1
|
Qian H, Ying G, Xu H, Wang S, Wu B, Wang X, Qi H, He M, Ud Din MJ, Huang T, Wu Y, Zhang G. Clinical and genetic analysis of children with glucose transporter type 1 deficiency syndrome. MEDICINE INTERNATIONAL 2024; 4:57. [PMID: 39092009 PMCID: PMC11289861 DOI: 10.3892/mi.2024.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024]
Abstract
Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is a rare metabolic encephalopathy with a wide variety of clinical phenotypes. In the present study, 15 patients diagnosed with GLUT1-DS were selected, all of whom had obvious clinical manifestations and complete genetic testing. Their clinical data and genetic reports were collated. All patients were provided with a ketogenic diet (KD) and an improvement in their symptoms was observed during a follow-up period of up to 1 year. The results revealed that the 15 cases had clinical symptoms, such as convulsions or dyskinesia. Although none had a cerebrospinal fluid/glucose ratio <0.4, the genetic report revealed that all had the solute carrier family 2 member 1 gene variant, and their clinical symptoms basically improved following the use of the KD. GLUT1-DS is a genetic metabolic disease that causes a series of neurological symptoms due to glucose metabolism disorders in the brain. Low glucose levels in cerebrospinal fluid and genetic testing are key diagnostic criteria, and the KD is a highly effective treatment option. By summarizing and analyzing patients with GLUT1-DS, summarizing clinical characteristics and expanding their gene profile, the findings of the present study may be of clinical significance for the early recognition and diagnosis of the disease, so as to conduct early treatment and shorten the duration of brain energy deficiency. This is of utmost importance for improving the prognosis and quality of life of affected children.
Collapse
Affiliation(s)
- Hao Qian
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Guohuan Ying
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Haifeng Xu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shangyu Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Bing Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hongdan Qi
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Mingying He
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - M. Jalal Ud Din
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Tingting Huang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yimei Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
2
|
Identification of Structural Determinants of the Transport of the Dehydroascorbic Acid Mediated by Glucose Transport GLUT1. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020521. [PMID: 36677580 PMCID: PMC9867014 DOI: 10.3390/molecules28020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
GLUT1 is a facilitative glucose transporter that can transport oxidized vitamin C (i.e., dehydroascorbic acid) and complements the action of reduced vitamin C transporters. To identify the residues involved in human GLUT1's transport of dehydroascorbic acid, we performed docking studies in the 5 Å grid of the glucose-binding cavity of GLUT1. The interactions of the bicyclic hemiacetal form of dehydroascorbic acid with GLUT1 through hydrogen bonds with the -OH group of C3 and C5 were less favorable than the interactions with the sugars transported by GLUT1. The eight most relevant residues in such interactions (i.e., F26, Q161, I164, Q282, Y292, and W412) were mutated to alanine to perform functional studies for dehydroascorbic acid and the glucose analog, 2-deoxiglucose, in Xenopus laevis oocytes. All the mutants decreased the uptake of both substrates to less than 50%. The partial effect of the N317A mutant in transporting dehydroascorbic acid was associated with a 30% decrease in the Vmax compared to the wildtype GLUT1. The results show that both substrates share the eight residues studied in GLUT1, albeit with a differential contribution of N317. Our work, combining docking with functional studies, marks the first to identify structural determinants of oxidized vitamin C's transport via GLUT1.
Collapse
|
3
|
Yu M, Miao J, Lv Y, Wang X, Zhang W, Shao N, Meng H. A Challenging Diagnosis of Atypical Glut1-DS: A Case Report and Literature Review. Front Neurol 2021; 11:549331. [PMID: 33584489 PMCID: PMC7876440 DOI: 10.3389/fneur.2020.549331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Glucose transporter type 1 deficiency syndrome (Glut1-DS) is a rare neurometabolic disorder caused by mutations of the SLC2A1 gene. Paroxysmal exercise-induced dyskinesia is regarded as a representative symptom of Glut1-DS. Paroxysmal non-kinesigenic dyskinesia is usually caused by aberrations of the MR1 and KCNMA1 genes, but it also appears in Glut1-DS. We herein document a patient with Glut1-DS who suffered first from paroxysmal exercise-induced dyskinesia and subsequently paroxysmal non-kinesigenic dyskinesia and experienced a recent worsening of symptoms accompanied with a low fever. The lumbar puncture result showed a decreased glucose concentration and increased white blood cell (WBC) count in cerebrospinal fluid (CSF). The exacerbated symptoms were initially suspected to be caused by intracranial infection due to a mild fever of <38.0°C, decreased CSF glucose, and increased CSF WBC count. However, the second lumbar puncture result indicated a decreased glucose concentration and normal WBC count in CSF with no anti-infective agents, and the patient's symptoms were not relieved apparently. The continuous low glucose concentration attracted our attention, and gene analysis was performed. According to the gene analysis result, the patient was diagnosed with Glut1-DS finally. This case indicates that the complex paroxysmal dyskinesia in Glut1-DS may be confusing and pose challenges for accurate diagnosis. Except intracranial infection, Glut1-DS should be considered as a differential diagnosis upon detection of a low CSF glucose concentration and dyskinesia. The case presented here may encourage clinicians to be mindful of this atypical manifestation of Glut1-DS in order to avoid misdiagnosis.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jing Miao
