1
|
Das D, Ainavarapu SRK. Protein engineering using circular permutation - structure, function, stability, and applications. FEBS J 2024; 291:3581-3596. [PMID: 38676939 DOI: 10.1111/febs.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Protein engineering is important for creating novel variants from natural proteins, enabling a wide range of applications. Approaches such as rational design and directed evolution are routinely used to make new protein variants. Computational tools like de novo design can introduce new protein folds. Expanding the amino acid repertoire to include unnatural amino acids with non-canonical side chains in vitro by native chemical ligation and in vivo via codon expansion methods broadens sequence and structural possibilities. Circular permutation (CP) is an invaluable approach to redesigning a protein by rearranging the amino acid sequence, where the connectivity of the secondary structural elements is altered without changing the overall structure of the protein. Artificial CP proteins (CPs) are employed in various applications such as biocatalysis, sensing of small molecules by fluorescence, genome editing, ligand-binding protein switches, and optogenetic engineering. Many studies have shown that CP can lead to either reduced or enhanced stability or catalytic efficiency. The effects of CP on a protein's energy landscape cannot be predicted a priori. Thus, it is important to understand how CP can affect the thermodynamic and kinetic stability of a protein. In this review, we discuss the discovery and advancement of techniques to create protein CP, and existing reviews on CP. We delve into the plethora of biological applications for designed CP proteins. We subsequently discuss the experimental and computational reports on the effects of CP on the thermodynamic and kinetic stabilities of proteins of various topologies. An understanding of the various aspects of CP will allow the reader to design robust CP proteins for their specific purposes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
2
|
Roy P, Walter Z, Berish L, Ramage H, McCullagh M. Motif-VI loop acts as a nucleotide valve in the West Nile Virus NS3 Helicase. Nucleic Acids Res 2024; 52:7447-7464. [PMID: 38884215 PMCID: PMC11260461 DOI: 10.1093/nar/gkae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
The Orthoflavivirus NS3 helicase (NS3h) is crucial in virus replication, representing a potential drug target for pathogenesis. NS3h utilizes nucleotide triphosphate (ATP) for hydrolysis energy to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. Intermediate states along the ATP hydrolysis cycle and conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. Extensive molecular dynamics simulations of West Nile virus NS3h+ssRNA in the apo, ATP, ADP+Pi and ADP bound states were used to model the conformational ensembles along this cycle. Energetic and structural clustering analyses depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). Based on these results, MVIL mutants (D471L, D471N and D471E) were found to have a substantial reduction in ATPase activity and RNA replication compared to the wild-type. Simulations of the mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.
Collapse
Affiliation(s)
- Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Lawal MM, Roy P, McCullagh M. Role of ATP Hydrolysis and Product Release in the Translocation Mechanism of SARS-CoV-2 NSP13. J Phys Chem B 2024; 128:492-503. [PMID: 38175211 PMCID: PMC11256563 DOI: 10.1021/acs.jpcb.3c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In response to the emergence of COVID-19, caused by SARS-CoV-2, there has been a growing interest in understanding the functional mechanisms of the viral proteins to aid in the development of new therapeutics. Nonstructural protein 13 (nsp13) helicase is an attractive target for antivirals because it is essential for viral replication and has a low mutation rate, yet the structural mechanisms by which this enzyme binds and hydrolyzes ATP to cause unidirectional RNA translocation remain elusive. Using Gaussian accelerated molecular dynamics (GaMD), we generated comprehensive conformational ensembles of all substrate states along the ATP-dependent cycle. Shape-GMM clustering of the protein yields four protein conformations that describe an opening and closing of both the ATP pocket and the RNA cleft that is achieved through a combination of conformational selection and induction along the ATP hydrolysis cycle. Furthermore, three protein-RNA conformations are observed that implicate motifs Ia, IV, and V as playing a pivotal role in an ATP-dependent inchworm translocation mechanism. Finally, based on a linear discriminant analysis of protein conformations, we identify L405 as a pivotal residue for the opening and closing mechanism and propose a L405D mutation as a way to disrupt translocation. This research enhances our understanding of nsp13's role in viral replication and could contribute to the development of antiviral strategies.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74074, USA
- These authors contributed equally to this work
| | - Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74074, USA
- These authors contributed equally to this work
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74074, USA
| |
Collapse
|
4
|
Roy P, Walter Z, Berish L, Ramage H, McCullagh M. Motif-VI Loop Acts as a Nucleotide Valve in the West Nile Virus NS3 Helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569434. [PMID: 38077049 PMCID: PMC10705498 DOI: 10.1101/2023.11.30.569434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The flavivirus NS3 helicase (NS3h), a highly conserved protein, plays a pivotal role in virus replication and thus represents a potential drug target for flavivirus pathogenesis. NS3h utilizes nucleotide triphosphate, such as ATP, for hydrolysis energy (ATPase) to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. The intermediate states along the ATP binding and hydrolysis cycle, as well as the conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. We use extensive molecular dynamics simulations of apo, ATP, ADP+Pi, and ADP bound to WNV NS3h+ssRNA to model the conformational ensembles along this cycle. Energetic and structural clustering analyses on these trajectories depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). These findings were experimentally corroborated using viral replicons encoding three mutations at the D471 position. Replication assays using these mutants demonstrated a substantial reduction in viral replication compared to the wild-type. Molecular simulations of the D471 mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.
