960, Puerto Rico;
| | - Wendy B. Bollag
- Department of Physiology, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA;
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Carlos M. Isales
- Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-0692
| |
Collapse
|
14
|
Kondrikov D, Elmansi A, Bragg RT, Mobley T, Barrett T, Eisa N, Kondrikova G, Schoeinlein P, Aguilar-Perez A, Shi XM, Fulzele S, Lawrence MM, Hamrick M, Isales C, Hill W. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Exp Gerontol 2020; 130:110805. [PMID: 31812582 PMCID: PMC7861134 DOI: 10.1016/j.exger.2019.110805] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
Osteoporosis is an age-related deterioration in bone health that is, at least in part, a stem cell disease. The different mechanisms and signaling pathways that change with age and contribute to the development of osteoporosis are being identified. One key upstream mechanism that appears to target a number of osteogenic pathways with age is kynurenine, a tryptophan metabolite and an endogenous Aryl hydrocarbon receptor (AhR) agonist. The AhR signaling pathway has been reported to promote aging phenotypes across species and in different tissues. We previously found that kynurenine accumulates with age in the plasma and various tissues including bone and induces bone loss and osteoporosis in mice. Bone marrow mesenchymal stem cells (BMSCs) are responsible for osteogenesis, adipogenesis, and overall bone regeneration. In the present study, we investigated the effect of kynurenine on BMSCs, with a focus on autophagy and senescence as two cellular processes that control BMSCs proliferation and differentiation capacity. We found that physiological levels of kynurenine (10 and 100 μM) disrupted autophagic flux as evidenced by the reduction of LC3B-II, and autophagolysosomal production, as well as a significant increase of p62 protein level. Additionally, kynurenine also induced a senescent phenotype in BMSCs as shown by the increased expression of several senescence markers including senescence associated β-galactosidase in BMSCs. Additionally, western blotting reveals that levels of p21, another marker of senescence, also increased in kynurenine-treated BMSCs, while senescent-associated aggregation of nuclear H3K9me3 also showed a significant increase in response to kynurenine treatment. To validate that these effects are in fact due to AhR signaling pathway, we utilized two known AhR antagonists: CH-223191, and 3',4'-dimethoxyflavone to try to block AhR signaling and rescue kynurenine /AhR mediated effects. Indeed, AhR inhibition restored kynurenine-suppressed autophagy levels as shown by levels of LC3B-II, p62 and autophagolysosomal formation demonstrating a rescuing of autophagic flux. Furthermore, inhibition of AhR signaling prevented the kynurenine-induced increase in senescence associated β-galactosidase and p21 levels, as well as blocking aggregation of nuclear H3K9me3. Taken together, our results suggest that kynurenine inhibits autophagy and induces senescence in BMSCs via AhR signaling, and that this may be a novel target to prevent or reduce age-associated bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Robert Tailor Bragg
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Tanner Mobley
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Thomas Barrett
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nada Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Patricia Schoeinlein
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Alexandra Aguilar-Perez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Xing-Ming Shi
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Meghan McGee Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Mark Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America
| | - Carlos Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America.
| |
Collapse
|