1
|
Wang J, Koduru T, Harish B, McCallum SA, Larsen KP, Patel KS, Peters EV, Gillilan RE, Puglisi EV, Puglisi JD, Makhatadze G, Royer CA. Pressure pushes tRNA Lys3 into excited conformational states. Proc Natl Acad Sci U S A 2023; 120:e2215556120. [PMID: 37339210 PMCID: PMC10293818 DOI: 10.1073/pnas.2215556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.
Collapse
Affiliation(s)
- Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Kevin P. Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Karishma S. Patel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Elisabetta V. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
2
|
de Castro ACH, Kochi LT, Flauzino JMR, Soares MMCN, Alves VA, da Silva LA, Madurro JM, Brito-Madurro AG. Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma. Appl Biochem Biotechnol 2022; 194:2604-2619. [PMID: 35182331 DOI: 10.1007/s12010-022-03829-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
Abstract
In this work, we report the construction of a novel electrochemical device for molecular diagnosis of hepatitis B virus in the blood plasma of infected patients, using graphite electrodes functionalized with poly(4-aminophenol) and sensitized with a specific DNA probe. The recognition of genomic DNA was evaluated by electrochemical techniques (DPV and EIS) and scanning electron microscopy. The genosensor was efficient in detecting genomic DNA with a linear range from 1.176 to 4.825 μg mL-1 and detection limit of 35.69 ng mL-1 (4.63 IU ml-1 or 25.93 copies.ml-1), which is better than the 10.00 IU ml-1 limit of reference method, real-time PCR, used in point of care. EIS analysis shows that the genosensor resistance increased exponentially with the concentration of the genomic DNA target. This novel platform has advantages to its applicability in real samples, such as good sensitivity, selectivity, low sample volume, and fast assay time (36 min), thus interesting for application in the diagnosis of hepatitis B virus in blood plasma. Also, the ease of synthesis of the low-cost polymer by electrosynthesis directly on the electrode surface allows the translation of the platform to portable devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - João Marcos Madurro
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
3
|
Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor RB, Chalikian TV. Volumetric Interplay between the Conformational States Adopted by Guanine-Rich DNA from the c-MYC Promoter. J Phys Chem B 2021; 125:7406-7416. [PMID: 34185535 DOI: 10.1021/acs.jpcb.1c04075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions. In this work, we report changes in volume, ΔV, and adiabatic compressibility, ΔKS, accompanying interconversions of G-strand between the G-quadruplex, duplex, and coil conformations in the presence and absence of C-strand. We rationalize these volumetric characteristics in terms of the hydration and intrinsic properties of the DNA in each of the sampled conformational states. We further use our volumetric results in conjunction with the reported data on changes in expansibility, ΔE, and heat capacity, ΔCP, associated with G-quadruplex-to-coil transitions to construct the pressure-temperature phase diagram describing the stability of the G-quadruplex. The phase diagram is elliptic in shape, resembling the classical elliptic phase diagram of a globular protein, and is distinct from the phase diagram for duplex DNA. The observed similarity of the pressure-temperature phase diagrams of G-quadruplexes and globular proteins stems from their shared structural and hydration features that, in turn, result in the similarity of their volumetric properties. To the best of our knowledge, this is the first pressure-temperature stability diagram reported for a G-quadruplex.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lily Scott
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nabeel Tariq
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Takuma Kume
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
4
|
Plamitzer L, Bouř P. Pressure dependence of vibrational optical activity of model biomolecules. A computational study. Chirality 2020; 32:710-721. [PMID: 32150771 DOI: 10.1002/chir.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
Change of molecular properties with pressure is an attracting means to regulate molecular reactivity or biological activity. However, the effect is usually small and so far explored rather scarcely. To obtain a deeper insight and estimate the sensitivity of vibrational optical activity spectra to pressure-induced conformational changes, we investigate small model molecules. The Ala-Ala dipeptide, isomaltose disaccharide and adenine-uracil dinucleotide were chosen to represent three different biomolecular classes. The pressure effects were modeled by molecular dynamics and density functional theory simulations. The dinucleotide was found to be the most sensitive to the pressure, whereas for the disaccharide the smallest changes are predicted. Pressure-induced relative intensity changes in vibrational circular dichroism and Raman optical activity spectra are predicted to be 2-3-times larger than for non-polarized IR and Raman techniques.
