1
|
Li Y, Xu J, Sun F, Guo Y, Wang D, Cheng T, Xu M, Wang Z, Guo Z. Spectroscopy combined with spatiotemporal multiscale strategy to study the adsorption mechanism of soybean protein isolate with meat flavor compounds (furan): Differences in position and quantity of the methyl. Food Chem 2024; 451:139415. [PMID: 38670020 DOI: 10.1016/j.foodchem.2024.139415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The interaction mechanism between soybean protein isolate (SPI) and furan flavor compounds with different structures is studied using spectroscopy, molecular docking, and MD simulation methods. The order of binding ability between SPI and furan flavor compounds is 2-acetylfuran>furfural>5-methylfurfural. The structural differences (position and quantity of methyl groups) of three furan flavor compounds are key factors leading to the different adsorption abilities of SPI for furan flavor compounds. The findings from spectroscopy analyses suggest that the interaction between SPI and furan flavor compounds involves both static and dynamic quenching mechanisms, with static quenching being the main factor. Molecular docking and MD simulations reveal the atomic-level mechanisms underlying the stable binding for SPI and furan flavor compounds at spatiotemporal multiscale. This study provides a theoretical framework for the production and adjustment of meat essence formula in the production of soybean protein-based meat products.
Collapse
Affiliation(s)
- Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Hainan Academy of Agricultural Sciences Agricultural Product Processing Design and Research Institute, Hainan 571100, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Yu D, Li H, Liu Y, Yang X, Yang W, Fu Y, Zuo YA, Huang X. Application of the molecular dynamics simulation GROMACS in food science. Food Res Int 2024; 190:114653. [PMID: 38945587 DOI: 10.1016/j.foodres.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Food comprises proteins, lipids, sugars and various other molecules that constitute a multicomponent biological system. It is challenging to investigate microscopic changes in food systems solely by performing conventional experiments. Molecular dynamics (MD) simulation serves as a crucial bridge in addressing this research gap. The Groningen Machine for Chemical Simulations (GROMACS) is an open-source, high-performing molecular dynamics simulation software that plays a significant role in food science research owing to its high flexibility and powerful functionality; it has been used to explore the molecular conformations and the mechanisms of interaction between food molecules at the microcosmic level and to analyze their properties and functions. This review presents the workflow of the GROMACS software and emphasizes the recent developments and achievements in its applications in food science research, thus providing important theoretical guidance and technical support for obtaining an in-depth understanding of the properties and functions of food.
Collapse
Affiliation(s)
- Dongping Yu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Haiping Li
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yuzi Liu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingqun Yang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Yang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yiran Fu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yi-Ao Zuo
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xianya Huang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
3
|
Li Z, Pan F, Huang W, Gao S, Feng X, Chang M, Chen L, Bian Y, Tian W, Liu Y. Transcriptome Reveals the Key Genes Related to the Metabolism of Volatile Sulfur-Containing Compounds in Lentinula edodes Mycelium. Foods 2024; 13:2179. [PMID: 39063263 PMCID: PMC11275275 DOI: 10.3390/foods13142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lentinula edodes (L. edodes) is a globally popular edible mushroom because of its characteristic sulfur-containing flavor compounds. However, the formation of the volatile sulfur-containing compounds in the mycelium of L. edodes has not been studied. We found that there were also sulfur-containing aroma compounds in the mycelium of L. edodes, and the content and composition varied at different stages of mycelial growth and development. The γ-glutamyl-transpeptidase (GGT) and cysteine sulfoxide lyase (C-S lyase) related to the generation of sulfur compounds showed the highest activities in the 15-day sample. Candidate genes for the metabolism of volatile sulfur compounds in mycelium were screened using transcriptome analysis, including encoding the GGT enzyme, C-S lyase, fatty acid oxidase, HSP20, and P450 genes. The expression patterns of Leggt3 and Leccsl3 genes were consistent with the measured activities of GGT and C-S lyase during the cultivation of mycelium and molecular dynamics simulations showed that they could stably bind to the substrate. Our findings provide insights into the formation of sulfur-containing flavor compounds in L. edodes. The mycelium of L. edodes is suggested for use as material for the production of sulfur-containing flavor compounds.
