1
|
Akcay Ogur F, Mamasoglu S, Perry SL, Akin FA, Kayitmazer AB. Interactions between Hyaluronic Acid and Chitosan by Isothermal Titration Calorimetry: The Effect of Ionic Strength, pH, and Polymer Molecular Weight. J Phys Chem B 2024; 128:9022-9035. [PMID: 39248492 DOI: 10.1021/acs.jpcb.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Hyaluronic acid (HA)/chitosan (CHI) complex coacervates have recently gained interest due to the pH-dependent ionization and semiflexibility of the polymers as well as their applicability in tissue engineering. Here, we apply isothermal titration calorimetry (ITC) to understand the apparent thermodynamics of coacervation for HA/CHI as a function of the pH, ionic strength, and chain length. We couple these ITC experiments with the knowledge of the charge states of HA and CHI from potentiometric titration to understand the mechanistic aspects of complex formation. Our data demonstrate that the driving force for the complex coacervation of HA and CHI is entropic in nature and this driving force decreased with increasing ionic strength. We also observed a decrease in the stoichiometry for ion-pairing with increasing ionic strength, which we suggest is a consequence of the changing degree of ionization for HA at higher ionic strengths. An increase in the strength of interactions with pH was hypothesized to also be a result of changes in the degree of ionization of HA, though stronger interactions were observed at the lowest pH tested, likely due to contributions from hydrogen bonding between HA and CHI.
Collapse
Affiliation(s)
- Fatma Akcay Ogur
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - Sezin Mamasoglu
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Fatma Ahu Akin
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - A Basak Kayitmazer
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| |
Collapse
|
2
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
3
|
Kertsomboon T, Kreangkaiwal C, Patarakul K, Chirachanchai S. Introducing UCST onto Chitosan for a Simple and Effective Single-Phase Extraction. Biomacromolecules 2024; 25:1887-1896. [PMID: 38372964 DOI: 10.1021/acs.biomac.3c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upper critical solution temperature (UCST) polymers undergo their own collapsed structures to show thermoresponsive functions favoring controlled release systems, cell adhesion, including separation process, etc. Although the copolymerization of UCST monomers with other vinyl monomers containing a pendant group is a good way to introduce additional functions, uncertain UCST performance as well as extensive bio-related properties are always the points to be considered. To accomplish this, the present work proposes the application of polysaccharides, i.e., chitosan (CS), as the biopolymer backbone to conjugate with functional molecules and UCST polymers. The use of chain transfer agents, e.g., mercaptoacetic acid, in radical polymerization with UCST poly(methacrylamide) (PMAAm) via the CS/NHS (N-hydroxysuccinimide) complex allows the simple water-based modification. The further conjugation of mouse anti-LipL32 IgG monoclonal antibody (anti-LipL32 mAb) onto CS-PMAAm (CS-PMAAm-Ab) enables a selective binding of recombinant LipL32 (rLipL32) antigen (Ag) in the solution. The CS-PMAAm obtained not only shows the cloud point in the range of 10-30 °C but also the extraction of rLipL32 because of CS-PMAAm-Ab-Ag aggregation. The present work demonstrates how CS expresses UCST with additional antibody conjugated is feasible for a simple and effective Ag single-phase extraction.
Collapse
Affiliation(s)
- Thanit Kertsomboon
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Pujahari SR, Mali PS, Purusottam RN, Kumar A. Combined Liquid-State and Solid-State Nuclear Magnetic Resonance at Natural Abundance for Comparative Higher Order Structure Assessment in the Formulated-State of Biphasic Biopharmaceutics. Anal Chem 2023. [PMID: 37154614 DOI: 10.1021/acs.analchem.2c05485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A higher-order structure (HOS) is critical to a biopharmaceutical drug as the three-dimensional structure governs its function. Even the partial perturbation in the HOS of the drug can alter the biological efficiency and efficacy. Due to current limitations in analytical technologies, it is imperative to develop a protocol to characterize the HOS of biopharmaceuticals in the native formulated state. This becomes even more challenging for the suspension formulations where solution and solid phases co-exist. Here, we have used a combinatorial approach using liquid (1D 1H) and solid-state (13C CP MAS) NMR methodology to demonstrate the HOS in the biphasic microcrystalline suspension drug in its formulated state. The data were further assessed by principal component analysis and Mahalanobis distance (DM) calculation for quantitative assessment. This approach is sufficient to provide information regarding the protein HOS and the local dynamics of the molecule when combined with orthogonal techniques such as X-ray scattering. Our method can be an elegant tool to investigate batch-to-batch variation in the process of manufacture and storage as well as a biosimilarity comparison study for biphasic/microcrystalline suspension.
Collapse
Affiliation(s)
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Desai PG, Garidel P, Gbormittah FO, Kamen DE, Mills BJ, Narasimhan CN, Singh S, Stokes ESE, Walsh ER. An Intercompany Perspective on Practical Experiences of Predicting, Optimizing and Analyzing High Concentration Biologic Therapeutic Formulations. J Pharm Sci 2023; 112:359-369. [PMID: 36442683 DOI: 10.1016/j.xphs.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Developing high-dose biologic drugs for subcutaneous injection often requires high-concentration formulations and optimizing viscosity, solubility, and stability while overcoming analytical, manufacturing, and administration challenges. To understand industry approaches for developing high-concentration formulations, the Formulation Workstream of the BioPhorum Development Group, an industry-wide consortium, conducted an inter-company collaborative exercise which included several surveys. This collaboration provided an industry perspective, experience, and insight into the practicalities for developing high-concentration biologics. To understand solubility and viscosity, companies desire predictive tools, but experience indicates that these are not reliable and experimental strategies are best. Similarly, most companies prefer accelerated and stress stability studies to in-silico or biophysical-based prediction methods to assess aggregation. In addition, optimization of primary container-closure and devices are pursued to mitigate challenges associated with high viscosity of the formulation. Formulation strategies including excipient selection and application of studies at low concentration to high-concentration formulations are reported. Finally, analytical approaches to high concentration formulations are presented. The survey suggests that although prediction of viscosity, solubility, and long-term stability is desirable, the outcome can be inconsistent and molecule dependent. Significant experimental studies are required to confirm robust product definition as modeling at low protein concentrations will not necessarily extrapolate to high concentration formulations.
