1
|
Van der Meijden RHM, Scholten MH, Nijhuis WH, Sakkers RJB, Sommerdijk N, Akiva A. Correlative Raman spectroscopy and electron microscopy identifies glycogen rich deposits correlated with local structural defects in long bones of type IV osteogenesis imperfecta patients. J Struct Biol 2024; 216:108142. [PMID: 39442776 DOI: 10.1016/j.jsb.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone disease occurring in approximately 1 in 10,000 births, usually as a result of genetic mutation. OI patients suffer from increased fracture risk and - depending on the severity of the disease - deformation of the limbs, which can even lead to perinatal death. Despite extensive studies, the way in which the genetic mutation is translated into structural and compositional anomalies of the tissue is still an open question. Different observations have been reported, ranging from no structural (or chemical) differences to completely chaotic bone structure and composition. Here, we investigated bone samples from two adolescent OI-IV patients, focusing on the bone structure and chemistry in naturally occurring fractures. The exposed fracture plane allows the investigation of the structure and composition of the weakest bone plane. We do so by combining scanning electron microscopy (SEM) imaging with chemical information from Raman microscopy. The exposed fracture planes show different regions within the same tissue, displaying normal osteonal structures next to disorganized osteons and totally disordered structures, while the collagen mineralization in all cases is similar to that of a healthy bone. In addition, we also detected significant amounts of depositions of glycogen-rich, organic, globules of 250-1000 nm in size. These depositions point to a role of cellular disfunction in the disorganization of the collagen in qualitative OI. Overall, our results unite multiple, sometimes contradicting views from the literature on qualitative OI.
Collapse
Affiliation(s)
- R H M Van der Meijden
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - M H Scholten
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - W H Nijhuis
- Department of Orthopedic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - R J B Sakkers
- Department of Orthopedic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - N Sommerdijk
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, the Netherlands.
| | - A Akiva
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024:10.1007/s00223-024-01263-8. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
3
|
Krishnamoorthy E, Purusothaman B, Subramanian B. Productizing Nano-Bioactive Glass-Based Bilayer Scaffolds: A Graft for Reconstruction of Mandibular and Femoral Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706308 DOI: 10.1021/acsami.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This investigation aimed to construct a bilayer scaffold integrating alginate and gelatin with nanobioactive glass (BG), recognized for their efficacy in tissue regeneration and drug delivery. Scaffolds, namely, alginate/gelatin (AG), alginate-/actonel gelatin (AGD), alginate actenol/gelatin-45S5 BG (4AGD), and alginate-actonel/gelatin-59S BG (5AGD), were assembled using a cost-effective freeze-drying method, followed by detailed structural investigation via powder X-ray diffraction as well as morphological characterization using field emission scanning electron microscopy (FESEM). FESEM revealed a honeycomb-like morphology with distinct pore sizes for nutrient, oxygen, and drug transport. The scaffolds evidently exhibited hemocompatibility, high porosity, good swelling capacity, and biodegradability. In vitro studies demonstrated sustained drug release, particularly for scaffolds containing actonel. In vivo tests showed that the bilayer scaffold promoted new bone formation, surpassing the control group in bone area increase. The interaction of the scaffold with collagen and released ions improved the osteoblastic function and bone volume fraction. The findings suggest that this bilayer scaffold could be beneficial for treating critical-sized bone defects, especially in the mandibular and femoral regions.
