1
|
Rezende SB, Chan LY, Oshiro KGN, Buccini DF, Leal APF, Ribeiro CF, Souza CM, Brandão ALO, Gonçalves RM, Cândido ES, Macedo MLR, Craik DJ, Franco OL, Cardoso MH. Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence. Biochim Biophys Acta Gen Subj 2024; 1868:130693. [PMID: 39147109 DOI: 10.1016/j.bbagen.2024.130693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. MAJOR CONCLUSIONS Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. GENERAL SIGNIFICANCE This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Camila F Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Carolina M Souza
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Amanda L O Brandão
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Regina M Gonçalves
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil.
| |
Collapse
|
2
|
Vieira APGC, de Souza AN, Lima WG, Brito JCM, Simião DC, Gonçalves LVR, Cordeiro LPB, de Oliveira Scoaris D, Fernandes SOA, Resende JM, Bechinger B, Verly RM, de Lima ME. The Synthetic Peptide LyeTx I mn∆K, Derived from Lycosa erythrognatha Spider Toxin, Is Active against Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro and In Vivo. Antibiotics (Basel) 2024; 13:248. [PMID: 38534683 PMCID: PMC10967519 DOI: 10.3390/antibiotics13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.
Collapse
Affiliation(s)
- Ana Paula Gonçalves Coelho Vieira
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Amanda Neves de Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
| | - William Gustavo Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | | | - Daniela Carolina Simião
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Lucas Vinícius Ribeiro Gonçalves
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Lídia Pereira Barbosa Cordeiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | | | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | - Burkhard Bechinger
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Rodrigo Moreira Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
| | - Maria Elena de Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| |
Collapse
|
3
|
Múnera-Jaramillo J, López GD, Suesca E, Carazzone C, Leidy C, Manrique-Moreno M. The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184288. [PMID: 38286247 DOI: 10.1016/j.bbamem.2024.184288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.
Collapse
Affiliation(s)
- Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia; PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá D.C., Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
4
|
Ma F, Ma R, Zhao L. Effects of Antimicrobial Peptides on Antioxidant Properties, Non-specific Immune Response and Gut Microbes of Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). Biochem Genet 2024:10.1007/s10528-024-10708-6. [PMID: 38411941 DOI: 10.1007/s10528-024-10708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Antimicrobial peptides (AMPs) are an important part of non-specific immunity and play a key role in the cellular host defense against pathogens and tissue injury infections. We investigated the effects of AMP supplementation on the antioxidant capacity, non-specific immunity, and gut microbiota of tsinling lenok trout. 240 fish were fed diets (CT, A120, A240 and A480) containing different amounts of AMP peptides (0, 120 mg kg-1, 240 mg kg-1, 480 mg kg-1) for 8 weeks. Our results showed that the activity of total antioxidant capacity (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), catalase (CAT) and acid phosphatase (ACP) in the A240 and A480 group were higher than that in the CT group (P < 0.05). The content of malondialdehyde (MDA) in AMP group was significantly lower than that in CT group (P < 0.05). Furthermore, we harvested the mid-gut and applied next-generation sequencing of 16S rDNA. The results showed that the abundance of Halomonas in AMP group was significantly lower than that in CT group. Functional analysis showed that the abundance of chloroalkane and chloroalkene degradation pathway increased significantly in AMP group. In conclusion, AMP enhanced the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| |
Collapse
|
5
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
