1
|
Mou HZ, Zhao CL, Song J, Xing L, Chen HY, Xu JJ. Ambient Temperature Affects Protein Self-Assembly by Interfering with the Interfacial Aggregation Behavior. ACS OMEGA 2023; 8:24999-25008. [PMID: 37483188 PMCID: PMC10357426 DOI: 10.1021/acsomega.3c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Amyloid fibrillation is known to be associated with degenerative diseases, and mature fibrils are also considered as valuable biomedical materials. Thus, the mechanism and influencing factors of fibrillation have always been the focus of research. However, in vitro studies are always plagued by low reproducibility of kinetics and the molecular mechanism of amyloid fibrillation is under debate until now. Here, we identified the ambient temperature (AT) as a non-negligible interfering factor in in vitro self-assembly of globular protein hen egg-white lysozyme for the first time. By multimodal molecular spectroscopy methods, not only the effect of ATs on the kinetics of protein aggregation was described but also the conformational changes of the molecular structure with different ATs were captured. Through investigating the dependence of interfacial area and catalysis, the reason for this influence was construed by the various aggregation behaviors of protein molecules in the two-phase interface. The results suggest that in vitro mechanism research on protein fibrillation needs to first clarify the AT for a more accurate comparative analysis. The proposal of this concept will provide a new clue for a deeper understanding of the mechanism of protein self-assembly and may have an impact on evaluating the efficiency of amyloid accelerators or inhibitors based on the comparative analysis of protein self-assembly.
Collapse
|
2
|
Fan Z, Zhou X. Decoding the Role of Extracellular Polymeric Substances in Enhancing Nitrogen Removal from High-Ammonia and Low-C/N Wastewater in a Sequencing Batch Packed-Bed Biofilm Reactor. Polymers (Basel) 2023; 15:polym15061510. [PMID: 36987290 PMCID: PMC10051956 DOI: 10.3390/polym15061510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Although the role of extracellular polymeric substances (EPSs) as a viscous high-molecular polymer in biological wastewater treatment has been recognized, in-depth knowledge of how EPSs affect nitrogen removal remains limited in biofilm-based reactors. Herein, we explored EPS characteristics associated with nitrogen removal from high-ammonia (NH4+-N: 300 mg/L) and low carbon-to-nitrogen ratio (C/N: 2-3) wastewater in a sequencing batch packed-bed biofilm reactor (SBPBBR) under four different operating scenarios for a total of 112 cycles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared (FTIR) analysis revealed that the distinct physicochemical properties, interface microstructure, and chemical composition of the bio-carrier were conducive to biofilm formation and microbial immobilization and enrichment. Under the optimal conditions (C/N: 3, dissolved oxygen: 1.3 mg/L, and cycle time: 12 h), 88.9% ammonia removal efficiency (ARE) and 81.9% nitrogen removal efficiency (NRE) could be achieved in the SBPBBR. Based on visual and SEM observations of the bio-carriers, biofilm development, biomass concentration, and microbial morphology were closely linked with nitrogen removal performance. Moreover, FTIR and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy demonstrated that tightly bound EPSs (TB-EPSs) play a more important role in maintaining the stability of the biofilm. Significant shifts in the number, intensity, and position of fluorescence peaks of EPSs determined different nitrogen removal. More importantly, the high presence of tryptophan proteins and humic acids might promote advanced nitrogen removal. These findings uncover intrinsic correlations between EPSs and nitrogen removal for better controlling and optimizing biofilm reactors.
Collapse
Affiliation(s)
- Zheng Fan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
3
|
Alcicek FC, Blat A, Rutkowska W, Bulat K, Szczesny-Malysiak E, Franczyk-Zarow M, Kostogrys R, Dybas J, Marzec KM. Secondary structure alterations of RBC assessed by FTIR-ATR in correlation to 2,3-DPG levels in ApoE/LDLR -/- Mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121819. [PMID: 36084582 DOI: 10.1016/j.saa.2022.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we characterized the secondary structure alterations of intact red blood cells (RBCs) cytosol with special attention to the sex-related alterations in 8- and 24-week-old female and male ApoE/LDLR-/- mice, compared to age-matched female and male C57BL/6J control animals. Results were obtained with previously established methodology based on Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Additionally, we evaluated 2,3-DPG levels in the RBCs and showed its potential link to the hemoglobin (Hb) secondary structure alterations. Considering Hb structure alterations probed by FTIR-ATR, the ratio of turns to α-helices in 8-week-old ApoE/LDLR-/- mice suggested more pronounced secondary structure alterations within the RBCs than in the age-matched control. Sex-related differences were observed solely in 24-week-old male ApoE/LDLR-/- mice, which showed statistically significant increase in the secondary structure alterations compared to 24-week-old female ApoE/LDLR-/- mice. Similar to the secondary structure alterations, no sex-related differences were observed in the levels of 2,3-DPG in RBCs, except for 24-week-old male ApoE/LDLR-/- mice, which showed significantly higher levels compared to the age-matched female ApoE/LDLR-/- mice. Considering the age-related alterations, we observed significant increases in the intracellular 2,3-DPG of RBCs with animals' age in all studied groups, except for female ApoE/LDLR-/- mice, where a significant difference was not reported. This suggests the clear correlation between secondary structure of Hb alterations and 2,3-DPG levels for male and female murine RBC and proves a higher resistance of older female RBCs to the secondary structure changes with progression of atherosclerosis. Moreover, it may be concluded that higher 2,3-DPG levels in RBCs occurred in response to the secondary structure alterations of Hb in ApoE/LDLR-/- mice.
Collapse
Affiliation(s)
- Fatih Celal Alcicek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Aneta Blat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland
| | - Wiktoria Rutkowska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Łukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena Franczyk-Zarow
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Renata Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Łukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland.