Collapse
Affiliation(s)
- Preeti G Desai
- Bristol Myers Squibb, Sterile Product Development, 556 Morris Avenue, Summit, NJ 07901, USA
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH Co KG, Innovation Unit, PDB-TIP, 88397 Biberach an der Riss, Germany
| | - Francisca O Gbormittah
- GlaxoSmithKline, Strategic External Development, 1000 Winter Street North, Waltham, MA 02451, USA
| | - Douglas E Kamen
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Brittney J Mills
- AbbVie, NBE Drug Product Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | | | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, PA 19426, USA
| | - Elaine S E Stokes
- BioPhorum, The Gridiron Building, 1 Pancras Square, London N1C 4AG UK.
| | - Erika R Walsh
- Merck & Co., Inc., Sterile and Specialty Products, Rahway, NJ, USA
| |
Collapse
|
6
|
Wang H, Sun H, Gao C, Chen Q, Dong W, Chang Y, Luo H. A phase separation process induced by pH change for purification of His-tagged protein at low salt concentration. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ma J, Pathirana C, Liu DQ, Miller SA. NMR spectroscopy as a characterization tool enabling biologics formulation development. J Pharm Biomed Anal 2023; 223:115110. [DOI: 10.1016/j.jpba.2022.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
8
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
9
|
Shahfar H, O'Brien CJ, Budyak IL, Roberts CJ. Predicting Experimental B22 Values and the Effects of Histidine Charge States for Monoclonal Antibodies Using Coarse-Grained Molecular Simulations. Mol Pharm 2022; 19:3820-3830. [PMID: 36194430 DOI: 10.1021/acs.molpharmaceut.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Static light scattering (SLS) was used to characterize five monoclonal antibodies (MAbs) as a function of total ionic strength (TIS) at pH values between 5.5 and 7.0. Second osmotic virial coefficient (B22) values were determined experimentally for each MAb as a function of TIS using low protein concentration SLS data. Coarse-grained molecular simulations were performed to predict the B22 values for each MAb at a given pH and TIS. To include the effect of charge fluctuations of titratable residues in the B22 calculations, a statistical approach was introduced in the Monte Carlo algorithm based on the protonation probability based on a given pH value and the Henderson-Hasselbalch equation. The charged residues were allowed to fluctuate individually, based on the sampled microstates and the influence of electrostatic interactions on net protein-protein interactions during the simulations. Compared to static charge simulations, the new approach provided improved results compared to experimental B22 values at pH conditions near the pKa of titratable residues.
Collapse
Affiliation(s)
- Hassan Shahfar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Christopher J O'Brien
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| |
Collapse
|
10
|
Liu J, Zhang T, Liu X, Lam JWY, Tang BZ, Chau Y. Molecular logic operations from complex coacervation with aggregation-induced emission characteristics. MATERIALS HORIZONS 2022; 9:2443-2449. [PMID: 35856292 DOI: 10.1039/d2mh00537a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leveraging complex coacervation of a polycation and a bivalent anion with aggregation-induced emission characteristics, we accomplish eight basic logic operations with environmental stimuli as inputs, producing Boolean-like fluorescence intensity or turbidity 'outputs' with contrast higher than one order of magnitude. Storage of information of a fluorescent pattern and thermo-sensor applications are also demonstrated.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Tianfu Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiaolin Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jacky W Y Lam
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ben Zhong Tang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, the Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
11
|
Fetahaj Z, Jaworek MW, Oliva R, Winter R. Suppression of Liquid‐Liquid Phase Separation and Aggregation of Antibodies by Modest Pressure Application. Chemistry 2022; 28:e202201658. [PMID: 35759377 PMCID: PMC9544093 DOI: 10.1002/chem.202201658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/09/2022]
Abstract
The high colloidal stability of antibody (immunoglobulin) solutions is important for pharmaceutical applications. Inert cosolutes, excipients, are generally used in therapeutic protein formulations to minimize physical instabilities, such as liquid–liquid phase separation (LLPS), aggregation and precipitation, which are often encountered during manufacturing and storage. Despite their widespread use, a detailed understanding of how excipients modulate the specific protein‐protein interactions responsible for these instabilities is still lacking. In this work, we demonstrate the high sensitivity to pressure of globulin condensates as a suitable means to suppress LLPS and subsequent aggregation of concentrated antibody solutions. The addition of excipients has only a minor effect. The high pressure sensitivity observed is due to the fact that these flexible Y‐shaped molecules create a considerable amount of void volume in the condensed phase, leading to an overall decrease in the volume of the system upon dissociation of the droplet phase by pressure already at a few tens of to hundred bar. Moreover, we show that immunoglobulin molecules themselves are highly resistant to unfolding under pressure, and can even sustain pressures up to about 6 kbar without conformational changes. This implies that immunoglobulins are resistant to the pressure treatment of foods, such as milk, in high‐pressure food‐processing technologies, thereby preserving their immunological activity.