6
|
Zamudio-Chávez L, Suesca E, López GD, Carazzone C, Manrique-Moreno M, Leidy C. Staphylococcus aureus Modulates Carotenoid and Phospholipid Content in Response to Oxygen-Restricted Growth Conditions, Triggering Changes in Membrane Biophysical Properties. Int J Mol Sci 2023; 24:14906. [PMID: 37834354 PMCID: PMC10573160 DOI: 10.3390/ijms241914906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococcus aureus membranes contain carotenoids formed during the biosynthesis of staphyloxanthin. These carotenoids are considered virulence factors due to their activity as scavengers of reactive oxygen species and as inhibitors of antimicrobial peptides. Here, we show that the growth of S. aureus under oxygen-restricting conditions downregulates carotenoid biosynthesis and modifies phospholipid content in biofilms and planktonic cells analyzed using LC-MS. At oxygen-restrictive levels, the staphyloxanthin precursor 4,4-diapophytofluene accumulates, indicating that the dehydrogenation reaction catalyzed by 4,4'-diapophytoene desaturases (CrtN) is inhibited. An increase in lysyl-phosphatidylglycerol is observed under oxygen-restrictive conditions in planktonic cells, and high levels of cardiolipin are detected in biofilms compared to planktonic cells. Under oxygen-restriction conditions, the biophysical parameters of S. aureus membranes show an increase in lipid headgroup spacing, as measured with Laurdan GP, and decreased bilayer core order, as measured with DPH anisotropy. An increase in the liquid-crystalline to gel phase melting temperature, as measured with FTIR, is also observed. S. aureus membranes are therefore less condensed under oxygen-restriction conditions at 37 °C. However, the lack of carotenoids leads to a highly ordered gel phase at low temperatures, around 15 °C. Carotenoids are therefore likely to be low in S. aureus found in tissues with low oxygen levels, such as abscesses, leading to altered membrane biophysical properties.
Collapse
Affiliation(s)
- Laura Zamudio-Chávez
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Gerson-Dirceu López
- PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá 111211, Colombia;
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111211, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| |
Collapse
|
7
|
Kozon-Markiewicz D, Kopiasz RJ, Głusiec M, Łukasiak A, Bednarczyk P, Jańczewski D. Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL). Colloids Surf B Biointerfaces 2023; 229:113480. [PMID: 37536168 DOI: 10.1016/j.colsurfb.2023.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Understanding the mechanism by which an antibacterial agent interacts with a model membrane provides vital information for better design of future antibiotics. In this study, we investigated two antibacterial polymers, hydrophilic C0-T-p and hydrophobic C8-T-p ionenes, known for their potent antimicrobial activity and ability to disrupt the integrity of lipid bilayers. Our hypothesize is that the composition of a lipid bilayer alters the mechanism of ionenes action, potentially providing an explanation for the observed differences in their bioactivity and selectivity. Calcein release experiments utilizing a range of liposomes to examine the impact of (i) cardiolipin (CL) to phosphatidylglycerol (PG) ratio, (ii) overall vesicle charge, and (iii) phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio on the activity of ionenes were performed. Additionally, polymer-bilayer interactions were also investigated through vesicle fusion assay and the black lipid membrane (BLM) technique The activity of C0-T-p is strongly influenced by the amount of cardiolipin, while the activity of C8-T-p primarily depends on the overall vesicle charge. Consequently, C0-T-p acts through interactions with CL, whereas C8-T-p modifies the bulk properties of the membrane in a less-specific manner. Moreover, the presence of a small amount of PC in the membrane makes the vesicle resistant to permeabilization by tested molecules. Intriguingly, more hydrophilic C0-T-p retains higher membrane activity compared to the hydrophobic C8-T-p. However, both ionenes induce vesicle fusion and increase lipid bilayer ion permeability.