| |
Collapse
|
4
|
Dasanayaka BP, Wang H, Li Z, Yu M, Ahmed AMM, Zhang Z, Lin H, Wang X. Evaluating the effects of processing on antigenicity and immunochemical detectability of fish proteins by ELISA. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Catalini S, Lutz-Bueno V, Usuelli M, Diener M, Taschin A, Bartolini P, Foggi P, Paolantoni M, Mezzenga R, Torre R. Multi-length scale structural investigation of lysozyme self-assembly. iScience 2022; 25:104586. [PMID: 35784788 PMCID: PMC9240868 DOI: 10.1016/j.isci.2022.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Reactive amyloid oligomers are responsible for cytotoxicity in amyloid pathologies and because of their unstable nature characterizing their behavior is a challenge. The physics governing the self-assembly of proteins in crowded conditions is extremely complex and its comprehension, despite its paramount relevance to understanding molecular mechanisms inside cells and optimizing pharmaceutical processes, remains inconclusive. Here, we focus on the amyloid oligomerization process in self-crowded lysozyme aqueous solutions in acidic conditions. We reveal that the amyloid oligomers form at high protein concentration and low pH. Through multi-length scale spectroscopic investigations, we find that amyloid oligomers can further interconnect with each other by weak and non-specific interactions forming an extended network that leads to the percolation of the whole system. Our multi-length scale structural analysis follows the thermal history of amyloid oligomers from different perspectives and highlights the impact of hierarchical self-assembly of biological macromolecules on functional properties. Use of multi-length scale spectroscopies to characterize unstable amyloid oligomers Lysozyme form thermo-labile amyloid oligomers in self-crowded conditions Amyloid oligomers interact and form an extended hydrogel network Amyloid oligomers are responsible for the existence of the hydrogel matrix
Collapse
|
6
|
Taurine Stabilizing Effect on Lysozyme. Life (Basel) 2022; 12:life12010133. [PMID: 35054526 PMCID: PMC8779517 DOI: 10.3390/life12010133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
Taurine is an important organic osmolyte in mammalian cells, and it weakens inflammation and oxidative stress mediated injuries in some diseases. Recently, taurine has been demonstrated to play a therapeutic role against neurodegenerative disorders, although its parallel involvement in several biochemical mechanisms makes not clear taurine specific role in these diseases. Furthermore, the stabilizing effect of this molecule in terms of protein stability is known, but not deeply investigated. In this work we explore by Circular Dichroism the stabilizing impact of taurine in lysozyme thermal denaturation and its influence in lysozyme aggregation into amyloid fibrils. Taurine even at low concentration modifies protein-protein interactions in lysozyme native state, as revealed by Small Angle X-ray Scattering experiments, and alters the amyloid aggregation pattern without completely inhibiting it, as confirmed by UV/Vis spectroscopy with Congo Red and by Atomic Force Microscopy. Evaluation of the cytotoxicities of the amyloid fibrils grown in presence or in absence of taurine is investigated on SH-SY5Y neuroblastoma cells.
Collapse
|
7
|
Zaidi N, Ajmal MR, Zaidi SA, Khan RH. Mechanistic In Vitro Dissection of the Inhibition of Amyloid Fibrillation by n-Acetylneuraminic Acid: Plausible Implication in Therapeutics for Neurodegenerative Disorders. ACS Chem Neurosci 2022; 13:69-80. [PMID: 34878262 DOI: 10.1021/acschemneuro.1c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of neurodegenerative disorders including Parkinson's disease are due to fibrillation in amyloidogenic proteins. The development of therapeutics for these disorders is a topic of extensive research as effective treatments are still unavailable. The present study establishes that n-acetylneuraminic acid (Neu5ac) inhibits the amyloid fibrillation of hen egg-white lysozyme (HEWL) and α-synuclein (SYN), as observed using various biophysical techniques and cellular assays. Neu5ac inhibits the amyloid formation in both proteins, as suggested from the reduction in the ThT fluorescence and remnant structures in transmission electron microscopy micrographs observed in its presence. In HEWL fibrillation, Neu5ac decreases the hydrophobicity and resists the transition of the α-helix to a β-sheet, as observed by an ANS binding assay, circular dichroism (CD) spectra, and Fourier transform infrared measurements, respectively. Neu5ac stabilizes the states that facilitate the amyloid formation in HEWL and SYN, as demonstrated by an enhanced intrinsic fluorescence in its presence, which is further confirmed by an increase in Tm obtained from differential scanning calorimetry thermograms and an increase in the near-UV CD signal for HEWL with Neu5ac. However, the increase in stability is not a manifestation of Neu5ac binding to amyloid facilitating (partially folded or native) states of both proteins, as verified by isothermal titration calorimetry and fluorescence binding measurements. Besides, Neu5ac also attenuates the cytotoxicity of amyloid fibrils, as evaluated by a cell toxicity assay. These findings provide mechanistic insights into the Neu5ac action against amyloid fibrillation and may establish it as a plausible inhibitor molecule against neurodegenerative disorders.
Collapse
Affiliation(s)
- Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Syed Adeel Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
8
|
Han Q, Binns J, Zhai J, Guo X, Ryan TM, Drummond CJ, Greaves TL. Insights on lysozyme aggregation in protic ionic liquid solvents by using small angle X-ray scattering and high throughput screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Espeche Turbay MB, Rey V, Dorado RD, Sosa MC, Borsarelli CD. Silver nanoparticle-protein interactions and the role of lysozyme as an antagonistic antibacterial agent. Colloids Surf B Biointerfaces 2021; 208:112030. [PMID: 34419807 DOI: 10.1016/j.colsurfb.2021.112030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/07/2021] [Indexed: 11/30/2022]
Abstract
The photoreductive synthesis and antibacterial activity of silver nanoparticles (AgNP) prepared in the presence of bovine serum albumin (BSA) and lysozyme (LZ) were evaluated. AgNP@BSA showed similar antibacterial activity to those stabilized with citrate (AgNP@CIT) and to an AgNO3 solution, suggesting the releases of Ag+ as the mechanism of death. In contrast, AgNP@LZ solutions showed no activity, although LZ behaves as a moderately antibacterial peptide. Furthermore, the addition of LZ to the AgNP@CIT or AgNP@BSA solutions induced their agglomeration and suppressed their original antibacterial efficacy. This antagonistic antibacterial effect exerted by LZ on AgNPs is associated with electrostatic interactions exerted by LZ. Specific metal-LZ interactions produce a harder protein corona on AgNP@LZ that retains Ag+, while LZ acts as a glue for AgNP@CIT or AgNP@LZ due to its opposite electrical charge, besides strong binding to Ag+avoiding the bactericide effect. Therefore, bactericidal effects of AgNP in biological media may be modulated by specific protein interactions.