Collapse
Affiliation(s)
- Zamira Fetahaj
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Michel W. Jaworek
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Rosario Oliva
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
- Department of Chemical Sciences University of Naples Federico II Via Cintia 4 80126 Naples Italy
| | - Roland Winter
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
12
|
Hartl J, Friesen S, Johannsmann D, Buchner R, Hinderberger D, Blech M, Garidel P. Dipolar Interactions and Protein Hydration in Highly Concentrated Antibody Formulations. Mol Pharm 2022; 19:494-507. [PMID: 35073097 DOI: 10.1021/acs.molpharmaceut.1c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular interaction mechanisms in high-concentrated protein systems are of fundamental importance for the rational development of biopharmaceuticals such as monoclonal antibody (mAb) formulations. In such high-concentrated protein systems, the intermolecular distances between mAb molecules are reduced to the size of the protein diameter (approx. 10 nm). Thus, protein-protein interactions are more pronounced at high concentrations; so a direct extrapolation of physicochemical properties obtained from measurements at a low protein concentration of the corresponding properties at a high protein concentration is highly questionable. Besides the charge-charge interaction, the effects of molecular crowding, dipolar interaction, changes in protein hydration, and self-assembling tendency become more relevant. Here, protein hydration, protein dipole moment, and protein-protein interactions were studied in protein concentrations up to 200 mg/mL (= 1.3 mM) in different formulations for selected mAbs using dielectric relaxation spectroscopy (DRS). These data are correlated with the second virial coefficient, A2, the diffusion interaction parameter, kD, the elastic shear modulus, G', and the dynamic viscosity, η. When large contributions of dipolar protein-protein interactions were observed, the tendency of self-assembling and an increase in solution viscosity were detected. These effects were examined using specific buffer conditions. Furthermore, different types of protein-water interactions were identified via DRS, whereby the effect of high protein concentration on protein hydration was investigated for different high-concentrated liquid formulations (HCLFs).
Collapse
Affiliation(s)
- Josef Hartl
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sergej Friesen
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Richard Buchner
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, 88397 Biberach an der Riss, Germany
| |
Collapse
|
13
|
Girelli A, Beck C, Bäuerle F, Matsarskaia O, Maier R, Zhang F, Wu B, Lang C, Czakkel O, Seydel T, Schreiber F, Roosen-Runge F. Molecular Flexibility of Antibodies Preserved Even in the Dense Phase after Macroscopic Phase Separation. Mol Pharm 2021; 18:4162-4169. [PMID: 34637319 PMCID: PMC8564753 DOI: 10.1021/acs.molpharmaceut.1c00555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antibody therapies are typically based on high-concentration formulations that need to be administered subcutaneously. These conditions induce several challenges, inter alia a viscosity suitable for injection, sufficient solution stability, and preservation of molecular function. To obtain systematic insights into the molecular factors, we study the dynamics on the molecular level under strongly varying solution conditions. In particular, we use solutions of antibodies with poly(ethylene glycol), in which simple cooling from room temperature to freezing temperatures induces a transition from a well-dispersed solution into a phase-separated and macroscopically arrested system. Using quasi-elastic neutron scattering during in situ cooling ramps and in prethermalized measurements, we observe a strong decrease in antibody diffusion, while internal flexibility persists to a significant degree, thus ensuring the movement necessary for the preservation of molecular function. These results are relevant for a more dynamic understanding of antibodies in high-concentration formulations, which affects the formation of transient clusters governing the solution viscosity.
Collapse
Affiliation(s)
- Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.,Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Famke Bäuerle
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ralph Maier
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Baohu Wu
- Jülich Centre for Neutron Science JCNS at MLZ, Forschungszentrum Jülich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Christian Lang
- Jülich Centre for Neutron Science JCNS at MLZ, Forschungszentrum Jülich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Orsolya Czakkel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
14
|
|
15
|
Bramham JE, Podmore A, Davies SA, Golovanov AP. Comprehensive Assessment of Protein and Excipient Stability in Biopharmaceutical Formulations Using 1H NMR Spectroscopy. ACS Pharmacol Transl Sci 2021; 4:288-295. [PMID: 33659867 PMCID: PMC7906489 DOI: 10.1021/acsptsci.0c00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 01/06/2023]
Abstract
Biopharmaceutical proteins are important drug therapies in the treatment of a range of diseases. Proteins, such as antibodies (Abs) and peptides, are prone to chemical and physical degradation, particularly at the high concentrations currently sought for subcutaneous injections, and so formulation conditions, including buffers and excipients, must be optimized to minimize such instabilities. Therefore, both the protein and small molecule content of biopharmaceutical formulations and their stability are critical to a treatment's success. However, assessing all aspects of protein and small molecule stability currently requires a large number of analytical techniques, most of which involve sample dilution or other manipulations which may themselves distort sample behavior. Here, we demonstrate the application of 1H nuclear magnetic resonance (NMR) spectroscopy to study both protein and small molecule content and stability in situ in high-concentration (100 mg/mL) Ab formulations. We show that protein degradation (aggregation or fragmentation) can be detected as changes in 1D 1H NMR signal intensity, while apparent relaxation rates are specifically sensitive to Ab fragmentation. Simultaneously, relaxation-filtered spectra reveal the presence and degradation of small molecule components such as excipients, as well as changes in general solution properties, such as pH. 1H NMR spectroscopy can thus provide a holistic overview of biopharmaceutical formulation content and stability, providing a preliminary characterization of degradation and acting as a triaging step to guide further analytical techniques.