Collapse
Affiliation(s)
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Martyna Głusiec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agnieszka Łukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
8
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Calderón-Rivera N, Múnera-Jaramillo J, Jaramillo-Berrio S, Suesca E, Manrique-Moreno M, Leidy C. Cardiolipin Strongly Inhibits the Leakage Activity of the Short Antimicrobial Peptide ATRA-1 in Comparison to LL-37, in Model Membranes Mimicking the Lipid Composition of Staphylococcus aureus. MEMBRANES 2023; 13:304. [PMID: 36984691 PMCID: PMC10051595 DOI: 10.3390/membranes13030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cardiolipin is one of the main phospholipid components of Staphylococcus aureus membranes. This lipid is found at varying concentrations in the bilayer, depending on the growth stage of the bacteria, and as a response to environmental stress. Cardiolipin is an anionic phospholipid with four acyl chains, which modulates the bending properties of the membrane due to its inverted conical shape. It has been shown to inhibit the pore forming activity of several antimicrobial peptides, in general doubling the peptide concentration needed to induce leakage. Here we find that the short snake-derived antimicrobial peptide ATRA-1 is inhibited by several orders of magnitude in the presence of cardiolipin in saturated membranes (DMPG) compared to the human cathelicidin LL-37, which is only inhibited two-fold in its leakage-inducing concentration. The ATRA-1 is too short to span the membrane and its leakage activity is likely related to detergent-like alterations of bilayer structure. Fluorescence spectroscopy shows only a minor effect on ATRA-1 binding to DMPG membranes due to the presence of cardiolipin. However, FTIR spectroscopy shows that the acyl chain structure of DMPG membranes, containing cardiolipin, become more organized in the presence of ATRA-1, as reflected by an increase in the gel to liquid-crystalline phase transition temperature. Instead, a depression in the melting temperature is induced by ATRA-1 in DMPG in the absence of cardiolipin. In comparison, LL-37 induces a depression of the main phase transition of DMPG even in the presence of cardiolipin. These data suggest that cardiolipin inhibits the penetration of ATRA-1 into the membrane core, impeding its capacity to disrupt lipid packing.
Collapse
Affiliation(s)
- Nathalia Calderón-Rivera
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Jessica Múnera-Jaramillo
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin 050010, Antioquia, Colombia
| | - Sara Jaramillo-Berrio
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin 050010, Antioquia, Colombia
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| |
Collapse
|
10
|
Szadkowska M, Olewniczak M, Kloska A, Jankowska E, Kapusta M, Rybak B, Wyrzykowski D, Zmudzinska W, Gieldon A, Kocot A, Kaczorowska AK, Nierzwicki L, Makowska J, Kaczorowski T, Plotka M. A Novel Cryptic Clostridial Peptide That Kills Bacteria by a Cell Membrane Permeabilization Mechanism. Microbiol Spectr 2022; 10:e0165722. [PMID: 36094301 PMCID: PMC9602519 DOI: 10.1128/spectrum.01657-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 μM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (logK based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. IMPORTANCE Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.
Collapse
Affiliation(s)
- Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michal Olewniczak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Elzbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Malgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Wioletta Zmudzinska
- Laboratory of Biopolymer Structure, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Artur Gieldon
- Laboratory of Simulation of Polymers, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Manrique-Moreno M, Jemioła-Rzemińska M, Múnera-Jaramillo J, López GD, Suesca E, Leidy C, Strzałka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. MEMBRANES 2022; 12:945. [PMID: 36295704 PMCID: PMC9612337 DOI: 10.3390/membranes12100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, which act as antioxidants. However, these carotenoids have also been implicated in modulating the biophysical properties of the membrane. Here, we investigate how carotenoids modulate the thermotropic phase behavior of model systems that mimic the phospholipid composition of S. aureus. We found that carotenoids depress the main phase transition of DMPG and CL, indicating that they strongly affect cooperativity of membrane lipids in their gel phase. In addition, carotenoids modulate the phase behavior of mixtures of DMPG and CL, indicating that they may play a role in modulation of lipid domain formation in S. aureus membranes.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| | - Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| |
Collapse
|
12
|