Collapse
Affiliation(s)
- Zheng Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.P.); (W.T.)
| | - Wen Huang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Shuangshuang Gao
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA
| | - Meijie Chang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (Y.B.)
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (Y.B.)
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.P.); (W.T.)
| | - Ying Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| |
Collapse
|
4
|
Wang H, Ke L, Zhou J, Li G, Xu T, Rao P. Multi-spectroscopic, molecular docking and molecular dynamic simulation evaluation of hydroxychloroquine sulfate interaction with caseins and whey proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Baruah I, Kashyap C, Guha AK, Borgohain G. Insights into the Interaction between Polyphenols and β-Lactoglobulin through Molecular Docking, MD Simulation, and QM/MM Approaches. ACS OMEGA 2022; 7:23083-23095. [PMID: 35847254 PMCID: PMC9280950 DOI: 10.1021/acsomega.2c00336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we have explored the interaction of three different polyphenols with the food protein β-lactoglobulin. Antioxidant activities of polyphenols are influenced by complexation with the protein. However, studies have shown that polyphenols after complexation with the protein can be more beneficial due to enhanced antioxidant activities. We have carried out molecular docking, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) studies on the three different protein-polyphenol complexes. We have found from molecular docking studies that apigenin binds in the internal cavity, luteolin binds at the mouth of the cavity, and eriodictyol binds outside the cavity of the protein. Docking studies have also provided binding free energy and inhibition constant values that showed that eriodictyol and apigenin exhibit better binding interactions with the protein than luteolin. For eriodictyol and luteolin, van der Waals, hydrophobic, and hydrogen bonding interactions are the main interacting forces, whereas for apigenin, hydrophobic and van der Waals interactions play major roles. We have calculated the root mean square deviation (RMSD), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), interaction energies, and hydrogen bonds of the protein-polyphenol complexes. Results show that the protein-eriodictyol complex is more stable than the other complexes. We have performed ONIOM calculations to study the antioxidant properties of the polyphenols. We have found that apigenin and luteolin act as better antioxidants than eriodictyol does on complexation with the protein, which is consistent with the results obtained from MD simulations.
Collapse
|
6
|
Fu Y, Pan F, Zhao L, Zhao S, Yi J, Cai S. Interfering effects on the bioactivities of several key proteins of COVID-19/variants in diabetes by compounds from Lianqiao leaves: In silico and in vitro analyses. Int J Biol Macromol 2022; 207:715-729. [PMID: 35346677 PMCID: PMC8957317 DOI: 10.1016/j.ijbiomac.2022.03.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
Abstract
Diabetes is considered to be one of the diseases most associated with COVID-19. In this study, interfering effects and potential mechanisms of several compounds from Lianqiao (Forsythia suspensa (Thunb.) Vahl) leaves on the bioactivities of some key proteins of COVID-19 and its variants, as well as diabetic endothelial dysfunctions were illuminated through in vitro and in silico analyses. Results showed that, among the main ingredients in the leaves, forsythoside A showed the strongest docking affinities with the proteins SARS-CoV-2-RBD-hACE2 of COVID-19 and its variants (Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617)), as well as neuropilin-1 (NRP1), and SARS-CoV-2 main protease (MPro) to interfere coronavirus entering into the human body. Moreover, forsythoside A was the most stable in binding to receptors in Delta (B.1.617) system. It also has good antiviral activities and drug properties and has the strongest binding force to the RBD domain of COVID-19. In addition, forsythoside A reduced ROS production in AGEs-induced EA.hy926 cells, maintained endothelial integrity, and bound closely to protein profilin-1 (PFN1) receptor. This work may provide useful knowledge for further understanding the interfering effects and potential mechanisms of compounds, especially forsythoside A, from Lianqiao leaves on the bioactivities of key proteins of COVID-19/variants in diabetes.