Collapse
Affiliation(s)
- M Beatriz Espeche Turbay
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina; ICQ - Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina.
| | - Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina; ICQ - Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina
| | - Rita D Dorado
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Marcelo C Sosa
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Claudio D Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina; ICQ - Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina.
| |
Collapse
|
10
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Catalini S, Perinelli DR, Sassi P, Comez L, Palmieri GF, Morresi A, Bonacucina G, Foggi P, Pucciarelli S, Paolantoni M. Amyloid Self-Assembly of Lysozyme in Self-Crowded Conditions: The Formation of a Protein Oligomer Hydrogel. Biomacromolecules 2021; 22:1147-1158. [PMID: 33600168 PMCID: PMC8023603 DOI: 10.1021/acs.biomac.0c01652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A method
is designed to quickly form protein hydrogels, based on
the self-assembly of highly concentrated lysozyme solutions in acidic
conditions. Their properties can be easily modulated by selecting
the curing temperature. Molecular insights on the gelation pathway,
derived by in situ FTIR spectroscopy, are related to calorimetric
and rheological results, providing a consistent picture on structure–property
correlations. In these self-crowded samples, the thermal unfolding
induces the rapid formation of amyloid aggregates, leading to temperature-dependent
quasi-stationary levels of antiparallel cross β-sheet links,
attributed to kinetically trapped oligomers. Upon subsequent cooling,
thermoreversible hydrogels develop by the formation of interoligomer
contacts. Through heating/cooling cycles, the starting solutions can
be largely recovered back, due to oligomer-to-monomer dissociation
and refolding. Overall, transparent protein hydrogels can be easily
formed in self-crowding conditions and their properties explained,
considering the formation of interconnected amyloid oligomers. This
type of biomaterial might be relevant in different fields, along with
analogous systems of a fibrillar nature more commonly considered.
Collapse
Affiliation(s)
- Sara Catalini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Lucia Comez
- IOM-CNR c/o Department of Physics and Geology, University of Perugia, 060123 Perugia, Italy
| | | | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.,National Metrological Research Institute (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
12
|
Heat-induced self-assembling of BSA at the isoelectric point. Int J Biol Macromol 2021; 177:40-47. [PMID: 33607130 DOI: 10.1016/j.ijbiomac.2021.02.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
Materials based on ordered protein aggregates have recently received a lot of attention for their application as drug carriers, due to their biocompatibility and their ability to sequester many biological fluids. Bovine serum albumin (BSA) is a good candidate for this use due to its high availability and tendency to aggregate and gel under acidic conditions. In the present work, we employ spectroscopic techniques to investigate the heat-induced BSA aggregation at the molecular scale, in the 12-84 °C temperature range, at pH = 5 where two different isoforms of the protein are stable. Samples at low and high protein concentration are examined. With the advantage of the combined use of FTIR and CD, we recognize the aggregation-prone species and the different distribution of secondary structures, conformational rearrangements and types of aggregates, of millimolar compared to micromolar BSA solutions. Further, as a new tool, we use the Maximum Entropy Method to fit the kinetic curves to investigate the distribution of kinetic constants of the complex hierarchical aggregation process. Finally, we characterize the activation energy of the initial self-assembling step to observe that the formation of both small and large aggregates is driven by the same interactions.
Collapse
|
13
|
Beaussart A, Retourney C, Quilès F, Dos Santos Morais R, Gaiani C, Fiérobe HP, El-Kirat-Chatel S. Supported lysozyme for improved antimicrobial surface protection. J Colloid Interface Sci 2021; 582:764-772. [DOI: 10.1016/j.jcis.2020.08.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
|
14
|
Bil M, Hipś I, Mrówka P, Święszkowski W. Studies on enzymatic degradation of multifunctional composite consisting of chitosan microspheres and shape memory polyurethane matrix. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Temperature dependent aggregation mechanism and pathway of lysozyme: By all atom and coarse grained molecular dynamics simulation. J Mol Graph Model 2020; 103:107816. [PMID: 33291026 DOI: 10.1016/j.jmgm.2020.107816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Aggregation of protein causes various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. It was found that aggregation of protein depends on many factors like temperature, pH, salt type, salt concentration, ionic strength, protein concentration, co solutes. Here we have tried to capture the aggregation mechanism and pathway of hen egg white lysozyme using molecular dynamics simulations at two different temperatures; 300 K and 340 K. Along with the all atom simulations to get the atomistic details of aggregation mechanism, we have used coarse grained simulation with MARTINI force field to monitor the aggregation for longer duration. Our results suggest that due to the aggregation, changes in the conformation of lysozyme are more at 340 K than at 300 K. The change in the conformation of the lysozyme at 300 K is mainly due to aggregation where at 340 K change in conformation of lysozyme is due to both aggregation and temperature. Also, a more compact aggregated system is formed at 340 K.
Collapse
|
16
|
Han Q, Smith KM, Darmanin C, Ryan TM, Drummond CJ, Greaves TL. Lysozyme conformational changes with ionic liquids: Spectroscopic, small angle x-ray scattering and crystallographic study. J Colloid Interface Sci 2020; 585:433-443. [PMID: 33109332 DOI: 10.1016/j.jcis.2020.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 10/07/2020] [Indexed: 01/14/2023]
Abstract
Solvents that support protein functionality are important for biochemical applications, and new solvents are required. Here we employ FTIR and fluorescence spectroscopies, small angle X-ray scattering (SAXS) and X-ray crystallography to understand conformational changes of lysozyme with ionic liquids (ILs) added. Spectroscopic techniques identified that the secondary structure of lysozyme was maintained at the lower IL concentrations of 1 and 5 mol%, though the Tryptophan environment was significantly altered with nitrate-based ILs present. SAXS experiments indicated that the radius of gyration of lysozyme increased with 1 mol% IL present, and then decreased with increasing IL concentrations. The tertiary structure, particularly the loop regions, changed as a function of IL concentration, and this depended on the IL type. The crystallographic structure of lysozyme with the IL of ethylammonium nitrate present confirmed the loop region was extended, and identified three specific binding sites with nitrate ions, and that the positively charged areas were IL sensitive regions. This work provides a detailed understanding of lysozyme conformational changes in the presence of ILs. This approach can be extended to other functionally-important proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Kate M Smith
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, VIC 3086, Australia
| | - Timothy M Ryan
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
17
|
Kanthe AD, Krause M, Zheng S, Ilott A, Li J, Bu W, Bera MK, Lin B, Maldarelli C, Tu RS. Armoring the Interface with Surfactants to Prevent the Adsorption of Monoclonal Antibodies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9977-9988. [PMID: 32013386 DOI: 10.1021/acsami.9b21979] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pharmaceutical industry uses surface-active agents (excipients) in protein drug formulations to prevent the aggregation, denaturation, and unwanted immunological response of therapeutic drugs in solution as well as at the air/water interface. However, the mechanism of adsorption, desorption, and aggregation of proteins at the interface in the presence of excipients remains poorly understood. The objective of this work is to explore the molecular-scale competitive adsorption process between surfactant-based excipients and two monoclonal antibody (mAb) proteins, mAb-1 and mAb-2. We use pendant bubble tensiometry to measure the ensemble average adsorption dynamics of mAbs with and without the excipient. The surface tension measurements allow us to quantify the rate at which the molecules "race" to the interface in single-component and mixed systems. These results define the phase space, where coadsorption of both mAbs and excipients occurs onto the air/water interface. In parallel, we use X-ray reflectivity (XR) measurements to understand the molecular-scale dynamics of competitive adsorption, revealing the surface-adsorbed amounts of the antibody and excipient. XR has revealed that at a sufficiently high surface concentration of the excipient, mAb adsorption to the surface and subsurface domains was inhibited. In addition, despite the fact that both mAbs adsorb via a similar mechanistic pathway and with similar dynamics, a key finding is that the competition for the interface directly correlates with the surface activity of the two mAbs, resulting in a fivefold difference in the concentration of the excipient needed to displace the antibody.