Collapse
Affiliation(s)
- Elakkiya Krishnamoorthy
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| | - Bargavi Purusothaman
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| |
Collapse
|
4
|
Formosa MM, Christou MA, Mäkitie O. Bone fragility and osteoporosis in children and young adults. J Endocrinol Invest 2024; 47:285-298. [PMID: 37668887 PMCID: PMC10859323 DOI: 10.1007/s40618-023-02179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Osteoporosis is a metabolic bone disorder which increases fragility fracture risk. Elderly individuals, especially postmenopausal women, are particularly susceptible to osteoporosis. Although rare, osteoporosis in children and young adults is becoming increasingly evident, highlighting the need for timely diagnosis, management and follow-up. Early-onset osteoporosis is defined as the presence of a low BMD (Z-score of ≤ -2.0 in individuals aged < 20 years; T-score of ≤ -2.5 in those aged between 20 to 50 years) accompanied by a clinically significant fracture history, or the presence of low-energy vertebral compression fractures even in the absence of osteoporosis. Affected children and young adults should undergo a thorough diagnostic workup, including collection of clinical history, radiography, biochemical investigation and possibly bone biopsy. Once secondary factors and comorbidities are excluded, genetic testing should be considered to determine the possibility of an underlying monogenic cause. Defects in genes related to type I collagen biosynthesis are the commonest contributors of primary osteoporosis, followed by loss-of-function variants in genes encoding key regulatory proteins of canonical WNT signalling (specifically LRP5 and WNT1), the actin-binding plastin-3 protein (encoded by PLS3) resulting in X-linked osteoporosis, and the more recent sphingomyelin synthase 2 (encoded by SGMS2) which is critical for signal transduction affecting sphingomyelin metabolism. Despite these discoveries, genetic causes and underlying mechanisms in early-onset osteoporosis remain largely unknown, and if no causal gene is identified, early-onset osteoporosis is deemed idiopathic. This calls for further research to unravel the molecular mechanisms driving early-onset osteoporosis that consequently will aid in patient management and individualised targeted therapy.
Collapse
Affiliation(s)
- M M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M A Christou
- Department of Endocrinology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - O Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Raimann A, Misof BM, Fratzl P, Fratzl-Zelman N. Bone Material Properties in Bone Diseases Affecting Children. Curr Osteoporos Rep 2023; 21:787-805. [PMID: 37897675 DOI: 10.1007/s11914-023-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Barbara M Misof
- Vienna Bone and Growth Center, Vienna, Austria
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Vienna Bone and Growth Center, Vienna, Austria.
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| |
Collapse
|
6
|
André G, Chretien A, Demoulin A, Beersaerts M, Docquier PL, Behets C. Col1A-2 Mutation in Osteogenesis Imperfecta Mice Contributes to Long Bone Fragility by Modifying Cell-Matrix Organization. Int J Mol Sci 2023; 24:17010. [PMID: 38069332 PMCID: PMC10707465 DOI: 10.3390/ijms242317010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia generally caused by a mutation of one of the type I collagen genes and characterized by low bone mass, numerous fractures, and bone deformities. The collagen organization and osteocyte lacuna arrangement were investigated in the long bones of 17-week-old wildtype (WT, n = 17) and osteogenesis imperfecta mice (OIM, n = 16) that is a validated model of severe human OI in order to assess their possible role in bone fragility. Fractures were counted after in vivo scanning at weeks 5, 11, and 17. Humerus, femur, and tibia diaphyses from both groups were analyzed ex vivo with pQCT, polarized and ordinary light histology, and Nano-CT. The fractures observed in the OIM were more numerous in the humerus and femur than in the tibia, whereas the quantitative bone parameters were altered in different ways among these bones. Collagen fiber organization appeared disrupted, with a lower birefringence in OIM than WT bones, whereas the osteocyte lacunae were more numerous, more spherical, and not aligned in a lamellar pattern. These modifications, which are typical of immature and less mechanically competent bone, attest to the reciprocal alteration of collagen matrix and osteocyte lacuna organization in the OIM, thereby contributing to bone fragility.
Collapse
Affiliation(s)
- Grégoire André
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Antoine Chretien
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Antoine Demoulin
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Mélanie Beersaerts
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| | - Pierre-Louis Docquier
- Neuromusculoskeletal Lab, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Catherine Behets
- Pole of Morphology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (G.A.); (A.C.); (A.D.); (M.B.)