Collapse
Affiliation(s)
- Yishan Fu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
7
|
Zhang X, Lu Y, Zhao R, Wang C, Wang C, Zhang T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Huang Y, Zhang X, Suo H. Interaction between β-lactoglobulin and EGCG under high-pressure by molecular dynamics simulation. PLoS One 2021; 16:e0255866. [PMID: 34932559 PMCID: PMC8691620 DOI: 10.1371/journal.pone.0255866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
The binding between β-lactoglobulin and epigallocatechin gallate (EGCG) under the pressure of 600 MPa was explored using molecular docking and molecular dynamics (MD) simulation. EGCG bound mainly in two regions with site 1 in internal cavity of the β-barrel and site 2 on the surface of protein. 150 ns MD was performed starting from the structure with the optimal binding energy at the two sites in molecular docking, respectively. It was found that the protein fluctuated greatly when small molecule bound to site 2 at 0.1 MPa, and the protein fluctuation and solvent accessible surface area became smaller under high-pressure. The binding of small molecules made the protein structure more stable with increasing of α-helix and β-sheet, while high-pressure destroyed α-helix of protein. The binding energy of small molecules at site 1was stronger than that at site 2 under 0.1 MPa, with stronger van der Waals and hydrophobic interaction at site 1 while more hydrogen bonds were present at site 2. The binding energy of both sites weakened under high-pressure, especially at site 1, causing the binding force to be weaker at site 1 than that at site 2 under high-pressure.
Collapse
Affiliation(s)
- Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen, PR China
- * E-mail: ,
| | - Xicai Zhang
- College of Bioengineering, Jingchu University of Technology, Jingmen, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, PR China
| |
Collapse
|
9
|
Gu L, Sun R, Wang W, Xia Q. Nanostructured lipid carriers for the encapsulation of phloretin: preparation and in vitro characterization studies. Chem Phys Lipids 2021; 242:105150. [PMID: 34673008 DOI: 10.1016/j.chemphyslip.2021.105150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023]
Abstract
Phloretin is a powerful antioxidant with many effects, such as anti-cancer, anti-inflammatory, promoting cell renewal, delaying aging and so on. However, the application of phloretin was limited by its low water solubility, low absorption in vivo and unstable properties. A phloretin-loaded nanostructured lipid carrier was designed with a high-pressure homogenization technique. The mean particle size of phloretin NLC was 137.40 ± 3.27 nm, and the Polydispersity index (PdI) value was 0.237 ± 0.005. The encapsulation efficiency was 96.68% ± 0.06%. Transmission electron microscopy images showed that the phloretin-loaded nanostructured lipid carriers were spherical. Phloretin in NLC showed a sustained release pattern in vitro. The results showed that phloretin NLC is more suitable for absorption than phloretin ethanol solution, and NLC can be a promising carrier for phloretin in the food industry.