Collapse
Affiliation(s)
- Luboš Plamitzer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, Prague 2, 121 16, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic
| |
Collapse
|
5
|
Patra S, Schuabb V, Kiesel I, Knop JM, Oliva R, Winter R. Exploring the effects of cosolutes and crowding on the volumetric and kinetic profile of the conformational dynamics of a poly dA loop DNA hairpin: a single-molecule FRET study. Nucleic Acids Res 2019; 47:981-996. [PMID: 30418613 PMCID: PMC6344865 DOI: 10.1093/nar/gky1122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
We investigated the volumetric and kinetic profile of the conformational landscape of a poly dA loop DNA hairpin (Hp) in the presence of salts, osmolytes and crowding media, mimicking the intracellular milieu, using single-molecule FRET methodology. Pressure modulation was applied to explore the volumetric and hydrational characteristics of the free-energy landscape of the DNA Hp, but also because pressure is a stress factor many organisms have to cope with, e.g. in the deep sea where pressures even up to the kbar level are encountered. Urea and pressure synergistically destabilize the closed conformation of the DNA Hp due to a lower molar partial volume in the unfolded state. Conversely, multivalent salts, trimethylamine-N-oxide and Ficoll strongly populate the closed state and counteract deteriorating effects of pressure. Complementary smFRET measurements under immobilized conditions at ambient pressure allowed us to dissect the equilibrium data in terms of folding and unfolding rate constants of the conformational transitions, leading to a deeper understanding of the stabilization mechanisms of the cosolutes. Our results show that the free-energy landscape of the DNA Hp is a rugged one, which is markedly affected by the ionic strength of the solution, by preferential interaction and exclusion of cosolvents as well as by pressure.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Vitor Schuabb
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Irena Kiesel
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Jim-Marcel Knop
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cinita, 80126 Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Arns L, Knop JM, Patra S, Anders C, Winter R. Single-molecule insights into the temperature and pressure dependent conformational dynamics of nucleic acids in the presence of crowders and osmolytes. Biophys Chem 2019; 251:106190. [PMID: 31146215 DOI: 10.1016/j.bpc.2019.106190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e., a synthetic DNA hairpin, a human telomeric G-quadruplex and the microROSE RNA hairpin. To mimic the effects of intracellular components, our studies include the macromolecular crowding agent Ficoll, a copolymer of sucrose and epichlorohydrin, and the organic osmolytes trimethylamine N-oxide, urea and glycine as well as natural occurring osmolyte mixtures from deep sea organisms. Furthermore, the impact of mutations in an RNA sequence on the conformational dynamics is examined. Different from proteins, the effects of the osmolytes and crowding agents seem to strongly dependent on the structure and chemical make-up of the nucleic acid.