Collapse
Affiliation(s)
- Jack E. Bramham
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Adrian Podmore
- Dosage
Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Stephanie A. Davies
- Dosage
Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Alexander P. Golovanov
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
16
|
Banks DD, Cordia JF. Suppression of Electrostatic Mediated Antibody Liquid-Liquid Phase Separation by Charged and Noncharged Preferentially Excluded Excipients. Mol Pharm 2021; 18:1285-1292. [PMID: 33555888 DOI: 10.1021/acs.molpharmaceut.0c01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotonic concentrations of inert cosolutes or excipients are routinely used in protein therapeutic formulations to minimize physical instabilities including aggregation, particulation, and precipitation that are often manifested during drug substance/product manufacture and long-term storage. Despite their prevalent use within the biopharmaceutical industry, a more detailed understanding for how excipients modulate the specific protein-protein interactions responsible for these instabilities is still needed so that informed formulation decisions can be made at the earliest stages of development when protein supply and time are limited. In the present report, subisotonic concentrations of the five common formulation excipients, sucrose, proline, sorbitol, glycerol, arginine hydrochloride, and the denaturant urea, were studied for their effect on the room temperature liquid-liquid phase separation of a model monoclonal antibody (mAb-B). Although each excipient lowered the onset temperatures of mAb-B liquid-liquid phase separation to different extents, all six were found to be preferentially excluded from the native state monomer by vapor pressure osmometry, and no apparent correlations to the excipient dependence of mAb-B melting temperatures were observed. These results and those of the effects of solution pH, addition of salt, and impact of a small number of charge mutations were most consistent with a mechanism of local excipient accumulation, to an extent dependent on their type, with the specific residues that mediate mAb-B electrostatic protein-protein interactions. These findings suggest that selection of excipients on the basis of their interaction with the solvent exposed residues of the native state may at times be a more effective strategy for limiting protein-protein interactions at pharmaceutically relevant storage conditions than choosing those that are excluded from the residues of the native state interior.
Collapse
Affiliation(s)
- Douglas D Banks
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, 4242 Campus Point Court, Suite 700, San Diego, California 92121, United States
| | - Jon F Cordia
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, 4242 Campus Point Court, Suite 700, San Diego, California 92121, United States
| |
Collapse
|
17
|
Kollár É, Balázs B, Tari T, Siró I. Development challenges of high concentration monoclonal antibody formulations. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:31-40. [PMID: 34895653 DOI: 10.1016/j.ddtec.2020.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023]
Abstract
High concentration monoclonal antibody drug products represent a special segment of biopharmaceuticals. In contrast to other monoclonal antibody products, high concentration monoclonal antibodies are injected subcutaneously helping increase patient compliance and reduce the number of hospital patient visits. It is important to note that a high protein concentration (≥50 mg/mL) poses a challenge from a product development perspective. Colloidal properties, physical and chemical protein stability should be considered during formulation, primary packaging and manufacturing process development as well as optimization of other dosage form-related parameters. The aim of such development work is to obtain a drug product capable of maintaining appropriate protein structure throughout its shelf-life and ensure proper and accurate dosage upon administration.
Collapse
Affiliation(s)
- Éva Kollár
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary.
| | - Boglárka Balázs
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Tímea Tari
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - István Siró
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| |
Collapse
|
18
|
Izutsu KI, Usui A, Yamamoto E, Abe Y, Yoshida H, Goda Y. Effect of Complex Coacervation with Hyaluronic Acid on Protein Transition in a Subcutaneous Injection Site Model System. Chem Pharm Bull (Tokyo) 2020; 68:1109-1112. [PMID: 33132379 DOI: 10.1248/cpb.c20-00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The occurrence of complex coacervation in an aqueous mixture of proteins (lysozyme, albumin, immunoglobulin G) and hyaluronic acid and its effect on protein transition in a model system was studied to elucidate factors determining the bioavailability of subcutaneously injected therapeutic proteins. Mixing of hyaluronic acid and the model proteins induced complex coacervation at solution pH close to or below the isoelectric point of the proteins. In vitro dialysis using membranes with large pore size tube represented a limitation in the protein transition of the coacervation mixture. Thermal analysis suggested there was retention of the protein conformation in the polymer complex.
Collapse
Affiliation(s)
| | - Akiko Usui
- Drug Division, National Institute of Health Sciences
| | | | - Yasuhiro Abe
- Drug Division, National Institute of Health Sciences
| | | | | |
Collapse
|
19
|
Matsuoka T, Miyauchi R, Nagaoka N, Hasegawa J. Mitigation of liquid-liquid phase separation of a monoclonal antibody by mutations of negative charges on the Fab surface. PLoS One 2020; 15:e0240673. [PMID: 33125371 PMCID: PMC7598502 DOI: 10.1371/journal.pone.0240673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Some monoclonal antibodies undergo liquid-liquid phase separation owing to self-attractive associations involving electrostatic and other soft interactions, thereby rendering monoclonal antibodies unsuitable as therapeutics. To mitigate the phase separation, formulation optimization is often performed. However, this is sometimes unsuccessful because of the limited time for the development of therapeutic antibodies. Thus, protein mutations with appropriate design are required. In this report, we describe a case study involving the design of mutants of negatively charged surface residues to reduce liquid-liquid phase separation propensity. Physicochemical analysis of the resulting mutants demonstrated the mutual correlation between the sign of second virial coefficient B2, the Fab dipole moment, and the reduction of liquid-liquid phase separation propensity. Moreover, both the magnitude and direction of the dipole moment appeared to be essential for liquid-liquid phase separation propensity, where electrostatic interaction was the dominant mechanism. These findings could contribute to a better design of mutants with reduced liquid-liquid phase separation propensity and improved drug-like biophysical properties.