Collapse
Affiliation(s)
- Ankit D Kanthe
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
| | - Mary Krause
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Songyan Zheng
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Andrew Ilott
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Jinjiang Li
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Wei Bu
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Mrinal K Bera
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Binhua Lin
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Charles Maldarelli
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
- Levich Institute , The City College of New York , New York , New York 10031 United States
| | - Raymond S Tu
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
| |
Collapse
|
18
|
Tong P, Xiong L, Gao J, Li X, Wu Z, Yang A, Yuan J, Wu Y, Chen H. Influence of heat treatment and egg matrix on the physicochemical and allergenic properties of egg custard. J Food Sci 2020; 85:789-799. [PMID: 32078753 DOI: 10.1111/1750-3841.15065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 11/27/2022]
Abstract
To investigate the influence of heat treatment and egg matrix on egg custard (EC) proteins, 12 different kinds of ECs with different egg/water ratios (1:1, 1:1.5, 1:2, or 1:3, v/v) and different heating temperatures (80, 90, or 100 °C) and times (10, 15, or 20 min) were prepared and evaluated for the digestibility, structure, eliciting capacity and sensitizing capacity using SDS-PAGE, fluorescence spectra, ELISA, and a BALB/c mouse model, respectively. The physicochemical properties of EC proteins were significantly affected by heat treatment and egg matrix, which showed the increased digestibility and partially unfolded structure. The eliciting capacity of EC evaluated by IgE binding to sera from egg-allergic patients was reduced after heat treatment, and the EC made by heating at 100 °C for 20 min with a whole egg/water ratio of 1:2 (v/v) was the weakest. The sensitizing capacity of EC was also reduced in the BALB/c mouse model, which showed the significantly decreased levels of specific IgE, IgG, IgG1 and IgG2a, mMCP-1 and histamine in the mouse sera, as well as cytokine secretions of IL-4, IL-5, and IL-13, compared with the raw egg (RE) group. Results demonstrate that heat treatment and egg matrix significantly reduced the eliciting and sensitizing capacity of EC by changing the tertiary structure and increasing the digestibility of EC proteins. PRACTICAL APPLICATION: Egg custard (EC) is one kind of savory food suitable for all ages, and is also a traditional supplementary food for infants and young children in China. However, limited information is available on the allergenicity of egg custard. In this work, we evaluated how the structure, digestibility, and allergenic potential of egg allergens in EC were altered by the degree of thermal treatment and egg matrix, and elucidated the links between the physicochemical properties and allergenic potential of EC affected by heat treatment and egg matrix. Our results demonstrate that heat treatment and egg matrix significantly reduced the eliciting and sensitizing capacity of EC by changing the tertiary structure and increasing the digestibility of EC proteins.
Collapse
Affiliation(s)
- Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, P. R. China.,School of Food Science & Technology, Nanchang Univ., Nanchang, 330047, P. R. China
| | - Liji Xiong
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, P. R. China
| | - Jinyan Gao
- School of Food Science & Technology, Nanchang Univ., Nanchang, 330047, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, P. R. China.,School of Food Science & Technology, Nanchang Univ., Nanchang, 330047, P. R. China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, P. R. China.,Sino-German Joint Research Inst., Nanchang Univ., Nanchang, 330047, P. R. China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, P. R. China.,Sino-German Joint Research Inst., Nanchang Univ., Nanchang, 330047, P. R. China
| | - Juanli Yuan
- School of Pharmaceutical Science, Nanchang Univ., Nanchang, 330047, P. R. China
| | - Yong Wu
- Sino-German Joint Research Inst., Nanchang Univ., Nanchang, 330047, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, P. R. China.,Sino-German Joint Research Inst., Nanchang Univ., Nanchang, 330047, P. R. China
| |
Collapse
|
19
|
Uttinger MJ, Wawra SE, Guckeisen T, Walter J, Bear A, Thajudeen T, Sherwood PJ, Smith A, Wagemans AM, Stafford WF, Peukert W. A Comprehensive Brownian Dynamics Approach for the Determination of Non-ideality Parameters from Analytical Ultracentrifugation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11491-11502. [PMID: 31385708 DOI: 10.1021/acs.langmuir.9b01916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brownian dynamics (BD) has been applied as a comprehensive tool to model sedimentation and diffusion of nanoparticles in analytical ultracentrifugation (AUC) experiments. In this article, we extend the BD algorithm by considering space-dependent diffusion and solvent compressibility. With this, the changes in the sedimentation and diffusion coefficient from altered solvent properties at increased pressures are accurately taken into account. Moreover, it is demonstrated how the concept of space-dependent diffusion is employed to describe concentration-dependent sedimentation and diffusion coefficients, in particular, through the Gralen coefficient and the second virial coefficient. The influence of thermodynamic nonideality on diffusional properties can be accurately simulated and agree with well-known evaluation tools. BD simulations for sedimentation equilibrium and sedimentation velocity (SV) AUC experiments including effects of hydrodynamic and thermodynamic nonideality are validated by global evaluation in SEDANAL. The interplay of solvent compressibility and retrieved nonideality parameters can be studied utilizing BD. Finally, the second virial coefficient is determined for lysozyme from SV AUC experiments and BD simulations and compared to membrane osmometry. These results are in line with DLVO theory. In summary, BD simulations are established for the validation of nonideal sedimentation in AUC providing a sound basis for the evaluation of complex interactions even in polydisperse systems.