| |
Collapse
|
7
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
8
|
Валеева ДИ, Тюрин АВ. ИССЛЕДОВАНИЕ СОСТОЯНИЯ КОСТНОЙ ТКАНИ У ЛИЦ С НЕСОВЕРШЕННЫМ ОСТЕОГЕНЕЗОМ МОЛОДОГО ВОЗРАСТА. OSTEOPOROSIS AND BONE DISEASES 2023. [DOI: 10.14341/osteo12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Д. И. Валеева
- ФГБОУ ВО Башкирский государственный медицинский университет
| | - А. В. Тюрин
- ФГБОУ ВО Башкирский государственный медицинский университет
| |
Collapse
|
9
|
Shah FA, Jolic M, Micheletti C, Omar O, Norlindh B, Emanuelsson L, Engqvist H, Engstrand T, Palmquist A, Thomsen P. Bone without borders - Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioact Mater 2023; 19:103-114. [PMID: 35441115 PMCID: PMC9005875 DOI: 10.1016/j.bioactmat.2022.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
Calcium phosphates (CaP) represent an important class of osteoconductive and osteoinductive biomaterials. As proof-of-concept, we show how a multi-component CaP formulation (monetite, beta-tricalcium phosphate, and calcium pyrophosphate) guides osteogenesis beyond the physiological envelope. In a sheep model, hollow dome-shaped constructs were placed directly over the occipital bone. At 12 months, large amounts of bone (∼75%) occupy the hollow space with strong evidence of ongoing remodelling. Features of both compact bone (osteonal/osteon-like arrangements) and spongy bone (trabeculae separated by marrow cavities) reveal insights into function/need-driven microstructural adaptation. Pores within the CaP also contain both woven bone and vascularised lamellar bone. Osteoclasts actively contribute to CaP degradation/removal. Of the constituent phases, only calcium pyrophosphate persists within osseous (cutting cones) and non-osseous (macrophages) sites. From a translational perspective, this multi-component CaP opens up exciting new avenues for osteotomy-free and minimally-invasive repair of large bone defects and augmentation of the dental alveolar ridge.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Costantini A, Mäkitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Søe K, Mäkitie O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J Bone Miner Res 2022; 37:1623-1641. [PMID: 35949115 PMCID: PMC9542053 DOI: 10.1002/jbmr.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022]
Abstract
Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Paris Cité University, INSERM UMR1163, Institut Imagine, Paris, France
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Mindler GT, Ganger R, Stauffer A, Marhofer P, Raimann A. [Osteogenesis imperfecta : A multidisciplinary challenge]. ORTHOPADIE (HEIDELBERG, GERMANY) 2022; 51:595-606. [PMID: 35776152 DOI: 10.1007/s00132-022-04260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Osteogenesis imperfecta (OI) describes a group of rare diseases which are associated with an increased tendency to bone fractures. In addition to the main symptom of fractures, OI is characterized by a variety of pediatric, pediatric orthopedic and anesthesiological challenges. The multidisciplinary expertise is mostly concentrated at specialized centers. The current treatment concepts aim at minimizing the fracture rate, prevention and treatment of deformities, pain reduction and improved mobility. In addition to pharmacotherapy, conservative and surgical measures are also applied. Scheduled interventions on the extremities are one of the most commonly performed operations in children with OI. Various intramedullary nailing techniques are available. This article addresses the important aspects of multidisciplinary care of children with OI concerning the treatment of the lower extremities.
Collapse
Affiliation(s)
- Gabriel T Mindler
- Abteilung für Kinderorthopädie, Orthopädisches Spital Speising, Speisinger Str. 109, 1130, Wien, Österreich.
- Vienna Bone and Growth Center, Wien, Österreich.