Collapse
Affiliation(s)
- Liyuan Gu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
10
|
Wang L, Qin Y, Wang Y, Zhou Y, Liu B, Bai M, Tong X, Fang R, Huang X. Inhibitory mechanism of two homoisoflavonoids from Ophiopogon japonicus on tyrosinase activity: insight from spectroscopic analysis and molecular docking. RSC Adv 2021; 11:34343-34354. [PMID: 35497266 PMCID: PMC9042378 DOI: 10.1039/d1ra06091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
The inhibition mechanism of two homoisoflavonoids from Ophiopogon japonicus including methylophiopogonanone A (MO-A) and methylophiopogonanone B (MO-B) on tyrosinase (Tyr) was studied by multiple spectroscopic techniques and molecular docking. The results showed that the two homoisoflavonoids both inhibited Tyr activity via a reversible mixed-inhibition, with a half inhibitory concentration (IC50) of (10.87 ± 0.25) × 10-5 and (18.76 ± 0.14) × 10-5 mol L-1, respectively. The fluorescence quenching and secondary structure change of Tyr caused by MO-A and B are mainly driven by hydrophobic interaction and hydrogen bonding. Molecular docking analysis indicated that phenylmalandioxin in MO-A and methoxy in MO-B could coordinate with a Cu ion in the active center of Tyr, and interacted with amino acid Glu322 to form hydrogen bonding, occupying the catalytic center to block the entry of the substrate and consequently inhibit Tyr activity. This study may provide new perspectives on the inhibition mechanism of MO-A and MO-B on Tyr and serve a scientific basis for screening effective Tyr inhibitors.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yuchuan Qin
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yanbin Wang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Bentong Liu
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Minge Bai
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | | | - Ru Fang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| | - Xubo Huang
- Zhejiang Academy of Forestry Hangzhou 310023 China
| |
Collapse
|
11
|
Li X, Liu H, Wu X, Xu R, Ma X, Zhang C, Song Z, Peng Y, Ni T, Xu Y. Exploring the interactions of naringenin and naringin with trypsin and pepsin: Experimental and computational modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119859. [PMID: 33957444 DOI: 10.1016/j.saa.2021.119859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Naringenin and naringin are two natural compounds with important health benefits, whether as food or drug. It is necessary to study the interactions between naringenin/naringin and digestive proteases, such as trypsin and pepsin. In this study, the bindings of naringenin and naringin to trypsin and pepsin were investigated using multi-spectroscopy analysis and computational modeling approaches. Fluorescence experiments indicate that both naringenin and naringin can quench the intrinsic fluorescence of trypsin/pepsin via static quenching mechanism. Naringin binds trypsin/pepsin in a more firmly way than naringenin. Thermodynamic analysis reveals that the interactions of naringenin/naringin and trypsin/pepsin are synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic, electrostatic interactions and hydrogen bonding. Synchronous fluorescence spectroscopy, circular dichroism spectroscopy and FT-IR show that naringenin/naringin may induce microenvironmental and conformational changes of trypsin and pepsin. Molecular docking reveals that naringenin binds in the close vicinity of the active site (Ser-195) of trypsin and Asp-32 (the catalytic activity of pepsin) appears in naringin-pepsin system. The direct interactions between naringenin or naringin and catalytic amino acid residues will inhibit the catalytic activity of trypsin and pepsin, respectively. The results of molecular dynamic simulation validate the reliability of the docking results.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hongyi Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xinzhe Wu
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiaoyi Ma
- Grade 2018, Pharmaceutics, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Congxiao Zhang
- Grade 2018, Pharmaceutics, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yanru Peng
- Grade 2017, Clinical Pharmacy, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Tianjun Ni
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
12
|
Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
14
|
Characterization, techno-functional properties, and encapsulation efficiency of self-assembled β-lactoglobulin nanostructures. Food Chem 2021; 356:129719. [PMID: 33831831 DOI: 10.1016/j.foodchem.2021.129719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
Whey is a cheese co-product with high protein content used in the food industry due to its techno-functional properties and nutritive value. This study aims to optimize the production of β-lactoglobulin (β-lg) nanostructures, to characterize their techno-functional properties and stability, and to apply them as a carrier of bioactive molecules. Box-Behnken planning was applied to determine the best conditions to obtain the β-lg nanostructure, which consists in treatment at 100 °C in NaCl 50 mmol·L-1 for 60 min. TEM analysis showed a fibril structure in the observed nanostructures. The nanostructured systems formed foam and emulsion with higher stability than the systems composed of the native protein. The results for encapsulation efficiency of bioactive compounds were 96.50%, 89.04%, 67.78%, and 36.39% for quercetin, rutin, naringin, and vitamin B2, respectively. Thus, β-lg nanostructure's great capacity to encapsulate hydrophobic molecules was verified.