Collapse
Affiliation(s)
- Loana Arns
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Jim-Marcel Knop
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Satyajit Patra
- Aix Marseille Université, CNRS, Centralle Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Christian Anders
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
7
|
Potekhin SA, Khusainova RS. On the Width of Conformational Transitions of Biologically Important Macromolecules under the Influence of Pressure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919030187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Qiao JQ, Liang C, Zhu ZY, Cao ZM, Zheng WJ, Lian HZ. Monolithic alkylsilane column: A promising separation medium for oligonucleotides by ion-pair reversed-phase liquid chromatography. J Chromatogr A 2018; 1569:168-177. [PMID: 30077461 DOI: 10.1016/j.chroma.2018.07.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
In this paper, a monolithic octadecylsilane column and particle-packed octadecylsilane columns were used to investigate the retention behaviors of oligonucleotides by ion-pair reversed-phase liquid chromatography (IP-RPLC). Results showed that, with same base composition, hairpin oligonucleotides always had weaker retention than corresponding random coil oligonucleotides on the monolithic column, but not on the particle-packed columns. In addition, the linear correlation between the retention factor k of oligonucleotides and the reciprocal of temperature (1/T), especially for hairpins, was relatively weaker on the particle-packed columns, as compared to the correlation on the monolithic column. The correlation between k and 1/T became weaker with decreasing particle size of the particle-packed columns. Moreover, results revealed that the overall retention order on the particle-packed column with small particles (3 μm) differed greatly from that on the monolithic column. In contrast, the retention order on the 10 μm particle-packed column was very close to that on the monolithic column. From the above, we inferred that oligonucleotides could keep their primary conformations unchanged when passing through the monolithic column, attributed to the special pore structures of the monolith. However, the conformations of oligonucleotides were suppressed or even destroyed when oligonucleotides passed through the particle-packed columns. This because the narrow and tortuous channels created by the stacked stationary phase particles could lead to more complex and unequable retention behaviors. Therefore, the monolithic column exhibited better retention regularity for oligonucleotides of secondary structure especially for hairpins than the particle-packed columns. It is noteworthy that the monolith-based IP-RPLC opens an intriguing prospect in accurately elucidating the retention behaviors of oligonucleotides.
Collapse
Affiliation(s)
- Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chao Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen-Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhao-Ming Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
9
|
de Castro ACH, Kochi LT, Moço ACR, Coimbra RS, Oliveira GC, Cuadros-Orellana S, Madurro JM, Brito-Madurro AG. A new genosensor for meningococcal meningitis diagnosis using biological samples. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3940-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Patra S, Anders C, Schummel PH, Winter R. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys Chem Chem Phys 2018; 20:13159-13170. [DOI: 10.1039/c8cp00907d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmolyte mixtures from deep sea organisms are able to rescue nucleic acids from pressure-induced unfolding.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Christian Anders
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Paul Hendrik Schummel
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
11
|
Gao M, Harish B, Berghaus M, Seymen R, Arns L, McCallum SA, Royer CA, Winter R. Temperature and pressure limits of guanosine monophosphate self-assemblies. Sci Rep 2017; 7:9864. [PMID: 28852183 PMCID: PMC5574928 DOI: 10.1038/s41598-017-10689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
Guanosine monophosphate, among the nucleotides, has the unique property to self-associate and form nanoscale cylinders consisting of hydrogen-bonded G-quartet disks, which are stacked on top of one another. Such self-assemblies describe not only the basic structural motif of G-quadruplexes formed by, e.g., telomeric DNA sequences, but are also interesting targets for supramolecular chemistry and nanotechnology. The G-quartet stacks serve as an excellent model to understand the fundamentals of their molecular self-association and to unveil their application spectrum. However, the thermodynamic stability of such self-assemblies over an extended temperature and pressure range is largely unexplored. Here, we report a combined FTIR and NMR study on the temperature and pressure stability of G-quartet stacks formed by disodium guanosine 5′-monophosphate (Na25′-GMP). We found that under abyssal conditions, where temperatures as low as 5 °C and pressures up to 1 kbar are reached, the self-association of Na25′-GMP is most favoured. Beyond those conditions, the G-quartet stacks dissociate laterally into monomer stacks without significantly changing the longitudinal dimension. Among the tested alkali cations, K+ is the most efficient one to elevate the temperature as well as the pressure limits of GMP self-assembly.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Balasubramanian Harish
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, United States
| | - Melanie Berghaus
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Rana Seymen
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Loana Arns
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Scott A McCallum
- NMR Facility Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Catherine A Royer
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, United States
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany.