Collapse
Affiliation(s)
- Tatsuji Matsuoka
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Ryuki Miyauchi
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Nobumi Nagaoka
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Jun Hasegawa
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| |
Collapse
|
20
|
Resolving Liquid-Liquid Phase Separation for a Peptide Fused Monoclonal Antibody by Formulation Optimization. J Pharm Sci 2020; 110:738-745. [PMID: 32961238 DOI: 10.1016/j.xphs.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) of protein solutions has been usually related to strong protein-protein interactions (PPI) under certain conditions. For the first time, we observed the LLPS phenomenon for a novel protein modality, peptide-fused monoclonal antibody (pmAb). LLPS emerged within hours between pH 6.0 to 7.0 and disappeared when solution pH values decreased to pH 5.0 or lower. Negative values of interaction parameter (kD) and close to zero values of zeta potential (ζ) were correlated to LLPS appearance. However, between pH 6.0 to 7.0, a strong electrostatic repulsion force was expected to potentially avoid LLPS based on the sequence predicted pI value, 8.35. Surprisingly, this is significantly away from experimentally determined pI, 6.25, which readily attributes the LLPS appearances of pmAb to the attenuated electrostatic repulsion force. Such discrepancy between experiment and prediction reminds the necessity of actual measurement for a complicated modality like pmAb. Furthermore, significant protein degradation took place upon thermal stress at pH 5.0 or lower. Therefore, the effects of pH and selected excipients on the thermal stability of pmAb were further assessed. A formulation consisting of arginine at pH 6.5 successfully prevented the appearance of LLPS and enhanced its thermal stability at 40 °C for pmAb. In conclusion, we have reported LLPS for a pmAb and successfully resolved the issue by optimizing formulation with aids from PPI characterization.
Collapse
|
21
|
Tian Z, Xu L, Zhang N, Qian F. First-order nucleation and subsequent growth promote liquid-liquid phase separation of a model IgG1 mAb. Int J Pharm 2020; 588:119681. [PMID: 32721563 DOI: 10.1016/j.ijpharm.2020.119681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Although protein aggregation is commonly encountered during the manufacturing and storage of bio-therapeutics, the actual aggregation mechanism remains unclear, and little has been reported about the protein aggregation kinetics from time zero under particular solution conditions. In this study, we used real-time dynamic light scattering (DLS) to continuously monitor the time-dependent evolution of the Z-average hydrodynamic radius of a model IgG1 (JM2) immediately after the JM2 solution was subjected to various low temperatures (0-4 °C). We observed that JM2 aggregated to form nuclei first, and then it subsequently grew to small liquid droplets via a two-step, first-order, reversible process without causing irreversible structural changes: a slow first step defined as the "nucleation" step, wherein nuclei formed slowly until reaching a transitional time point (tonset), and a much faster second step initiated after tonset and the nucleus size of the protein increased rapidly, which eventually caused liquid droplet formation and liquid-liquid phase separation (LLPS). The "nucleation" rate constant (Knucleation) and particle growth rate constant (Kgrowth), as well as tonset, were found to be temperature, pH and concentration dependent. The aggregation of JM2 could be universally described by these two-step first-order kinetics: under conditions where JM2 aggregated very slowly, the second step was not observed within the experimental time scale, while under conditions where JM2 aggregated very rapidly, the first step could not be recorded. We believe that these three parameters, Knucleation, Kgrowth, and tonset, can be used to quantify and compare the aggregation kinetics of JM2 under different solution and temperature conditions and, furthermore, serve as a theoretical base to account for the key characteristics of the aggregation kinetics of JM2 and other protein therapeutics under conditions of interest.
Collapse
Affiliation(s)
- Zhou Tian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Long Xu
- Biotherapeutics Development, Janssen Research & Development, Johnson & Johnson, Shanghai, PR China
| | - Ning Zhang
- Biotherapeutics Development, Janssen Research & Development, Johnson & Johnson, Shanghai, PR China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
22
|
Relationship of PEG-induced precipitation with protein-protein interactions and aggregation rates of high concentration mAb formulations at 5 °C. Eur J Pharm Biopharm 2020; 151:53-60. [PMID: 32197816 DOI: 10.1016/j.ejpb.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Native protein-protein interactions can play an important role in determining the tendency of monoclonal antibodies (mAbs) to aggregate under storage conditions. In this context, phase separation of mAb solutions induced by the addition of neutral polymers such as poly(ethylene glycol) (PEG) represents a simple method to assess the tendency of proteins to self-associate in the native state. Here, we investigated their relationships between PEG-induced phase separation, protein-protein interactions and long-term aggregation rate of several formulations of four mAbs at 100 mg/mL and 5 °C over 12 weeks of storage. We observed that the location of the phase boundary correlated well with the osmotic second virial coefficient B22 determined in absence of the polymer, indicating that for our solutions PEG primarily leads to depletion forces between protein molecules, which are additive to protein-protein interactions. However, limited correlation between aggregation rate at 5 °C and phase behavior was observed across different mAbs, pH values and ionic strengths, indicating that colloidal stability is not the only determinant of aggregation even at such low temperature and high protein concentration. Our results contribute to the growing realization that aggregation propensity in the context of antibody developability is a complex feature, which depends on a variety of biophysical properties rather than one single parameter.
Collapse
|
23
|
Kalayan J, Henchman RH, Warwicker J. Model for Counterion Binding and Charge Reversal on Protein Surfaces. Mol Pharm 2020; 17:595-603. [PMID: 31887056 DOI: 10.1021/acs.molpharmaceut.9b01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural stability and solubility of proteins in liquid therapeutic formulations is important, especially since new generations of therapeutics are designed for efficacy before consideration of stability. We introduce an electrostatic binding model to measure the net charge of proteins with bound ions in solution. The electrostatic potential on a protein surface is used to separately group together acidic and basic amino acids into patches, which are then iteratively bound with oppositely charged counterions. This model is aimed toward formulation chemists for initial screening of a range of conditions prior to lab-work. Computed results compare well with experimental zeta potential measurements from the literature covering a range of solution conditions. Importantly, the binding model reproduces the charge reversal phenomenon that is observed with polyvalent ion binding to proteins and its dependence on ion charge and concentration. Intriguingly, protein sequence can be used to give similarly good agreement with experiment as protein structure, interpreted as resulting from the close proximity of charged side chains on a protein surface. Further, application of the model to human proteins suggests that polyanion binding and overcharging, including charge reversal for cationic proteins, is a general feature. These results add to evidence that addition of polyanions to protein formulations could be a general mechanism for modulating solution stability.