Collapse
Affiliation(s)
- Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| | - Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA, 19107
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA, 19107
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA, 19107
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| |
Collapse
|
5
|
Lawal MM, Roy P, McCullagh M. The Role of ATP Hydrolysis and Product Release in the Translocation Mechanism of SARS-CoV-2 NSP13. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560057. [PMID: 37808802 PMCID: PMC10557736 DOI: 10.1101/2023.09.28.560057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In response to the emergence of COVID-19, caused by SARS-CoV-2, there has been a growing interest in understanding the functional mechanisms of the viral proteins to aid in the development of new therapeutics. Non-structural protein 13 (Nsp13) helicase is an attractive target for antivirals because it is essential for viral replication and has a low mutation rate; yet, the structural mechanisms by which this enzyme binds and hydrolyzes ATP to cause unidirectional RNA translocation remain elusive. Using Gaussian accelerated molecular dynamics (GaMD), we generated a comprehensive conformational ensemble of all substrate states along the ATP-dependent cycle. ShapeGMM clustering of the protein yields four protein conformations that describe an opening and closing of both the ATP pocket and RNA cleft. This opening and closing is achieved through a combination of conformational selection and induction along the ATP cycle. Furthermore, three protein-RNA conformations are observed that implicate motifs Ia, IV, and V as playing a pivotal role in an ATP-dependent inchworm translocation mechanism. Finally, based on a linear discriminant analysis of protein conformations, we identify L405 as a pivotal residue for the opening and closing mechanism and propose a L405D mutation as a way of testing our proposed mechanism. This research enhances our understanding of nsp13's role in viral replication and could contribute to the development of antiviral strategies.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Department of Chemistry, Oklahoma State University, Stillwater OK
- These authors contributed equally to this work
| | - Priti Roy
- Department of Chemistry, Oklahoma State University, Stillwater OK
- These authors contributed equally to this work
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater OK
| |
Collapse
|
6
|
Månsson A, Ušaj M, Moretto L, Matusovsky O, Velayuthan LP, Friedman R, Rassier DE. New paradigms in actomyosin energy transduction: Critical evaluation of non-traditional models for orthophosphate release. Bioessays 2023; 45:e2300040. [PMID: 37366639 DOI: 10.1002/bies.202300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Release of the ATP hydrolysis product ortophosphate (Pi) from the active site of myosin is central in chemo-mechanical energy transduction and closely associated with the main force-generating structural change, the power-stroke. Despite intense investigations, the relative timing between Pi-release and the power-stroke remains poorly understood. This hampers in depth understanding of force production by myosin in health and disease and our understanding of myosin-active drugs. Since the 1990s and up to today, models that incorporate the Pi-release either distinctly before or after the power-stroke, in unbranched kinetic schemes, have dominated the literature. However, in recent years, alternative models have emerged to explain apparently contradictory findings. Here, we first compare and critically analyze three influential alternative models proposed previously. These are either characterized by a branched kinetic scheme or by partial uncoupling of Pi-release and the power-stroke. Finally, we suggest critical tests of the models aiming for a unified picture.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| |
Collapse
|
7
|
Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. Using Catalysis to Drive Chemistry Away from Equilibrium: Relating Kinetic Asymmetry, Power Strokes, and the Curtin-Hammett Principle in Brownian Ratchets. J Am Chem Soc 2022; 144:20153-20164. [PMID: 36286995 PMCID: PMC9650702 DOI: 10.1021/jacs.2c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Chemically fueled autonomous molecular machines are catalysis-driven systems governed by Brownian information ratchet mechanisms. One fundamental principle behind their operation is kinetic asymmetry, which quantifies the directionality of molecular motors. However, it is difficult for synthetic chemists to apply this concept to molecular design because kinetic asymmetry is usually introduced in abstract mathematical terms involving experimentally inaccessible parameters. Furthermore, two seemingly contradictory mechanisms have been proposed for chemically driven autonomous molecular machines: Brownian ratchet and power stroke mechanisms. This Perspective addresses both these issues, providing accessible and experimentally useful design principles for catalysis-driven molecular machinery. We relate kinetic asymmetry to the Curtin-Hammett principle using a synthetic rotary motor and a kinesin walker as illustrative examples. Our approach describes these molecular motors in terms of the Brownian ratchet mechanism but pinpoints both chemical gating and power strokes as tunable design elements that can affect kinetic asymmetry. We explain why this approach to kinetic asymmetry is consistent with previous ones and outline conditions where power strokes can be useful design elements. Finally, we discuss the role of information, a concept used with different meanings in the literature. We hope that this Perspective will be accessible to a broad range of chemists, clarifying the parameters that can be usefully controlled in the design and synthesis of molecular machines and related systems. It may also aid a more comprehensive and interdisciplinary understanding of biomolecular machinery.
Collapse
Affiliation(s)
- Shuntaro Amano
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
- Institute
of Supramolecular Science and Engineering (ISIS), University of Strasbourg, 67000Strasbourg, France
| | - Massimiliano Esposito
- Department
of Physics and Materials Science, University
of Luxembourg, avenue de la Faïencerie, 1511Luxembourg City, G.D. Luxembourg
| | - Elisabeth Kreidt
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
- Department
of Chemistry and Chemical Biology, University
of Dortmund, Otto-Hahn-Str.
6, 44227Dortmund, Germany
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
| | - Emanuele Penocchio
- Department
of Physics and Materials Science, University
of Luxembourg, avenue de la Faïencerie, 1511Luxembourg City, G.D. Luxembourg
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Benjamin M. W. Roberts
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
| |
Collapse
|
8
|
Mallimadugula UL, Galburt EA. Parallel path mechanisms lead to nonmonotonic force-velocity curves and an optimum load for molecular motor function. Phys Rev E 2022; 105:034405. [PMID: 35428051 DOI: 10.1103/physreve.105.034405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Molecular motors convert chemical potential energy into mechanical work and perform a great number of critical biological functions. Examples include the polymerization and manipulation of nucleic acids, the generation of cellular motility and contractility, the formation and maintenance of cell shape, and the transport of materials within cells. The mechanisms underlying these molecular machines are varied, but are almost always considered in the context of a single kinetic pathway that describes motor stepping. However, the multidimensional nature of protein energy landscapes suggests the possibility of multiple reaction pathways connecting two states. Here we investigate the properties of a hypothetical molecular motor able to utilize parallel translocation mechanisms. We explore motor velocity and force dependence as a function of the energy landscape of each path and reveal the potential for such a mechanism to result in negative differential conductance. More specifically, regimes exist where increasing opposing force leads to increased velocity and an optimum load for motor function. We explore how the presence of this optimum depends on the rates of the individual paths and show that the distribution of stepping times characterized by the randomness parameter may be used to test for parallel path mechanisms. Last, we caution that experimental data consisting solely of measurements of velocity as a function of ATP concentration and force cannot be used to eliminate the possibility of such a parallel path mechanism.