Joodaki F, Martin LM, Greenfield ML. Generation and Computational Characterization of a Complex Staphylococcus aureus Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9481-9499. [PMID: 35901279 DOI: 10.1021/acs.langmuir.2c00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies indicate a crucial cell membrane role in the antibiotic resistance of Staphylococcus aureus. To simulate its membrane structure and dynamics, a complex molecular-scale computational representation of the S. aureus lipid bilayer was developed. Phospholipid types and their amounts were optimized by reverse Monte Carlo to represent characterization data from the literature, leading to 19 different phospholipid types that combine three headgroups [phosphatidylglycerol, lysyl-phosphatidylglycerol (LPG), and cardiolipin] and 10 tails, including iso- and anteiso-branched saturated chains. The averaged lipid bilayer thickness was 36.7 Å, and area per headgroup was 67.8 Å2. Phosphorus and nitrogen density profiles showed that LPG headgroups tended to be bent and oriented more parallel to the bilayer plane. The water density profile showed that small amounts reached the membrane center. Carbon density profiles indicated hydrophobic interactions for all lipids in the middle of the bilayer. Bond vector order parameters along each tail demonstrated different C-H ordering even within distinct lipids of the same type; however, all tails followed similar trends in average order parameter. These complex simulations further revealed bilayer insights beyond those attainable with monodisperse, unbranched lipids. Longer tails often extended into the opposite leaflet. Carbon at and beyond a branch showed significantly decreased ordering compared to carbon in unbranched tails; this feature arose in every branched lipid. Diverse tail lengths distributed these disordered methyl groups throughout the middle third of the bilayer. Distributions in mobility and ordering reveal diverse properties that cannot be obtained with monodisperse lipids.
Collapse
Affiliation(s)
- Faramarz Joodaki
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, Kingston, Rhode Island 02881, United States
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Michael L Greenfield
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, Kingston, Rhode Island 02881, United States
| |
Collapse
|
13
|
Sionov RV, Banerjee S, Bogomolov S, Smoum R, Mechoulam R, Steinberg D. Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int J Mol Sci 2022; 23:7798. [PMID: 35887146 PMCID: PMC9319909 DOI: 10.3390/ijms23147798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Shreya Banerjee
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Sergei Bogomolov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Reem Smoum
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| |
Collapse
|
14
|
Klaiss-Luna MC, Manrique-Moreno M. Infrared Spectroscopic Study of Multi-Component Lipid Systems: A Closer Approximation to Biological Membrane Fluidity. MEMBRANES 2022; 12:534. [PMID: 35629860 PMCID: PMC9147058 DOI: 10.3390/membranes12050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Membranes are essential to cellular organisms, and play several roles in cellular protection as well as in the control and transport of nutrients. One of the most critical membrane properties is fluidity, which has been extensively studied, using mainly single component systems. In this study, we used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol, the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid phases are evident and where main transition temperatures were possible to determine. Additionally, the possibility of designing multi-component lipid systems showed the potential to obtain several microorganism models, including changes in the cardiolipin content associated with the resistance mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The results showed that LL-37 underwent a conformational change when interacting with Staphylococcus aureus models, instead of with the erythrocyte membrane model. The results showed the versatile applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
15
|
Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia coli and Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10121474. [PMID: 34943686 PMCID: PMC8698458 DOI: 10.3390/antibiotics10121474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm as a cellular conformation confers survival properties to microbial populations and favors microbial resistance. Here, we investigated the antimicrobial, antibiofilm, antimotility, antihemolytic activity, and the interaction with synthetic membranes of 15 essential oils (EOs) on E. coli ATCC 25922 and S. aureus ATCC 29213. Antimicrobial activity of EOs was determined through microdilution method; development of the biofilm was assessed using the crystal violet assay and SEM microscopy. Results indicate that Lippia origanoides thymol–carvacrol II chemotype (LTC II) and Thymus vulgaris (TV) exhibited a significant antibacterial activity, with MIC values of 0.45 and 0.75 mg/mL, respectively. The percentage of biofilm formation inhibition was greater than 70% at subinhibitory concentrations (MIC50) for LTC II EO. The results demonstrate that these two oils had significantly reduced the hemolytic effect of S. aureus by 54% and 32%, respectively, and the mobility capacity by swimming in E. coli with percentages of decrease of 55% and 47%, respectively. The results show that LTC II and TV EOs can interact with the hydrophobic core of lipid bilayers and alter the physicochemical properties of membranes. The findings suggest that LTC II and TV oils may potentially be used to aid in the treatment of S. aureus and E. coli infections.