Collapse
Affiliation(s)
- Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| |
Collapse
|
24
|
Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy. J Pharm Sci 2020; 109:116-133. [DOI: 10.1016/j.xphs.2019.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
25
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
26
|
Concentration Effects in the Interaction of Monoclonal Antibodies (mAbs) with their Immediate Environment Characterized by EPR Spectroscopy. Molecules 2019; 24:molecules24142528. [PMID: 31295948 PMCID: PMC6680867 DOI: 10.3390/molecules24142528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are often needed and applied in high concentration solutions, >100 mg/mL. Due to close intermolecular distances between mAbs at high concentrations (~10–20 nm at 200 mg/mL), intermolecular interactions between mAbs and mAbs and solvent/co-solute molecules become non-negligible. Here, EPR spectroscopy is used to study the high-concentration solutions of mAbs and their effect on co-solvated small molecules, using EPR “spin probing” assay in aqueous and buffered solutions. Such, information regarding the surrounding environments of mAbs at high concentrations were obtained and comparisons between EPR-obtained micro-viscosities (rotational correlation times) and macroscopic viscosities measured by rheology were possible. In comparison with highly viscous systems like glycerol-water mixtures, it was found that up to concentrations of 50 mg/mL, the mAb-spin probe systems have similar trends in their macro- (rheology) and micro-viscosities (EPR), whereas at very high concentrations they deviate strongly. The charged spin probes sense an almost unchanged aqueous solution even at very high concentrations, which in turn indicates the existence of large solvent regions that despite their proximity to large mAbs essentially offer pure water reservoirs for co-solvated charged molecules. In contrast, in buffered solutions, amphiphilic spin probes like TEMPO interact with the mAb network, due to slight charge screening. The application of EPR spectroscopy in the present work has enabled us to observe and discriminate between electrostatic and hydrophobic kinds of interactions and depict the potential underlying mechanisms of network formation at high concentrations of mAbs. These findings could be of importance as well for the development of liquid-liquid phase separations often observed in highly concentrated protein solutions.
Collapse
|
27
|
Du Q, Damschroder M, Pabst TM, Hunter AK, Wang WK, Luo H. Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions. MAbs 2019; 11:789-802. [PMID: 30913985 DOI: 10.1080/19420862.2019.1599634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (LCs) of this mAb are responsible for the LLPS behavior. With the aid of in silico homology modeling and charged-patch analysis, seven charged residues in the LC complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of in silico protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that in silico design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues.
Collapse
Affiliation(s)
- Qun Du
- a Department of Antibody Discovery and Protein Engineering, AstraZeneca , Gaithersburg , MD , USA
| | - Melissa Damschroder
- a Department of Antibody Discovery and Protein Engineering, AstraZeneca , Gaithersburg , MD , USA
| | - Timothy M Pabst
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| | - Alan K Hunter
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| | - William K Wang
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| | - Haibin Luo
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| |
Collapse
|
28
|
Horn JM, Kapelner RA, Obermeyer AC. Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress. Polymers (Basel) 2019; 11:E578. [PMID: 30960562 PMCID: PMC6523202 DOI: 10.3390/polym11040578] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 01/02/2023] Open
Abstract
Protein-containing polyelectrolyte complexes (PECs) are a diverse class of materials, composed of two or more oppositely charged polyelectrolytes that condense and phase separate near overall charge neutrality. Such phase-separation can take on a variety of morphologies from macrophase separated liquid condensates, to solid precipitates, to monodispersed spherical micelles. In this review, we present an overview of recent advances in protein-containing PECs, with an overall goal of defining relevant design parameters for macro- and microphase separated PECs. For both classes of PECs, the influence of protein characteristics, such as surface charge and patchiness, co-polyelectrolyte characteristics, such as charge density and structure, and overall solution characteristics, such as salt concentration and pH, are considered. After overall design features are established, potential applications in food processing, biosensing, drug delivery, and protein purification are discussed and recent characterization techniques for protein-containing PECs are highlighted.
Collapse
Affiliation(s)
- Justin M Horn
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Rachel A Kapelner
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
29
|
Tian Y, Huang L, Ruotolo BT, Wang N. Hydrogen/deuterium exchange-mass spectrometry analysis of high concentration biotherapeutics: application to phase-separated antibody formulations. MAbs 2019; 11:779-788. [PMID: 30890021 PMCID: PMC6601547 DOI: 10.1080/19420862.2019.1589850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High concentration biotherapeutic formulations are often required to deliver large doses of drugs to achieve a desired degree of efficacy and less frequent dose. However, highly concentrated protein-containing solutions may exhibit undesirable therapeutic properties, such as increased viscosity, aggregation, and phase separation that can affect drug efficacy and raise safety issues. The characterization of high concentration protein formulations is a critical yet challenging analytical task for therapeutic development efforts, due to the lack of technologies capable of making accurate measurements under such conditions. To address this issue, we developed a novel dilution-free hydrogen/deuterium exchange (HDX) mass spectrometry (MS) method for the direct conformational analysis of high concentration biotherapeutics. Here, we particularly focused on studying phase separation phenomenon that can occur at high protein concentrations. First, two aliquots of monoclonal antibodies (mAbs) were dialyzed in either hydrogen- or deuterium-containing buffers at low salt and pH. Phases that separated were then discretely sampled and subjected to dilution-free HDX-MS analysis through mixing the non-deuterated and deuterated protein aliquots. Our HDX-MS results analyzed at a global protein level reveal less deuterium incorporation for the protein-enriched phase compared to the protein-depleted phase present in high concentration formulations. A peptide level analysis further confirmed these observed differences, and a detailed statistical analysis provided direct information surrounding the details of the conformational changes observed. Based on our HDX-MS results, we propose possible structures for the self-associated mAbs present at high concentrations. Our new method can potentially provide useful insights into the unusual behavior of therapeutic proteins in high concentration formulations, aiding their development.