Collapse
Affiliation(s)
- Upasana L Mallimadugula
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63108, USA
| |
Collapse
|
9
|
Arata T. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Int J Mol Sci 2020; 21:E672. [PMID: 31968570 PMCID: PMC7014194 DOI: 10.3390/ijms21020672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this article was to document the energy-transducing and regulatory interactions in supramolecular complexes such as motor, pump, and clock ATPases. The dynamics and structural features were characterized by motion and distance measurements using spin-labeling electron paramagnetic resonance (EPR) spectroscopy. In particular, we focused on myosin ATPase with actin-troponin-tropomyosin, neural kinesin ATPase with microtubule, P-type ion-motive ATPase, and cyanobacterial clock ATPase. Finally, we have described the relationships or common principles among the molecular mechanisms of various energy-transducing systems and how the large-scale thermal structural transition of flexible elements from one state to the other precedes the subsequent irreversible chemical reactions.
Collapse
Affiliation(s)
- Toshiaki Arata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
10
|
Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc Natl Acad Sci U S A 2019; 116:19777-19785. [PMID: 31506355 DOI: 10.1073/pnas.1818589116] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two mechanisms have been proposed for the function of motor proteins: The power stroke and the Brownian ratchet. The former refers to generation of a large downhill free energy gradient over which the motor protein moves nearly irreversibly in making a step, whereas the latter refers to biasing or rectifying the diffusive motion of the motor. Both mechanisms require input of free energy, which generally involves the processing of an ATP (adenosine 5'-triphosphate) molecule. Recent advances in experiments that reveal the details of the stepping motion of motor proteins, together with computer simulations of atomistic structures, have provided greater insights into the mechanisms. Here, we compare the various models of the power stroke and the Brownian ratchet that have been proposed. The 2 mechanisms are not mutually exclusive, and various motor proteins employ them to different extents to perform their biological function. As examples, we discuss linear motor proteins Kinesin-1 and myosin-V, and the rotary motor F1-ATPase, all of which involve a power stroke as the essential element of their stepping mechanism.
Collapse
|
11
|
Ge J, Remesh SG, Hammel M, Pan S, Mahan AD, Wang S, Wang X. Functional Relevance of Interleukin-1 Receptor Inter-domain Flexibility for Cytokine Binding and Signaling. Structure 2019; 27:1296-1307.e5. [PMID: 31257107 DOI: 10.1016/j.str.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/09/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
The interleukin 1 (IL-1) receptor family, whose members contain three immunoglobulin-like domains (D1-D3) in the extracellular region, is responsible for transmitting pleiotropic signals of IL-1 cytokines. The inter-domain flexibility of IL-1 receptors and its functional roles have not been fully elucidated. In this study, we used small-angle X-ray scattering to show that ligand-binding primary receptors and co-receptors in the family all have inherent inter-domain flexibility due to the D2/D3 linker. Variants of the IL-1RAcP and IL-18Rβ co-receptors with mutated D2/D3 linkers cannot form a cytokine-receptor complex and mediate signaling. Our analysis further revealed that these mutated co-receptors exhibited a changed conformational ensemble, suggesting that loss of function is due to the alteration of receptor dynamics. Taken together, our results demonstrate that the D2/D3 linker is a critical functional determinant of IL-1 receptor and underscore the important roles of the inter-domain flexibility in cytokine/receptor binding and signaling.
Collapse
Affiliation(s)
- Jiwan Ge
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Soumya G Remesh
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Si Pan
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Andrew D Mahan
- Janssen Bio Therapeutics, Janssen R&D, LLC, Spring House, PA 19477, USA
| | - Shuying Wang
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Abstract
Drugs modulate disease states through their actions on targets in the body. Determining these targets aids the focused development of new treatments, and helps to better characterize those already employed. One means of accomplishing this is through the deployment of in silico methodologies, harnessing computational analytical and predictive power to produce educated hypotheses for experimental verification. Here, we provide an overview of the current state of the art, describe some of the well-established methods in detail, and reflect on how they, and emerging technologies promoting the incorporation of complex and heterogeneous data-sets, can be employed to improve our understanding of (poly)pharmacology.
Collapse
Affiliation(s)
- Ryan Byrne
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|