Collapse
|
16
|
Rocha-Roa C, Orjuela JD, Leidy C, Cossio P, Aponte-Santamaría C. Cardiolipin prevents pore formation in phosphatidylglycerol bacterial membrane models. FEBS Lett 2021; 595:2701-2714. [PMID: 34633077 DOI: 10.1002/1873-3468.14206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Several antimicrobial peptides, including magainin and the human cathelicidin LL-37, act by forming pores in bacterial membranes. Bacteria such as Staphylococcus aureus modify their membrane's cardiolipin composition to resist such types of perturbations that compromise their membrane stability. Here, we used molecular dynamic simulations to quantify the role of cardiolipin on the formation of pores in simple bacterial-like membrane models composed of phosphatidylglycerol and cardiolipin mixtures. Cardiolipin modified the structure and ordering of the lipid bilayer, making it less susceptible to mechanical changes. Accordingly, the free-energy barrier for the formation of a transmembrane pore and its kinetic instability augmented by increasing the cardiolipin concentration. This is attributed to the unfavorable positioning of cardiolipin near the formed pore, due to its small polar head and bulky hydrophobic body. Overall, our study demonstrates how cardiolipin prevents membrane-pore formation and this constitutes a plausible mechanism used by bacteria to act against stress perturbations and, thereby, gain resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Cristian Rocha-Roa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Juan David Orjuela
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
17
|
Tsukamoto M, Zappala E, Caputo GA, Kikuchi JI, Najarian K, Kuroda K, Yasuhara K. Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9982-9995. [PMID: 34378943 DOI: 10.1021/acs.langmuir.1c01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms of the polymers, which is needed to connect their chemical structures and biological activities. To that end, we used a single giant unilamellar vesicle (GUV) method to identify the membrane-disrupting mechanism of methacrylate random copolymers. The copolymers consist of random sequences of aminoethyl methacrylate and methyl (MMA) or butyl (BMA) methacrylate, with low molecular weights of 1600-2100 g·mol-1. GUVs consisting of an 8:2 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG) and those with only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared to mimic the bacterial (Escherichia coli) or mammalian membranes, respectively. The disruption of bacteria and mammalian cell membrane-mimetic lipid bilayers in GUVs reflected the antimicrobial and hemolytic activities of the copolymers, suggesting that the copolymers act by disrupting cell membranes. The copolymer with BMA formed pores in the lipid bilayer, while that with MMA caused GUVs to burst. Therefore, we propose that the mechanism is inherent to the chemical identity or properties of hydrophobic groups. The copolymer with MMA showed characteristic sigmoid curves of the time course of GUV burst. We propose a new kinetic model with a positive feedback loop in the insertion of the polymer chains in the lipid bilayer. The novel finding of alkyl-dependent membrane-disrupting mechanisms will provide a new insight into the role of hydrophobic groups in the optimization strategy for antimicrobial activity and selectivity.