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Yudan Lv
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Na Shao
- Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Moessinger C, Nilsson I, Muhl L, Zeitelhofer M, Heller Sahlgren B, Skogsberg J, Eriksson U. VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content. EMBO Rep 2020; 21:e49343. [PMID: 32449307 PMCID: PMC7332976 DOI: 10.15252/embr.201949343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Regulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor B (VEGF‐B) signaling in endothelial cells promotes uptake and transcytosis of fatty acids from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here, we demonstrate that VEGF‐B limits endothelial glucose transport independent of fatty acid uptake. Specifically, VEGF‐B signaling impairs recycling of low‐density lipoprotein receptor (LDLR) to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading. Reduced cholesterol levels in the membrane leads to a decrease in glucose transporter 1 (GLUT1)‐dependent endothelial glucose uptake. Inhibiting VEGF‐B in vivo reconstitutes membrane cholesterol levels and restores glucose uptake, which is of particular relevance for conditions involving insulin resistance and diabetic complications. In summary, our study reveals a mechanism whereby VEGF‐B regulates endothelial nutrient uptake and highlights the impact of membrane cholesterol for regulation of endothelial glucose transport.
Collapse
Affiliation(s)
- Christine Moessinger
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Nilsson
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lars Muhl
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Josefin Skogsberg
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ulf Eriksson
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183134. [PMID: 31738898 DOI: 10.1016/j.bbamem.2019.183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
The transmembrane helices of membrane proteins often are flanked by interfacial charged or aromatic residues that potentially help to anchor the membrane-spanning protein. For isolated single-span helices, the interfacial residues may be especially important for stabilizing particular tilted transmembrane orientations. The peptide RWALP23 (acetyl-GR2ALW(LA)6LWLAR22A-amide) has been employed to investigate the interplay between interfacial arginines and tryptophans. Here we replace the tryptophans of RWALP23 with A5 and A19, to investigate arginines alone with respect to helix fraying and orientation in varying lipid bilayers. Deuterated alanines incorporated into the central sequence allow the orientation and stability of the core helix to be assessed by means of solid -state 2H NMR in bilayers of DOPC, DMPC and DLPC. The helix tilt from the bilayer normal is found to increase slightly when R2 and R22 are present, and increases still further when the tryptophans W5 and W19 are replaced by alanines. The extent of helix dynamic averaging remains low in all cases. The preferred helix azimuthal rotation is essentially constant for all of the helices in each of the lipid membranes considered here. The alanines located outside of the core region of the peptide are sensitive to helical integrity. The new alanines, A5 and A19, therefore, provide new information about the length of the core helix and the onset of unraveling of the terminals. Residue A19 remains essentially on the central helix in each lipid membrane, while residues A3, A5 and A21 deviate from the core helix to an extent that depends on the membrane thickness. Differential unraveling of the two ends to expose peptide backbone groups for hydrogen bonding therefore acts together with specific interfacial side chains to stabilize a transmembrane helix.
Collapse
|
6
|
Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM. Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits. Hum Mutat 2019; 40:983-995. [PMID: 30950137 DOI: 10.1002/humu.23758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
Deleterious variants in SLC2A2 cause Fanconi-Bickel Syndrome (FBS), a glycogen storage disorder, whereas less common variants in SLC2A2 associate with numerous metabolic diseases. Phenotypic heterogeneity in FBS has been observed, but its causes remain unknown. Our goal was to functionally characterize rare SLC2A2 variants found in FBS and metabolic disease-associated variants to understand the impact of these variants on GLUT2 activity and expression and establish genotype-phenotype correlations. Complementary RNA-injected Xenopus laevis oocytes were used to study mutant transporter activity and membrane expression. GLUT2 homology models were constructed for mutation analysis using GLUT1, GLUT3, and XylE as templates. Seventeen FBS variants were characterized. Only c.457_462delCTTATA (p.Leu153_Ile154del) exhibited residual glucose uptake. Functional characterization revealed that only half of the variants were expressed on the plasma membrane. Most less common variants (except c.593 C>A (p.Thr198Lys) and c.1087 G>T (p.Ala363Ser)) exhibited similar GLUT2 transport activity as the wild type. Structural analysis of GLUT2 revealed that variants affect substrate-binding, steric hindrance, or overall transporter structure. The mutant transporter that is associated with a milder FBS phenotype, p.Leu153_Ile154del, retained transport activity. These results improve our overall understanding of the underlying causes of FBS and impact of GLUT2 function on various clinical phenotypes ranging from rare to common disease.