Collapse
|
15
|
Sattarinezhad E, Fani N, Bordbar AK, Hatami P, Abbasi Kajani A, Taki M. Probing the physico-chemical, antioxidant and anticancer influence of β-lactoglobulin on dietary flavonoid daidzein. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Pan F, Li J, Zhao L, Tuersuntuoheti T, Mehmood A, Zhou N, Hao S, Wang C, Guo Y, Lin W. A molecular docking and molecular dynamics simulation study on the interaction between cyanidin-3-O-glucoside and major proteins in cow's milk. J Food Biochem 2020; 45:e13570. [PMID: 33222207 DOI: 10.1111/jfbc.13570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
The objective of this study was to investigate the molecular interaction and complex stability of four major cow's milk (CM) proteins (α-LA, β-LG, αs1 -CA, and β-CA) with cyanidin-3-O-glucoside (C3G) using computational methods. The results of molecular docking analysis revealed that hydrogen bond and hydrophobic interaction were the main binding forces to maintain the stability of the C3G-CM protein complexes. Molecular dynamics simulation results showed that all complexes except for C3G-αs1 -CA were found to reach equilibrium within 50 ns of simulation. αs1 -CA and β-CA switched to a more compact conformation after binding with C3G. Additionally, the radius of gyration, number of hydrogen bond, radial distribution function, and interaction energy showed that β-CA is the best C3G carrier protein among the four CM proteins. This study can provide valuable information for CM proteins to serve as C3G delivery carriers. PRACTICAL APPLICATIONS: Anthocyanins (ACNs) are flavonoid-based pigments that play an important functional role in regulating human's health. Cow's milk (CM) proteins are the most representative protein-based carriers that can improve the short-term bioavailability and stability of ACNs. Thus, it is important to study the interactions between ACNs and CM proteins at the molecular level for the development of effective ACNs delivery carriers. Our study showed that caseins (αs1 -CA and β-CA) had more hydrophobic and hydrogen-bonding sites with cyanidin-3-O-glucoside (C3G) than whey proteins using computational methods. Among the four CM proteins, β-CA was the best C3G carrier protein showing the best interaction stability with C3G. Thus, it is helpful for us to screen effective ACNs carriers from multiple protein sources by computational methods.
Collapse
Affiliation(s)
- Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jiaxing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Na Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yangkai Guo
- National Research and Development Center of Freshwater Fish Processing Technology, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wenxuan Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
17
|
Milea ȘA, Aprodu I, Mihalcea L, Enachi E, Bolea CA, Râpeanu G, Bahrim GE, Stănciuc N. Bovine β-lactoglobulin peptides as novel carriers for flavonoids extracted with supercritical fluids from yellow onion skins. J Food Sci 2020; 85:4290-4299. [PMID: 33175407 DOI: 10.1111/1750-3841.15513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
Our study describes in detail the binding mechanism between the main flavonoids that were extracted from onion skins by supercritical CO2 and peptides from whey proteins, from the perspective of obtaining multifunctional ingredients, with health-promoting benefits. The supercritical CO2 extract had 202.31 ± 11.56 mg quercetin equivalents/g DW as the major flavonoid and antioxidant activity of 404.93±1.39 mM Trolox/g DW. The experiments on thermolysin-derived peptides fluorescence quenching by flavonoids extract allowed estimating the binding parameters, in terms of binding constants, and the number of binding sites. The thermodynamic analysis indicated that the main forces involved in complex formation were hydrogen bonds and van der Waals interactions. Molecular docking tests indicated that peptide fluorescence quenching upon gradual addition of onion skin extract might be due to flavonoids binding by Val15 -Ser21 . All 7 to 14 amino acids long peptides appeared to have affinity toward quercetin-3,4'-O-diglucoside and quercetin-4'-O-monoglucoside. The study is important as a potential solution for reuse of valuable resources, underutilized, such as whey peptides and yellow onion skins flavonoids for efficient microencapsulation, as a holistic approach to deliver healthy and nutritious food. PRACTICAL APPLICATION: A growing interest was noticed in the last years in investigating the interactions between proteins and different biologically active compounds, such as to provide knowledge for efficient development of new food, pharmaceutical, and cosmetic products. Recent studies suggest that flavonoid-protein complexes may be designed to improve the functional performance of the flavonoids. The results obtained in this study bring certain benefits in terms of exploiting the bioactive potential of both flavonoids and bioactive peptides, for developing of formulas with improved functional properties.