| |
Collapse
|
12
|
Nicasio-Collazo LA, Delgado-González A, Hernández-Lemus E, Castañeda-Priego R. Counterion accumulation effects on a suspension of DNA molecules: Equation of state and pressure-driven denaturation. J Chem Phys 2017; 146:164902. [PMID: 28456199 DOI: 10.1063/1.4981208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The study of the effects associated with the electrostatic properties of DNA is of fundamental importance to understand both its molecular properties at the single molecule level, like the rigidity of the chain, and its interaction with other charged bio-molecules, including other DNA molecules; such interactions are crucial to maintain the thermodynamic stability of the intra-cellular medium. In the present work, we combine the Poisson-Boltzmann mean-field theory with an irreversible thermodynamic approximation to analyze the effects of counterion accumulation inside DNA on both the denaturation profile of the chain and the equation of state of the suspension. To this end, we model the DNA molecule as a porous charged cylinder immersed in an aqueous solution. These thermo-electrostatic effects are explicitly studied in the particular case of some genes for which damage in their sequence is associated with diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Luz Adriana Nicasio-Collazo
- Division of Sciences and Engineering, Campus León, University of Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Alexandra Delgado-González
- Division of Sciences and Engineering, Campus León, University of Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| | - Ramón Castañeda-Priego
- Division of Sciences and Engineering, Campus León, University of Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| |
Collapse
|
13
|
Patra S, Anders C, Erwin N, Winter R. Osmolyte Effects on the Conformational Dynamics of a DNA Hairpin at Ambient and Extreme Environmental Conditions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Satyajit Patra
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Christian Anders
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Nelli Erwin
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Roland Winter
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
14
|
Patra S, Anders C, Erwin N, Winter R. Osmolyte Effects on the Conformational Dynamics of a DNA Hairpin at Ambient and Extreme Environmental Conditions. Angew Chem Int Ed Engl 2017; 56:5045-5049. [DOI: 10.1002/anie.201701420] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Satyajit Patra
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Christian Anders
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Nelli Erwin
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Roland Winter
- Physikalische Chemie I - Biophysikalische Chemie; Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
15
|
Gao M, Arns L, Winter R. Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Loana Arns
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
16
|
Gao M, Arns L, Winter R. Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angew Chem Int Ed Engl 2017; 56:2302-2306. [PMID: 28102930 DOI: 10.1002/anie.201611843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 12/31/2022]
Abstract
Folding of ribonucleic acids (RNAs) is driven by several factors, such as base pairing and stacking, chain entropy, and ion-mediated electrostatics, which have been studied in great detail. However, the power of background molecules in the cellular milieu is often neglected. Herein, we study the effect of common osmolytes on the folding equilibrium of a hairpin-structured RNA and, using pressure perturbation, provide novel thermodynamic and volumetric insights into the modulation mechanism. The presence of TMAO causes an increased thermal stability and a more positive volume change for the helix-to-coil transition, whereas urea destabilizes the hairpin and leads to an increased expansibility of the unfolded state. Further, we find a strong interplay between water, salt, and osmolyte in driving the thermodynamics and defining the temperature and pressure stability limit of the RNA. Our results support a universal working mechanism of TMAO and urea to (de)stabilize proteins and the RNA.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Loana Arns
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
17
|
Takahashi S, Sugimoto N. Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys Chem Chem Phys 2015; 17:31004-10. [DOI: 10.1039/c5cp04727g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pressure is an important physical stimulus that can influence the fate of cells by causing structural changes in biomolecules such as DNA.
Collapse
Affiliation(s)
- S. Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
| | - N. Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
18
|
Takahashi S, Sugimoto N. Effect of Pressure on the Stability of G-Quadruplex DNA: Thermodynamics under Crowding Conditions. Angew Chem Int Ed Engl 2013; 52:13774-8. [DOI: 10.1002/anie.201307714] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 12/11/2022]
|
19
|
Effect of Pressure on the Stability of G-Quadruplex DNA: Thermodynamics under Crowding Conditions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
González-Pérez A, Ruso JM. A Versatile Approach towards the Compaction, Decompaction, and Immobilization of DNA at Interfaces by Using Cyclodextrins. Chemphyschem 2013; 14:2544-53. [DOI: 10.1002/cphc.201300234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 12/19/2022]
|