Collapse
Affiliation(s)
- Osatohanmwen J Enogieru
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Peter M U Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
7
|
Galochkina T, Ng Fuk Chong M, Challali L, Abbar S, Etchebest C. New insights into GluT1 mechanics during glucose transfer. Sci Rep 2019; 9:998. [PMID: 30700737 PMCID: PMC6353926 DOI: 10.1038/s41598-018-37367-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022] Open
Abstract
Glucose plays a crucial role in the mammalian cell metabolism. In the erythrocytes and endothelial cells of the blood-brain barrier, glucose uptake is mediated by the glucose transporter type 1 (GluT1). GluT1 deficiency or mutations cause severe physiological disorders. GluT1 is also an important target in cancer therapy as it is overexpressed in tumor cells. Previous studies have suggested that GluT1 mediates solute transfer through a cycle of conformational changes. However, the corresponding 3D structures adopted by the transporter during the transfer process remain elusive. In the present work, we first elucidate the whole conformational landscape of GluT1 in the absence of glucose, using long molecular dynamics simulations and show that the transitions can be accomplished through thermal fluctuations. Importantly, we highlight a strong coupling between intracellular and extracellular domains of the protein that contributes to the transmembrane helices reorientation during the transition. The conformations adopted during the simulations differ from the known 3D bacterial homologs structures resolved in similar states. In holo state simulations, we find that glucose transits along the pathway through significant rotational motions, while maintaining hydrogen bonds with the protein. These persistent motions affect side chains orientation, which impacts protein mechanics and allows glucose progression.
Collapse
Affiliation(s)
- Tatiana Galochkina
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d'Excellence GR-Ex, Paris, 75739, France
| | - Matthieu Ng Fuk Chong
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d'Excellence GR-Ex, Paris, 75739, France
| | - Lylia Challali
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d'Excellence GR-Ex, Paris, 75739, France
| | - Sonia Abbar
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d'Excellence GR-Ex, Paris, 75739, France
| | - Catherine Etchebest
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d'Excellence GR-Ex, Paris, 75739, France.
| |
Collapse
|
8
|
Lee HH, Hur YJ. Glucose transport 1 deficiency presenting as infantile spasms with a mutation identified in exon 9 of SLC2A1. KOREAN JOURNAL OF PEDIATRICS 2016; 59:S29-S31. [PMID: 28018440 PMCID: PMC5177706 DOI: 10.3345/kjp.2016.59.11.s29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/02/2022]
Abstract
Glucose transport 1 (GLUT-1) deficiency is a rare syndrome caused by mutations in the glucose transporter 1 gene (SLC2A1) and is characterized by early-onset intractable epilepsy, delayed development, and movement disorder. De novo mutations and several hot spots in N34, G91, R126, R153, and R333 of exons 2, 3, 4, and 8 of SLC2A1 are associated with this condition. Seizures, one of the main clinical features of GLUT-1 deficiency, usually develop during infancy. Most patients experience brief and subtle myoclonic jerk and focal seizures that evolve into a mixture of different types of seizures, such as generalized tonic-clonic, absence, myoclonic, and complex partial seizures. Here, we describe the case of a patient with GLUT-1 deficiency who developed infantile spasms and showed delayed development at 6 months of age. She had intractable epilepsy despite receiving aggressive antiepileptic drug therapy, and underwent a metabolic workup. Cerebrospinal fluid (CSF) examination showed CSF-glucose-to-blood-glucose ratio of 0.38, with a normal lactate level. Bidirectional sequencing of SLC2A1 identified a missense mutation (c.1198C>T) at codon 400 (p.Arg400Cys) of exon 9.
Collapse
Affiliation(s)
- Hyun Hee Lee
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yun Jung Hur
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
9
|
Abstract
The molecular basis of the function of transporters is a problem of significant importance, and the emerging structural information has not yet been converted to a full understanding of the corresponding function. This work explores the molecular origin of the function of the bacterial Na+/H+ antiporter NhaA by evaluating the energetics of the Na+ and H+ movement and then using the resulting landscape in Monte Carlo simulations that examine two transport models and explore which model can reproduce the relevant experimental results. The simulations reproduce the observed transport features by a relatively simple model that relates the protein structure to its transporting function. Focusing on the two key aspartic acid residues of NhaA, D163 and D164, shows that the fully charged state acts as an Na+ trap and that the fully protonated one poses an energetic barrier that blocks the transport of Na+. By alternating between the former and latter states, mediated by the partially protonated protein, protons, and Na+ can be exchanged across the membrane at 2:1 stoichiometry. Our study provides a numerical validation of the need of large conformational changes for effective transport. Furthermore, we also yield a reasonable explanation for the observation that some mammalian transporters have 1:1 stoichiometry. The present coarse-grained model can provide a general way for exploring the function of transporters on a molecular level.
Collapse
|