Collapse
Affiliation(s)
- Maximilian J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Simon E Wawra
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Tobias Guckeisen
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Johannes Walter
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| | - Andreas Bear
- PULS Group, Department of Physics, Interdisciplinary Center of Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstrasse 3 , 91058 Erlangen , Germany
| | - Thaseem Thajudeen
- School of Mechanical Sciences , Indian Institute of Technology Goa , Goa College of Engineering Campus , Farmagudi, 403401 Ponda , Goa , India
| | - Peter J Sherwood
- Interactive Technology Inc. , P.O. Box 2768, Oakland , 94602 California , United States
| | - Ana Smith
- PULS Group, Department of Physics, Interdisciplinary Center of Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstrasse 3 , 91058 Erlangen , Germany
| | - Anja M Wagemans
- Institute of Food Technology and Food Chemistry , Technical University Berlin , Königin Luise-Str. 22 , 14195 Berlin , Germany
| | - Walter F Stafford
- Department of Neurology , Harvard Medical School , 220 Longwood Avenue Goldenson Building , Boston , 02115 Massachusetts , United States
| | - Wolfgang Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany
| |
Collapse
|
20
|
Probing Globular Protein Self-Assembling Dynamics by Heterodyne Transient Grating Experiments. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we studied the propagation of ultrasonic waves of lysozyme solutions characterized by different degrees of aggregation and networking. The experimental investigation was performed by means of the transient grating (TG) spectroscopy as a function of temperature, which enabled measurement of the ultrasonic acoustic proprieties over a wide time window, ranging from nanoseconds to milliseconds. The fitting of the measured TG signal allowed the extraction of several dynamic properties, here we focused on the speed and the damping rate of sound. The temperature variation induced a series of processes in the lysozyme solutions: Protein folding-unfolding, aggregation and sol–gel transition. Our TG investigation showed how these self-assembling phenomena modulate the sound propagation, affecting both the velocity and the damping rate of the ultrasonic waves. In particular, the damping of ultrasonic acoustic waves proved to be a dynamic property very sensitive to the protein conformational rearrangements and aggregation processes.
Collapse
|
21
|
Huda N, Hossain M, Bhuyan AK. Complete observation of all structural, conformational, and fibrillation transitions of monomeric globular proteins at submicellar sodium dodecyl sulfate concentrations. Biopolymers 2019; 110:e23255. [PMID: 30633322 DOI: 10.1002/bip.23255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/06/2022]
Abstract
Although considerable information is available regarding protein-sodium dodecyl sulfate (SDS) interactions, it is still unclear as to how much SDS is needed to denature proteins. The role of protein charge and micellar surfactant concentration on amyloid fibrillation is also unclear. This study reports on equilibrium measurements of SDS interaction with six model proteins and analyzes the results to obtain a general understanding of conformational breakdown, reorganization and restructuring of secondary structure, and entry into the amyloid fibrillar state. Significantly, all of these responses are entirely resolved at much lower than the critical micellar concentration (CMC) of SDS. Electrostatic interaction of the dodecyl sulfate anion (DS- ) with positive surface potential on the protein can completely unfold both secondary and tertiary structures, which is followed by protein chain restructuration to α-helices. All SDS-denatured proteins contain more α-helices than the corresponding native state. SDS interaction stochastically drives proteins to the aggregated fibrillar state.
Collapse
Affiliation(s)
- Noorul Huda
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Mujahid Hossain
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Abani K Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
22
|
Al-Ayoubi SR, Schummel PH, Golub M, Peters J, Winter R. Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme. Phys Chem Chem Phys 2018; 19:14230-14237. [PMID: 28447688 DOI: 10.1039/c7cp00705a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied the effects of temperature and hydrostatic pressure on the dynamical properties and folding stability of highly concentrated lysozyme solutions in the absence and presence of the osmolytes trimethylamine-N-oxide (TMAO) and urea. Elastic incoherent neutron scattering (EINS) was applied to determine the mean-squared displacement (MSD) of the protein's hydrogen atoms to yield insights into the effects of these cosolvents on the averaged sub-nanosecond dynamics in the pressure range from ambient up to 4000 bar. To evaluate the additional effect of self-crowding, two protein concentrations (80 and 160 mg mL-1) were used. We observed a distinct effect of TMAO on the internal hydrogen dynamics, namely a reduced mobility. Urea, on the other hand, revealed no marked effect and consequently, no counteracting effect in an urea-TMAO mixture was observed. Different from the less concentrated protein solution, no significant effect of pressure on the MSD was observed for 160 mg mL-1 lysozyme. The EINS experiments were complemented by Fourier-transform infrared (FTIR) spectroscopy measurements, which led to additional insights into the folding stability of lysozyme under the various environmental conditions. We observed a stabilization of the protein in the presence of the compatible osmolyte TMAO and a destabilization in the presence of urea against temperature and pressure for both protein concentrations. Additionally, we noticed a slight destabilizing effect upon self-crowding at very high protein concentration (160 mg mL-1), which is attributable to transient destabilizing intermolecular interactions. Furthermore, a pressure-temperature diagram could be obtained for lysozyme at these high protein concentrations that mimics densely packed intracellular conditions.
Collapse
Affiliation(s)
- S R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| | | | | | | | | |
Collapse
|
23
|
Ruggeri FS, Habchi J, Cerreta A, Dietler G. AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species. Curr Pharm Des 2017; 22:3950-70. [PMID: 27189600 PMCID: PMC5080865 DOI: 10.2174/1381612822666160518141911] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Background A wide class of human diseases and neurodegenerative disorders, such as Alzheimer’s disease, is due to the failure of a specific peptide or protein to keep its native functional conformational state and to undergo a conformational change into a misfolded state, triggering the formation of fibrillar cross-β sheet amyloid aggregates. During the fibrillization, several coexisting species are formed, giving rise to a highly heterogeneous mixture. Despite its fundamental role in biological function and malfunction, the mechanism of protein self-assembly and the fundamental origins of the connection between aggregation, cellular toxicity and the biochemistry of neurodegeneration remains challenging to elucidate in molecular detail. In particular, the nature of the specific state of proteins that is most prone to cause cytotoxicity is not established. Methods: In the present review, we present the latest advances obtained by Atomic Force Microscopy (AFM) based techniques to unravel the biophysical properties of amyloid aggregates at the nanoscale. Unraveling amyloid single species biophysical properties still represents a formidable experimental challenge, mainly because of their nanoscale dimensions and heterogeneous nature. Bulk techniques, such as circular dichroism or infrared spectroscopy, are not able to characterize the heterogeneity and inner properties of amyloid aggregates at the single species level, preventing a profound investigation of the correlation between the biophysical properties and toxicity of the individual species. Conclusion: The information delivered by AFM based techniques could be central to study the aggregation pathway of proteins and to design molecules that could interfere with amyloid aggregation delaying the onset of misfolding diseases.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Mazurenko S, Kunka A, Beerens K, Johnson CM, Damborsky J, Prokop Z. Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating. Sci Rep 2017; 7:16321. [PMID: 29176711 PMCID: PMC5701188 DOI: 10.1038/s41598-017-16360-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/10/2017] [Indexed: 01/14/2023] Open
Abstract
Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.