| | - Rudolf Ganger
- Abteilung für Kinderorthopädie, Orthopädisches Spital Speising, Speisinger Str. 109, 1130, Wien, Österreich
- Vienna Bone and Growth Center, Wien, Österreich
| | - Alexandra Stauffer
- Abteilung für Kinderorthopädie, Orthopädisches Spital Speising, Speisinger Str. 109, 1130, Wien, Österreich
- Vienna Bone and Growth Center, Wien, Österreich
| | - Peter Marhofer
- Vienna Bone and Growth Center, Wien, Österreich
- Abteilung für Anästhesiologie und Intensivmedizin, Orthopädisches Spital Speising, Speisinger Str. 109, 1130, Wien, Österreich
| | - Adalbert Raimann
- Vienna Bone and Growth Center, Wien, Österreich
- Universitätsklinik für Kinder- und Jugendheilkunde, Abteilung für Pädiatrische Pulmologie, Allergologie und Endokrinologie, Medizinische Universität Wien, Spitalgasse 23, 1090, Wien, Österreich
| |
Collapse
|
12
|
Osteogenesis Imperfecta/Ehlers-Danlos Overlap Syndrome and Neuroblastoma-Case Report and Review of Literature. Genes (Basel) 2022; 13:genes13040581. [PMID: 35456387 PMCID: PMC9024599 DOI: 10.3390/genes13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Osteogenesis imperfecta/Ehlers−Danlos (OI/EDS) overlap syndrome is a recently described disorder of connective tissue, characterized by mutation of COL1A1 (17q21.33) or COL1A2 (7q21.3) genes, that are involved in α-1 and α-2 chains of type 1 collagen synthesis. The clinical spectrum of this new clinical entity is broad: patients could present a mixed phenotype that includes features of both osteogenesis imperfecta (bone fragility, long bone fractures, blue sclerae, short stature) and Ehlers−Danlos syndrome (joint hyperextensibility, soft and hyperextensible skin, abnormal wound healing, easy bruising, vascular fragility). We reported the case of a young Caucasian girl with severe short stature and a previous history of neuroblastoma, who displayed the compound phenotype of OI/EDS. Next generation sequencing was applied to the proband and her parent genome. Our patient presented a de novo heterozygous COL1A1 variant (c.3235G>A, p.Gly1079Ser), whose presence might be indicative of diagnosis of OI/EDS overlap syndrome. We also hypothesize that the association with the previous history of neuroblastoma could be influenced by the presence of COL1A1 mutation, whose role has been already described in the behavior and progression of some cancers.
Collapse
|
13
|
Muñoz A, Docaj A, Ugarteburu M, Carriero A. Poor bone matrix quality: What can be done about it? Curr Osteoporos Rep 2021; 19:510-531. [PMID: 34414561 DOI: 10.1007/s11914-021-00696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Bone's ability to withstand load resisting fracture and adapting to it highly depends on the quality of its matrix and its regulators. This review focuses on the contribution of bone quality to fracture resistance and possible therapeutic targets for skeletal fragility in aging and disease. RECENT FINDINGS The highly organized, hierarchical composite structure of bone extracellular matrix together with its (re)modeling mechanisms and microdamage dynamics determines its stiffness, strength, and toughness. Aging and disease affect the biological processes regulating bone quality, thus resulting in defective extracellular matrix and bone fragility. Targeted therapies are being developed to restore bone's mechanical integrity. However, their current limitations include low tissue selectivity and adverse side effects. Biological and mechanical insights into the mechanisms controlling bone quality, together with advances in drug delivery and studies in animal models, will accelerate the development and translation to clinical application of effective targeted-therapeutics for bone fragility.
Collapse
Affiliation(s)
- Asier Muñoz
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Anxhela Docaj
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Maialen Ugarteburu
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA.
| |
Collapse
|
14
|
[Risk assessment in osteoporosis : Time-tested and new approaches]. Internist (Berl) 2021; 62:463-473. [PMID: 33710360 DOI: 10.1007/s00108-021-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Fracture risk cannot be determined by bone density alone. It is important to identify and consider risk factors that individually increase the risk of fractures when they occur. Risk calculators have been developed worldwide to determine fracture risk. The risk factors currently listed in the Dachverbands Osteologie (DVO) S3 Guidelines for the "Diagnosis and Therapy of Postmenopausal Osteoporosis and Male Osteoporosis" are diverse and should be prioritized, since not every fracture risk factor present increases the risk of a vertebral or femoral neck fracture to the same extent. Due to the unknown interaction between risk factors, no more than two risk factors in addition to age, gender, and bone density measurement should be considered per patient. For risk assessment, it is important that the two thresholds defined by the German guideline are reached, above which diagnostic workup or specific therapy for fracture risk reduction should be recommended. These thresholds are currently defined as 20% for diagnostics and 30% for therapy, based on the absolute 10-year risk for vertebral and femoral neck fractures. The threshold for diagnostics is reached with the presence of a risk factor mentioned in the guideline. To reach the threshold for therapy, the bone density measurement result is required to reach the age-specific T‑score. However, typical fragile fractures of the vertebral bodies or femur increase the fracture risk so substantially that therapy can be recommended even without a bone density result.
Collapse
|