Collapse
Affiliation(s)
- Yuwei Tian
- a Bioproduct Research and Development , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , IN , USA.,b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| | - Lihua Huang
- a Bioproduct Research and Development , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , IN , USA
| | - Brandon T Ruotolo
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| | - Ning Wang
- a Bioproduct Research and Development , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , IN , USA
| |
Collapse
|
30
|
Hoppe T, Minton AP. Non-specific Interactions Between Macromolecular Solutes in Concentrated Solution: Physico-Chemical Manifestations and Biochemical Consequences. Front Mol Biosci 2019; 6:10. [PMID: 30918892 PMCID: PMC6424865 DOI: 10.3389/fmolb.2019.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 02/01/2023] Open
Abstract
A general thermodynamic formulation of the effect of hard and soft non-specific intermolecular interactions upon reaction equilibria is summarized. A highly simplified quantitative model for non-specific intermolecular interaction is introduced. This model is used to illustrate how the magnitudes of attractive and repulsive components of the overall intermolecular interaction, and the balance between them, influence the concentration-dependent properties of a highly concentrated solution of a single macromolecular solute. The properties calculated using the results of computer simulation and an approximate analytical model are found to agree qualitatively with the results of experimental measurements on protein solutions over a broad range of concentration.
Collapse
Affiliation(s)
- Travis Hoppe
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Abstract
The ability of polyvalent anions to influence protein-protein interactions and protein net charge was investigated through solubility and turbidity experiments, determination of osmotic second virial coefficients ( B22), and ζ-potential values for lysozyme solutions. B22 values showed that all anions reduce protein-protein repulsion between positively charged lysozyme molecules, and those anions with higher net valencies are more effective. The polyvalent anions pyrophosphate and tripolyphosphate were observed to induce protein reentrant condensation, which has been previously observed with negatively charged proteins in the presence of trivalent cations. Reentrant condensation is a phenomenon in which low concentrations of polyvalent ions induce protein precipitation, but further increasing polyvalent ion concentration causes the protein precipitate to resolubilize. Interestingly, citrate does not induce lysozyme reentrant condensation despite having a similar charge, size, and shape to pyrophosphate. We observe qualitative differences in protein behavior when compared against negatively charged proteins in solutions of trivalent cations. The polyphosphate ions induce a much stronger protein-protein attraction, which correlates with the occurrence of a liquid-gel transition that replaces the liquid-liquid transition observed with trivalent cations. The results indicate that solutions of polyphosphate ions provide a model system for exploring the link between the protein-phase diagram and model interaction potentials and also highlight the importance that ion-specific effects can have on protein solubility.
Collapse
Affiliation(s)
- Jordan W Bye
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| |
Collapse
|
32
|
Lyophilization of High-Concentration Protein Formulations. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2019. [DOI: 10.1007/978-1-4939-8928-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Kalyuzhnyi YV, Vlachy V. Modeling the depletion effect caused by an addition of polymer to monoclonal antibody solutions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:485101. [PMID: 30418950 PMCID: PMC6693579 DOI: 10.1088/1361-648x/aae914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a theoretical study of colloidal stability of the model mixtures of monoclonal antibody molecules and non-adsorbing (no polymer-protein attraction) polymers. The antibodies are pictured as an assembly of seven hard spheres assuming a Y-like shape. Polymers present in the mixture are modeled as chain-like molecules having from 32 up to 128 monomers represented as hard spheres. We use Wertheim's thermodynamic perturbation theory to construct the two molecular species and to calculate measurable properties. The calculations are performed in the osmotic ensemble. In view that no direct attractive interaction is present in the model Hamiltonian, we only account for the entropic contribution to the phase equilibrium. We calculate chemical potentials and the equation of state for the model mixture to determine the liquid-liquid part of the phase diagram. We investigate how the critical antibody number density depends on the degree of polymerization and the bead size ratio of the polymer and protein components. The model mixture qualitatively correctly predicts some basic features of real systems. The effects of the model 'protein' geometry, that is the difference in results for the flexible Y-shaped protein versus the rigid spherical one, are also examined.
Collapse
Affiliation(s)
- Yu V Kalyuzhnyi
- Department of Chemistry, Faculty of Science, J E Purkinje University, 400 96 Ústí nad Labem, Czechia
| | | |
Collapse
|
34
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
35
|
Blaffert J, Haeri HH, Blech M, Hinderberger D, Garidel P. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Anal Biochem 2018; 561-562:70-88. [PMID: 30243977 DOI: 10.1016/j.ab.2018.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 01/14/2023]
Abstract
In cases of subcutaneous injection of therapeutic monoclonal antibodies, high protein concentrations (>50 mg/ml) are often required. During the development of these high concentration liquid formulations (HCLF), challenges such as aggregation, gelation, opalescence, phase separation, and high solution viscosities are more prone compared to low concentrated protein formulations. These properties can impair manufacturing processes, as well as protein stability and shelf life. To avoid such unfavourable solution properties, a detailed understanding about the nature of these properties and their driving forces are required. However, the fundamental mechanisms that lead to macroscopic solution properties, as above mentioned, are complex and not fully understood, yet. Established analytical methods for assessing the colloidal stability, i.e. the ability of a native protein to remain dispersed in solution, are restricted to dilute conditions and provide parameters such as the second osmotic virial coefficient, B22, and the diffusion interaction coefficient, kD. These parameters are routinely applied for qualitative estimations and identifications of proteins with challenging solution behaviours, such as high viscosities and aggregation, although the assays are prepared for low protein concentration conditions, typically between 0.1 and 20 mg/ml ("ideal" solution conditions). Quantitative analysis of samples of high protein concentration is difficult and it is hard to obtain information about the driving forces of such solution properties and corresponding protein-protein self-interactions. An advantage of using specific spectroscopic methods is the potential of directly analysing highly concentrated protein solutions at different solution conditions. This allows for collecting/gaining valuable information about the fundamental mechanisms of solution properties of the high protein concentration regime. In addition, the derived parameters might be more predictive as compared to the parameters originating from assays which are optimized for the low protein concentration range. The provided information includes structural data, molecular dynamics at various timescales and protein-solvent interactions, which can be obtained at molecular resolution. Herein, we provide an overview about spectroscopic techniques for analysing the origins of macroscopic solution behaviours in general, with a specific focus on pharmaceutically relevant high protein concentration and formulation conditions.