Collapse
Affiliation(s)
- Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Koen Beerens
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Christopher M Johnson
- Biophysics Facilities, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
25
|
Yan LJ, Fang XT, Liu Y, Zhang CL, Chen H. Polymorphisms and their Haplotype Combinations in the Lysozyme Gene Associated with the Production Traits of a Chinese Native Chicken Breed. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- LJ Yan
- Jiangsu Normal University, China; Nantong College of Science and Technology, China
| | - XT Fang
- Jiangsu Normal University, China
| | - Y Liu
- Jiangsu Normal University, China
| | - CL Zhang
- Jiangsu Normal University, China
| | - H Chen
- Jiangsu Normal University, China
| |
Collapse
|
26
|
Hackl EV, Khutoryanskiy VV, Ermolina I. Hydrogels based on copolymers of 2-hydroxyethylmethacrylate and 2-hydroxyethylacrylate as a delivery system for proteins: Interactions with lysozyme. J Appl Polym Sci 2017. [DOI: 10.1002/app.44768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen V. Hackl
- Leicester School of Pharmacy; De Montfort University; Leicester United Kingdom
| | | | - Irina Ermolina
- Leicester School of Pharmacy; De Montfort University; Leicester United Kingdom
| |
Collapse
|
27
|
Molchanov S, Faizullin DA, Nesmelova IV. Theoretical and Experimental Investigation of the Translational Diffusion of Proteins in the Vicinity of Temperature-Induced Unfolding Transition. J Phys Chem B 2016; 120:10192-10198. [PMID: 27628181 DOI: 10.1021/acs.jpcb.6b05834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translational diffusion is the most fundamental form of transport in chemical and biological systems. The diffusion coefficient is highly sensitive to changes in the size of the diffusing species; hence, it provides important information on the variety of macromolecular processes, such as self-assembly or folding-unfolding. Here, we investigate the behavior of the diffusion coefficient of a macromolecule in the vicinity of heat-induced transition from folded to unfolded state. We derive the equation that describes the diffusion coefficient of the macromolecule in the vicinity of the transition and use it to fit the experimental data from pulsed-field-gradient nuclear magnetic resonance (PFG NMR) experiments acquired for two globular proteins, lysozyme and RNase A, undergoing temperature-induced unfolding. A very good qualitative agreement between the theoretically derived diffusion coefficient and experimental data is observed.
Collapse
Affiliation(s)
- Stanislav Molchanov
- National Research University "Higher School of Economics" , Moscow 101000, Russia
| | | | | |
Collapse
|
28
|
Giugliarelli A, Urbanelli L, Ricci M, Paolantoni M, Emiliani C, Saccardi R, Mazzanti B, Lombardini L, Morresi A, Sassi P. Evidence of DMSO-Induced Protein Aggregation in Cells. J Phys Chem A 2016; 120:5065-70. [DOI: 10.1021/acs.jpca.6b00178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Giugliarelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - L. Urbanelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - M. Ricci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
- Istituto di Biofisica CNR (IBF-CNR), Unità di Trento, & FBK, Via Sommarive 18, 38123 Trento, Italy
| | - M. Paolantoni
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - C. Emiliani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - R. Saccardi
- Banca
del Sangue Cordonale, Azienda Ospedaliera Universitaria Careggi, 50134 Firenze, Italy
| | - B. Mazzanti
- Banca
del Sangue Cordonale, Azienda Ospedaliera Universitaria Careggi, 50134 Firenze, Italy
| | - L. Lombardini
- Banca
del Sangue Cordonale, Azienda Ospedaliera Universitaria Careggi, 50134 Firenze, Italy
| | - A. Morresi
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - P. Sassi
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| |
Collapse
|
29
|
Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:937-946. [PMID: 26796491 DOI: 10.1021/acs.langmuir.5b03616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are unique fibrous polypeptide aggregates. They have been associated with more than 20 serious human diseases including Alzheimer's disease and Parkinson's disease. Besides their pathological significance, amyloid fibrils are also gaining increasing attention as emerging nanomaterials with novel functions. Structural characterization of amyloid fibril is no doubt fundamentally important for the development of therapeutics for amyloid-related diseases and for the rational design of amyloid-based materials. In this study, we explored to use side-chain-based infrared (IR) probe to gain detailed structural insights into the amyloid fibril by a 21-residue model amyloidogenic peptide, Aβ(8-28). We first proposed an approach to incorporate thiocyanate (SCN) IR probe in a site-specific manner into amyloidogenic peptide using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as cyanylating agent. Using this approach, we obtained three Aβ(8-28) variants, labeled with SCN probe at three different positions. We then showed with thioflavin T fluorescence assay, Congo red assay, and atomic force microscopy that the three labeled Aβ(8-28) peptides can quickly form amyloid fibrils under high concentration and high salt conditions. Finally, we performed a detailed IR spectral analysis of the Aβ(8-28) fibril in both amide I and probe regions and proposed a millipede-like structure for the Aβ(8-28) fibril.
Collapse
Affiliation(s)
- Yachao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Yan Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| |
Collapse
|
30
|
Volpatti LR, Shimanovich U, Ruggeri FS, Bolisetty S, Müller T, Mason TO, Michaels TCT, Mezzenga R, Dietler G, Knowles TPJ. Micro- and nanoscale hierarchical structure of core–shell protein microgels. J Mater Chem B 2016; 4:7989-7999. [DOI: 10.1039/c6tb02683d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this work, we fabricate core–shell protein microgels stabilized by protein fibrillation with hierarchical structuring on scales ranging from a few nanometers to tens of microns.