Collapse
Affiliation(s)
- Ștefania Adelina Milea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Liliana Mihalcea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Carmen Alina Bolea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 111 Domnească Street, Galati, 800201, Romania
| |
Collapse
|
18
|
|
19
|
Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study. Food Chem 2020; 339:128106. [PMID: 33152886 DOI: 10.1016/j.foodchem.2020.128106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022]
Abstract
It is practical to inhibit the allergenicity of β-lactoglobulin (β-LG) using natural products acting via noncovalent interactions; however, the mechanism of the effect has not been investigated in detail. Herein, the comprehensive noncovalent mechanism of inhibition of the antigenicity of β-LG by six flavonoids (kaempferol, myricetin, phloretin, epigallocatechin-3-gallate (EGCG), naringenin, and quercetin) was investigated by spectroscopic and molecular docking methods. Our results indicate that six flavonoids reduced the antigenicity of β-LG in the following order: EGCG > phloretin > naringenin > myricetin > kaempferol > quercetin, with antigenic inhibition rates of 72.6%, 68.4%, 59.7%, 52.3%, 51.4% and 40.8%, respectively. Six flavonoids induced distinct conformational changes in β-LG, which were closely associated with a decline in antigenicity of β-LG. The flavonoids bound to specific antigen epitopes in the β-sheet and β-turn of β-LG to induce a decrease in the antigenicity of the protein.
Collapse
|
20
|
Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
21
|
Stănciuc N, Râpeanu G, Bahrim GE, Aprodu I. The Interaction of Bovine β-Lactoglobulin with Caffeic Acid: From Binding Mechanisms to Functional Complexes. Biomolecules 2020; 10:biom10081096. [PMID: 32718063 PMCID: PMC7464270 DOI: 10.3390/biom10081096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, the interaction of native and transglutaminase (Tgase) cross-linked β-lactoglobulin (β-LG) with caffeic acid (CA) was examined, aiming to obtain functional composites. Knowledge on the binding affinity and interaction mechanism was provided by performing fluorescence spectroscopy measurements, after heating the native and cross-linked protein at temperatures ranging from 25 to 95 °C. Regardless of the protein aggregation state, a static quenching mechanism of intrinsic fluorescence of β-LG by CA was established. The decrease of the Stern–Volmer constants with the temperature increase indicating the facile dissociation of the weakly bound complexes. The thermodynamic analysis suggested the existence of multiple contact types, such as Van der Waals’ force and hydrogen bonds, between β-LG and CA. Further molecular docking tests indicated the existence of various CA binding sites on the β-LG surface heat-treated at different temperatures. Anyway, regardless of the simulated temperature, the CA-β-LG assemblies appeared to be unstable. Compared to native protein, the CA-β-LG and CA-β-LGTgase complexes (ratio 1:1) exhibited significantly higher antioxidant activity and inhibitory effects on α-glucosidase, α-amylase, and pancreatic lipase, enzymes associated with metabolic syndrome. These findings might help the knowledge-based development of novel food ingredients with valuable biological properties.
Collapse
|
22
|
Lu G, Tan W, Li G, Yang M, Wang H. Effects of carbendazim on catalase activity and related mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24686-24691. [PMID: 31463747 DOI: 10.1007/s11356-019-06125-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The different techniques like spectroscopy and fluorescence quenching were used to study the interactive effect of carbendazim (CARB) and catalase (CAT) at the molecular level. The results showed that conditions were beneficial to the quenching mechanism at 25.0 °C, pH 7.0, while the binding constant k was 1.92 × 105 L mol-1 and the number of binding site was 1.0385. The thermodynamic parameters indicated that CARB could interact spontaneously with CAT to form a complex mainly by van der Waals' interactions and hydrogen bonds. The interaction mechanism between CARB and CAT was that the effects of CARB on CAT in soil were activated and then restore stability. However, the effects of CARB on simple CAT were activated and then inhibited.