Collapse
Affiliation(s)
- Jacob Blaffert
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Haleh Hashemi Haeri
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Str. 65, 88397, Biberach/Riß, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Str. 65, 88397, Biberach/Riß, Germany.
| |
Collapse
|
36
|
Kastelic M, Vlachy V. Theory for the Liquid-Liquid Phase Separation in Aqueous Antibody Solutions. J Phys Chem B 2018; 122:5400-5408. [PMID: 29338267 PMCID: PMC5980754 DOI: 10.1021/acs.jpcb.7b11458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study presents the theory for liquid-liquid phase separation for systems of molecules modeling monoclonal antibodies. Individual molecule is depicted as an assembly of seven hard spheres, organized to mimic the Y-shaped antibody. We consider the antibody-antibody interactions either through Fab, Fab' (two Fab fragments may be different), or Fc domain. Interaction between these three domains of the molecule (hereafter denoted as A, B, and C, respectively) is modeled by a short-range square-well attraction. To obtain numerical results for the model under study, we adapt Wertheim's thermodynamic perturbation theory. We use this model to calculate the liquid-liquid phase separation curve and the second virial coefficient B2. Various interaction scenarios are examined to see how the strength of the site-site interactions and their range shape the coexistence curve. In the asymmetric case, where an attraction between two sites is favored and the interaction energies for the other sites kept constant, critical temperature first increases and than strongly decreases. Some more microscopic information, for example, the probability for the particular two sites to be connected, has been calculated. Analysis of the experimental liquid-liquid phase diagrams, obtained from literature, is presented. In addition, we calculate the second virial coefficient under conditions leading to the liquid-liquid phase separation and present this quantity on the graph B2 versus protein concentration.
Collapse
Affiliation(s)
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
37
|
Hartl J, Peschel A, Johannsmann D, Garidel P. Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance. Phys Chem Chem Phys 2018; 19:32698-32707. [PMID: 29199300 DOI: 10.1039/c7cp05711c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Making use of a quartz crystal microbalance (QCM), concentrated solutions of therapeutic antibodies were studied with respect to their behavior under shear excitation with frequencies in the MHz range. At high protein concentration and neutral pH, viscoelastic behavior was found in the sense that the storage modulus, G', was nonzero. Fits of the frequency dependence of G'(ω) and G''(ω) (G'' being the loss modulus) using the Maxwell-model produced good agreement with the experimental data. The fit parameters were the relaxation time, τ, and the shear modulus at the inverse relaxation time, G* (at the "cross-over frequency" ωC = 1/τ). The influence of two different pharmaceutical excipients (histidine and citrate) was studied at variable concentrations of the antibody and variable pH. In cases, where viscoelasticity was observed, G* was in the range of a few kPa, consistent with entropy-driven interactions. τ was small at low pH, where the antibody carries a positive charge. τ increased with increasing pH. The relaxation time τ was found to be correlated with other parameters quantifying protein-protein interactions, namely the steady shear viscosity (η), the second osmotic virial coefficient as determined with both self-interaction chromatography (B22,SIC) and static light scattering (B22,SLS), and the diffusion interaction parameter as determined with dynamic light scattering (kD). While B22 and kD describe protein-protein interactions in diluted samples, the QCM can be applied to concentrated solutions, thereby being sensitive to higher-order protein-protein interactions.
Collapse
Affiliation(s)
- Josef Hartl
- Boehringer Ingelheim Pharma GmbH and Co. KG, Protein Science, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | | | | | | |
Collapse
|
38
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
High-concentration protein formulations: How high is high? Eur J Pharm Biopharm 2017; 119:353-360. [DOI: 10.1016/j.ejpb.2017.06.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/25/2023]
|
40
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
41
|
Kheddo P, Bramham JE, Dearman RJ, Uddin S, van der Walle CF, Golovanov AP. Investigating Liquid–Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl. Mol Pharm 2017; 14:2852-2860. [DOI: 10.1021/acs.molpharmaceut.7b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Priscilla Kheddo
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| | - Jack E. Bramham
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| | - Rebecca J. Dearman
- School
of Biological Sciences, The University of Manchester, Manchester, M13 9PL, U.K
| | - Shahid Uddin
- Formulation
Sciences, MedImmune Ltd., Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | | | - Alexander P. Golovanov
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| |
Collapse
|
42
|
Da Vela S, Roosen-Runge F, Skoda MWA, Jacobs RMJ, Seydel T, Frielinghaus H, Sztucki M, Schweins R, Zhang F, Schreiber F. Effective Interactions and Colloidal Stability of Bovine γ-Globulin in Solution. J Phys Chem B 2017; 121:5759-5769. [DOI: 10.1021/acs.jpcb.7b03510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefano Da Vela
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Felix Roosen-Runge
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Maximilian W. A. Skoda
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Robert M. J. Jacobs
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tilo Seydel
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Henrich Frielinghaus
- Jülich
Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (JCNS at
MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching D-85747, Germany
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF), CS 40220, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38043, France
| | - Ralf Schweins
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Fajun Zhang
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| |
Collapse
|