Collapse
Affiliation(s)
| | - Ulyana Shimanovich
- Department of Chemistry
- University of Cambridge
- UK
- Department of Materials and Interfaces
- Weizmann Institute of Science
| | - Francesco Simone Ruggeri
- Department of Chemistry
- University of Cambridge
- UK
- Institute of Physics
- Laboratory of the Physics of Living Matter
| | - Sreenath Bolisetty
- Food and Soft Materials Science
- Institute of Food
- Nutrition and Health
- ETH Zurich
- CH-8092 Zurich
| | | | | | | | - Raffaele Mezzenga
- Food and Soft Materials Science
- Institute of Food
- Nutrition and Health
- ETH Zurich
- CH-8092 Zurich
| | - Giovanni Dietler
- Institute of Physics
- Laboratory of the Physics of Living Matter
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry
- University of Cambridge
- UK
- Cavendish Laboratory
- Department of Physics
| |
Collapse
|
31
|
Giugliarelli A, Tarpani L, Latterini L, Morresi A, Paolantoni M, Sassi P. Spectroscopic and Microscopic Studies of Aggregation and Fibrillation of Lysozyme in Water/Ethanol Solutions. J Phys Chem B 2015; 119:13009-17. [DOI: 10.1021/acs.jpcb.5b07487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alessandra Giugliarelli
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luigi Tarpani
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Assunta Morresi
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
32
|
Lewis EN, Qi W, Kidder LH, Amin S, Kenyon SM, Blake S. Combined dynamic light scattering and Raman spectroscopy approach for characterizing the aggregation of therapeutic proteins. Molecules 2014; 19:20888-905. [PMID: 25514228 PMCID: PMC6271152 DOI: 10.3390/molecules191220888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 11/16/2022] Open
Abstract
Determination of the physicochemical properties of protein therapeutics and their aggregates is critical for developing formulations that enhance product efficacy, stability, safety and manufacturability. Analytical challenges are compounded for materials: (1) that are formulated at high concentration, (2) that are formulated with a variety of excipients, and (3) that are available only in small volumes. In this article, a new instrument is described that measures protein secondary and tertiary structure, as well as molecular size, over a range of concentrations and formulation conditions of low volume samples. Specifically, characterization of colloidal and conformational stability is obtained through a combination of two well-established analytical techniques: dynamic light scattering (DLS) and Raman spectroscopy, respectively. As the data for these two analytical modalities are collected on the same sample at the same time, the technique enables direct correlation between them, in addition to the more straightforward benefit of minimizing sample usage by providing multiple analytical measurements on the same aliquot non-destructively. The ability to differentiate between unfolding and aggregation that the combination of these techniques provides enables insights into underlying protein aggregation mechanisms. The article will report on mechanistic insights for aggregation that have been obtained from the application of this technique to the characterization of lysozyme, which was evaluated as a function of concentration and pH.
Collapse
Affiliation(s)
- E Neil Lewis
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Wei Qi
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Linda H Kidder
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Samiul Amin
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Stacy M Kenyon
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| | - Steven Blake
- Malvern Biosciences Inc., 7221 Lee Deforest Drive, Suite 300, Columbia, MD 21046, USA.
| |
Collapse
|
33
|
Yang SY, Chen YJ, Kao PH, Chang LS. Bovine serum albumin with glycated carboxyl groups shows membrane-perturbing activities. Arch Biochem Biophys 2014; 564:43-51. [PMID: 25449061 DOI: 10.1016/j.abb.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 01/30/2023]
Abstract
The aim of the present study aimed to investigate whether glycated bovine serum albumin (BSA) showed novel activities on the lipid-water interface. Mannosylated BSA (Man-BSA) was prepared by modification of the carboxyl groups with p-aminophenyl α-d-mannopyranoside. In contrast to BSA, Man-BSA notably induced membrane permeability of egg yolk phosphatidylcholine (EYPC)/egg yolk sphingomyelin (EYSM)/cholesterol (Chol) and EYPC/EYSM vesicles. Noticeably, Man-BSA induced the fusion of EYPC/EYSM/Chol vesicles, but not of EYPC/EYSM vesicles. Although BSA and Man-BSA showed similar binding affinity for lipid vesicles, the lipid-bound conformation of Man-BSA was distinct from that of BSA. Moreover, Man-BSA adopted distinct structure upon binding with the EYPC/EYSM/Chol and EYPC/EYSM vesicles. Man-BSA could induce the fusion of EYPC/EYSM/Chol vesicles with K562 and MCF-7 cells, while Man-BSA greatly induced the leakage of Chol-depleted K562 and MCF-7 cells. The modified BSA prepared by conjugating carboxyl groups with p-aminophenyl α-d-glucopyranoside also showed membrane-perturbing activities. Collectively, our data indicate that conjugation of carboxyl groups with monosaccharide generates functional BSA with membrane-perturbing activities on the lipid-water interface.
Collapse
Affiliation(s)
- Shin-Yi Yang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
34
|
Zou Y, Hao W, Li H, Gao Y, Sun Y, Ma G. New insight into amyloid fibril formation of hen egg white lysozyme using a two-step temperature-dependent FTIR approach. J Phys Chem B 2014; 118:9834-43. [PMID: 25080318 DOI: 10.1021/jp504201k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hen egg white lysozyme (HEWL) is widely used in the mechanistic study of amyloid fibril formation. Yet, the fibrillation mechanism of HEWL is not well understood. In particular, in situ structural evidence for the on-pathway oligomeric intermediate has never been captured. Such evidence is crucial for confirming nucleated conformational conversion mechanism. Herein, we attempt to use a two-step temperature-dependent Fourier transform infrared (FTIR) approach to capture the in situ evidence for the on-pathway oligomeric intermediate and the oligomer-to-fibril transition during HEWL fibrillation. Key features of this approach include using lower temperature to generate the on-pathway oligomeric intermediate, using elevated temperature to eliminate the interference from the off-pathway oligomer and to facilitate the oligomer-to-fibril transition, and using FTIR difference spectroscopy and atomic force microscopy to tackle structure and morphology. Using such an approach, we reveal that the on-pathway oligomeric intermediate is in parallel β-sheet configuration featuring a frequency at 1622 cm(-1) and the oligomer-to-fibril transition is accompanied by a spectral transition from 1622 to 1618 cm(-1). We also discover the beneficial role of the off-pathway oligomer in the capturing of the transient on-pathway oligomeric intermediate by serving as a monomer-releasing reservoir. This approach should also be useful in other amyloidogenic systems.
Collapse
Affiliation(s)
- Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | | | | | | | | | | |
Collapse
|
35
|
Perticaroli S, Nickels JD, Ehlers G, Mamontov E, Sokolov AP. Dynamics and rigidity in an intrinsically disordered protein, β-casein. J Phys Chem B 2014; 118:7317-26. [PMID: 24918971 DOI: 10.1021/jp503788r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of intrinsically disordered proteins (IDPs) as a recognized structural class has forced the community to confront a new paradigm of structure, dynamics, and mechanical properties for proteins. We present novel data on the similarities and differences in the dynamics and nanomechanical properties of IDPs and other biomacromolecules on the picosecond time scale. An IDP, β-casein (CAS), has been studied in a calcium bound and unbound state using neutron and light scattering techniques. We show that CAS partially folds and stiffens upon calcium binding, but in the unfolded state, it is softer than folded proteins such as green fluorescence protein (GFP). We also see that some localized diffusive motions in CAS have a larger amplitude than in GFP at this time scale but are still smaller than those observed in tRNA. In spite of these differences, CAS dynamics are consistent with the classes of motions seen in folded protein on this time scale.