Collapse
Affiliation(s)
- Guangqiu Lu
- College of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Guizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
23
|
Tricarboxylic acid cycle dehydrogenases inhibition by naringenin: experimental and molecular modelling evidence. Br J Nutr 2020; 123:1117-1126. [DOI: 10.1017/s0007114520000549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe study of polyphenols’ effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring’s cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student’s t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring’s cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.
Collapse
|
24
|
Song X, Hu X, Zhang Y, Pan J, Gong D, Zhang G. Inhibitory mechanism of epicatechin gallate on tyrosinase: inhibitory interaction, conformational change and computational simulation. Food Funct 2020; 11:4892-4902. [DOI: 10.1039/d0fo00003e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epicatechin gallate can inhibit the activity of tyrosinase in a mixed-type manner.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ying Zhang
- Division of Accounting
- Nanchang University
- Nanchang 330047
- China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Department of Biomedicine
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
25
|
Oguz M, Bhatti AA, Dogan B, Karakurt S, Durdagi S, Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies. J Biomol Struct Dyn 2019; 38:3801-3813. [PMID: 31526236 DOI: 10.1080/07391102.2019.1668301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Naringenin is considered as an important flavonoid in phytochemistry because of its important effect on cancer chemoprevention. Unfortunately its poor solubility has restricted its therapeutic applications. In this study, an efficient water-soluble fluorescent calix[4]arene (compound 5) was synthesized as host macromolecule to increase solubility and cytotoxicity in cancer cells of water-insoluble naringenin as well as to clarify localization of naringenin into the cells. Complex formed by host-guest interaction between compound 5 and naringenin was analyzed with UV-visible, fluorescence, FTIR spectroscopic techniques and molecular modeling studies. Stern-Volmer analysis showed binding constant value of Ksv 3.5 × 107 M-1 suggesting strong interaction between host and guest. Binding capacity shows 77% of naringenin was loaded on compound 5. Anticarcinogenic effects of naringenin complex were evaluated on human colorectal carcinoma cells (DLD-1) and it was found that 5-naringenin complex inhibits proliferation of DLD-1 cells 3.4-fold more compared to free naringenin. Fluorescence imaging studies show 5-naringenin complex was accumulated into the cytoplasm instead of the nucleus. Increased solubility and cytotoxicity of naringenin with fluorescent calix[4]arene makes it one of the potential candidates as a therapeutic enhancer. For deep understanding of host-guest interaction mechanisms, complementary multiscale molecular modeling studies were also carried out.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Chemistry, Government College University Hyderabad, Hyderabad, Pakistan
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
26
|
Feyzi S, Varidi M, Housaindokht MR, Es'haghi Z. Binding of safranal to whey proteins in aqueous solution: Combination of headspace solid-phase microextraction/gas chromatography with multi spectroscopic techniques and docking studies. Food Chem 2019; 287:313-323. [DOI: 10.1016/j.foodchem.2019.02.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/17/2023]
|
27
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
28
|
Li T, Hu P, Dai T, Li P, Ye X, Chen J, Liu C. Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:197-206. [PMID: 29753236 DOI: 10.1016/j.saa.2018.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 05/26/2023]
Abstract
Four kinds of flavonoids (apigenin, naringenin, kaempferol, genistein) were skillfully selected to investigate the interaction between flavonoids and β-lactoglobulin (β-LG) by multi-spectroscopy analysis and molecular docking. Hydrogenation on C2C3 double bond weakened the affinity of apigenin for β-LG and it's most obvious, followed by hydroxylation of C3 and position isomerism of phenyl ring B. The main interaction force for apigenin and naringenin binding to β-LG (van der Waals forces and hydrogen bonds) was different from that of genistein and kaempferol (hydrophobic interactions). Circular dichroism and fluorescence experiments indicated that conformation of β-LG became loose and surface hydrophobicity of β-LG was reduced in the presence of flavonoids. Molecular docking indicated that flavonoids interacted with specific amino acid residues located on the outer surface of β-LG. These findings can provide a deep understanding about the interaction mechanism between flavonoids and protein, and it may be valuable in dairy incorporation with flavonoids.