Collapse
Affiliation(s)
- Stefania Perticaroli
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | |
Collapse
|
36
|
Müller T, Ruggeri FS, Kulik AJ, Shimanovich U, Mason TO, Knowles TPJ, Dietler G. Nanoscale spatially resolved infrared spectra from single microdroplets. LAB ON A CHIP 2014; 14:1315-1319. [PMID: 24519414 DOI: 10.1039/c3lc51219c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Droplet microfluidics has emerged as a powerful platform allowing a large number of individual reactions to be carried out in spatially distinct microcompartments. Due to their small size, however, the spectroscopic characterisation of species encapsulated in such systems remains challenging. In this paper, we demonstrate the acquisition of infrared spectra from single microdroplets containing aggregation-prone proteins. To this effect, droplets are generated in a microfluidic flow-focussing device and subsequently deposited in a square array onto a ZnSe prism using a micro stamp. After drying, the solutes present in the droplets are illuminated locally by an infrared laser through the prism, and their thermal expansion upon absorption of infrared radiation is measured with an atomic force microscopy tip, granting nanoscale resolution. Using this approach, we resolve structural differences in the amide bands of the spectra of monomeric and aggregated lysozyme from single microdroplets with picolitre volume.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Induction of amyloidogenicity in wild type HEWL by a dialdehyde: Analysis involving multi dimensional approach. Int J Biol Macromol 2014; 64:36-44. [DOI: 10.1016/j.ijbiomac.2013.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
|
38
|
Sassi P, Perticaroli S, Comez L, Giugliarelli A, Paolantoni M, Fioretto D, Morresi A. Volume properties and spectroscopy: A terahertz Raman investigation of hen egg white lysozyme. J Chem Phys 2013; 139:225101. [DOI: 10.1063/1.4838355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Venkataramani S, Truntzer J, Coleman DR. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study. J Pharm Bioallied Sci 2013; 5:148-53. [PMID: 23833521 PMCID: PMC3697194 DOI: 10.4103/0975-7406.111821] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/10/2012] [Accepted: 11/14/2012] [Indexed: 12/03/2022] Open
Abstract
AIM: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL) at high concentration (200 mg/mL). MATERIALS AND METHODS: Fourier Transform Infrared (FTIR) Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. RESULTS: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated Tm values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. CONCLUSIONS: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.
Collapse
Affiliation(s)
- Sathyadevi Venkataramani
- Coleman Softlabs, Inc., 296 Bay Road, Atherton, CA 94027, USA ; Department of Biotherapeutics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | | | | |
Collapse
|
40
|
Zou Y, Li Y, Hao W, Hu X, Ma G. Parallel β-sheet fibril and antiparallel β-sheet oligomer: new insights into amyloid formation of hen egg white lysozyme under heat and acidic condition from FTIR spectroscopy. J Phys Chem B 2013; 117:4003-13. [PMID: 23537140 DOI: 10.1021/jp4003559] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hen egg white lysozyme (HEWL) is widely used as a model protein for amyloid research. In this study, we aim to use Fourier transform infrared (FTIR) spectroscopy to gain new structural insights into amyloid formation of HEWL under heat and acidic condition. We reveal that the fibril-forming solution of HEWL has the capability to form fibril and oligomer with distinct β-sheet configurations under different temperatures. Amyloid fibril with parallel β-sheet configuration is formed at elevated temperature, while oligomer with antiparallel β-sheet configuration is formed at room temperature. The interplay between fibrillation and oligomerization suggests that the two β-sheet aggregates consume the same amyloidogenic materials such as peptide fragments and nicked HEWL due to lysozyme hydrolysis under heat and acidic condition. Temperature-dependent FTIR reveals that the oligomer is unstable at elevated temperature, demonstrating its off-pathway nature. The temperature-dependent formation of parallel and antiparallel β-sheet configurations discovered in lysozyme system is compared with that of amyloid-β and α-synuclein systems and the implication is discussed.
Collapse
Affiliation(s)
- Ye Zou
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | | | | | | | | |
Collapse
|
41
|
Giugliarelli A, Sassi P, Paolantoni M, Morresi A, Dukor R, Nafie L. Vibrational Circular Dichroism Spectra of Lysozyme Solutions: Solvent Effects on Thermal Denaturation Processes. J Phys Chem B 2013; 117:2645-52. [DOI: 10.1021/jp311268x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Paola Sassi
- Dipartimento
di Chimica, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Dipartimento
di Chimica, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Assunta Morresi
- Dipartimento
di Chimica, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Rina Dukor
- BioTools, Inc., 17546
Bee Line Highway, Jupiter, Florida, 33458, United States
| | - Laurence Nafie
- Department of Chemistry, Syracuse University, Syracuse, New York, 13244, United
States
| |
Collapse
|
42
|
Giugliarelli A, Paolantoni M, Morresi A, Sassi P. Denaturation and Preservation of Globular Proteins: The Role of DMSO. J Phys Chem B 2012; 116:13361-7. [DOI: 10.1021/jp308655p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Marco Paolantoni
- Department of Chemistry, University of Perugia, Via Elce di sotto 8, 06100 Perugia, Italy
| | - Assunta Morresi
- Department of Chemistry, University of Perugia, Via Elce di sotto 8, 06100 Perugia, Italy
| | - Paola Sassi
- Department of Chemistry, University of Perugia, Via Elce di sotto 8, 06100 Perugia, Italy
| |
Collapse
|
43
|
Giugliarelli A, Sassi P, Paolantoni M, Onori G, Cametti C. Heat-denatured lysozyme aggregation and gelation as revealed by combined dielectric relaxation spectroscopy and light scattering measurements. J Phys Chem B 2012; 116:10779-85. [PMID: 22891653 DOI: 10.1021/jp305939h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dielectric behavior of native and heat-denatured lysozyme in ethanol-water solutions was examined in the frequency range from 1 MHz to 2 GHz, using frequency-domain dielectric relaxation spectroscopy. Because of the conformational changes on unfolding, dielectric methods provide information on the denaturation process of the protein and, at protein concentration high enough, on the subsequent aggregation and gelation. Moreover, the time evolution of the protein aggregation and gelation was monitored measuring, by means of dynamic light scattering methods, the diffusion coefficient of micro-sized polystyrene particles, deliberately added to the protein solution, which act as a probe of the viscosity of the microenvironment close to the particle surface. All together, our measurements indicate that heat-induced denaturation favors, at high concentrations, a protein aggregation process which evolves up to the full gelation of the system. These findings have a direct support from IR measurements of the absorbance of the amide I band that, because of the unfolding, indicate that proteins entangle each other, producing a network structure which evolves, in long time limit, in the gel.
Collapse
Affiliation(s)
- A Giugliarelli
- Department of Chemistry, University of Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy
| | | | | | | | | |
Collapse
|
44
|
Pastore A, Temussi P. Protein aggregation and misfolding: good or evil? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244101. [PMID: 22595337 DOI: 10.1088/0953-8984/24/24/244101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open.
Collapse
|