Collapse
Affiliation(s)
- Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Peng Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Panying Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Xiaoqin Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
29
|
Wu Z, Huang F, Chen Y, Xu H, Meti MD, Fan Y, Han QG, Tang H, He Z, Hu Z. Conformation change of trypsin induced by acteoside as studied using multiple spectroscopic and molecular docking methods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1454944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhibing Wu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fengwen Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yutao Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
| | - Manjunath D. Meti
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu Fan
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qingguo G. Han
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haifeng Tang
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhendan He
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols. Food Chem 2018; 256:427-434. [PMID: 29606470 DOI: 10.1016/j.foodchem.2018.02.158] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022]
Abstract
To help produce hypoallergenic food, this study investigated reducing the allergenicity and improving the functional properties of bovine β-lactoglobulin (βLG) by covalent conjugation with (-)-epigallo-catechin 3-gallate (EGCG) and chlorogenic acid (CA). The covalent bond between the polyphenols and the amino acid side-chains in βLG was confirmed by MALDI-TOF-MS and SDS-PAGE. Structural analysis by fluorescence spectroscopy, circular dichroism (CD) and Fourier transform infrared (FTIR) indicated that the covalent conjugate of EGCG and CA led to the changed protein structure of βLG. Western blot analysis and enzyme-linked immunosorbent assay indicated that conjugation of βLG with these polyphenols was effective in reducing the IgE-binding capacity of βLG. The conjugates maintained the retinol-binding activity without denaturation the protein and enhanced the thermal stability with high antioxidant activity. The study provides an innovative approach to producing hypoallergenic food.
Collapse
|
31
|
Oancea AM, Aprodu I, Râpeanu G, Bahrim G, Stanciuc N. The Binding mechanism of anthocyanins from sour cherries (Prunus cerasus L) skins to bovine β-lactoglobulin: A fluorescence and in silico-based approach. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1343347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ana-Maria Oancea
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Gabriela Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Nicoleta Stanciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
32
|
Yildirim-Elikoglu S, Erdem YK. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1377225] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Seda Yildirim-Elikoglu
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Yasar Kemal Erdem
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
33
|
Stănciuc N, Turturică M, Oancea AM, Barbu V, Ioniţă E, Aprodu I, Râpeanu G. Microencapsulation of Anthocyanins from Grape Skins by Whey Protein Isolates and Different Polymers. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1938-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Böttcher S, Scampicchio M, Drusch S. Mixtures of saponins and beta-lactoglobulin differ from classical protein/surfactant-systems at the air-water interface. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Ma Y, Zhang B, Li H, Li Y, Hu J, Li J, Wang H, Deng Z. Chemical and molecular dynamics analysis of crystallization properties of honey. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1178282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Zhang S, Chen X, Ding S, Lei Q, Fang W. Unfolding of human serum albumin by gemini and single-chain surfactants: A comparative study. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Santiago LG, Castro GR. Novel technologies for the encapsulation of bioactive food compounds. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Gholami S, Bordbar A, Akvan N, Parastar H, Fani N, Gretskaya N, Bezuglov V, Haertlé T. Binding assessment of two arachidonic-based synthetic derivatives of adrenalin with β-lactoglobulin: Molecular modeling and chemometrics approach. Biophys Chem 2015; 207:97-106. [DOI: 10.1016/j.bpc.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
|
39
|
Moeiniafshari AA, Zarrabi A, Bordbar AK. Exploring the interaction of naringenin with bovine beta-casein nanoparticles using spectroscopy. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wang K, Arntfield SD. Binding of selected volatile flavour mixture to salt-extracted canola and pea proteins and effect of heat treatment on flavour binding. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Blayo C, Puentes-Rivas D, Picart-Palmade L, Chevalier-Lucia D, Lange R, Dumay E. Binding of retinyl acetate to whey proteins or phosphocasein micelles: Impact of pressure-processing on protein structural changes and ligand embedding. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|