Collapse
Affiliation(s)
- Manami Tsukamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Emanuele Zappala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun-Ichi Kikuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| |
Collapse
|
18
|
López GD, Suesca E, Álvarez-Rivera G, Rosato AE, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. Carotenogenesis of Staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158941. [PMID: 33862238 DOI: 10.1016/j.bbalip.2021.158941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties. Five different S. aureus strains were investigated, including three wild-type strains containing the crtM gene related to STX biosynthesis, a crtM-deletion mutant, and a crtMN plasmid-complemented variant. LC-DAD-MS/MS analysis of extracts allowed the identification of 34 metabolites related to carotenogenesis in S. aureus at different growth phases (8, 24 and 48 h), showing the progression of these metabolites as the bacteria advances into the stationary phase. For the first time, 22 members of a large family of carotenoids were identified, including STX and STX-homologues, as well as Dehydro-STX and Dehydro-STX-homologues. Moreover, thermotropic behavior of the CH2 stretch of lipid acyl chains in live cells by FTIR, show that the presence of STX increases acyl chain order at the bacterial growth temperature. Indeed, the cooperative melting event of the bacterial membrane, which occurs around 15 °C in the native strains, shifts with increased carotenoid content. These results show the diversity biosynthetic of carotenoids in S. aureus, and their influence on membrane biophysical properties.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elizabeth Suesca
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Adriana E Rosato
- Molecular Microbiology Diagnostics-Research, Riverside University Health System, Professor Loma Linda University, Moreno Valley, CA, USA
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Chad Leidy
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia.
| |
Collapse
|
19
|
Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence. Toxins (Basel) 2020; 12:toxins12110705. [PMID: 33171598 PMCID: PMC7695215 DOI: 10.3390/toxins12110705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a class of molecules widely used in applications on eukaryotic and prokaryotic cells. Independent of the peptide target, all of them need to first pass or interact with the plasma membrane of the cells. In order to have a better image of the peptide action mechanism with respect to the particular features of the membrane it is necessary to better understand the changes induced by AMPs in the membranes. Laurdan, a lipid membrane probe sensitive to polarity changes in the environment, is used in this study for assessing changes induced by melittin, a well-known peptide, both in model and natural lipid membranes. More importantly, we showed that generalized polarization (GP) values are not always efficient or sufficient to properly characterize the changes in the membrane. We proved that a better method to investigate these changes is to use the previously described log-normal deconvolution allowing us to infer other parameters: the difference between the relative areas of elementary peak (ΔSr), and the ratio of elementary peaks areas (Rs). Melittin induced a slight decrease in local membrane fluidity in homogeneous lipid membranes. The addition of cholesterol stabilizes the membrane more in the presence of melittin. An opposite response was observed in the case of heterogeneous lipid membranes in cells, the local order of lipids being diminished. RS proved to be the most sensitive parameter characterizing the local membrane order, allowing us to distinguish among the responses to melittin of both classes of membrane we investigated (liposomes and cellular membranes). Molecular simulation of the melittin pore in homogeneous lipid bilayer suggests that lipids are more closely packed in the proximity of the melittin pore (a smaller area per lipid), supporting the experimental observation.
Collapse
|
20
|
Manrique-Moreno M, Suwalsky M, Patiño-González E, Fandiño-Devia E, Jemioła-Rzemińska M, Strzałka K. Interaction of the antimicrobial peptide ∆M3 with the Staphylococcus aureus membrane and molecular models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183498. [PMID: 33157098 DOI: 10.1016/j.bbamem.2020.183498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is one of the most pathogenic bacteria; infections with it are associated with significant morbidity and mortality in health care facilities. Antimicrobial peptides are a promising next generation antibiotic with great potential against bacterial infections. In this study, evidence is presented of the biological and biophysical properties of the novel synthetic peptide ΔM3. Its antimicrobial activity against the ATCC 25923 and methicillin-resistant S. aureus strains was evaluated. The results showed that ΔM3 has activity in the same μM range as vancomycin. Biophysical studies were performed with palmitoyloleoylphosphatidylglycerol and cardiolipin liposomes loaded with calcein and used to follow the lytic activity of the peptide by fluorescence spectroscopy. On the other hand, ΔM3 was induced to interact with molecular models of the erythrocyte membrane buil-up of dimiristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative lipids of the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ΔM3 to interact with the bacteria and erythrocyte model membranes was also evaluated by X-ray diffraction and differential scanning calorimetry. The morphological changes induced by the peptide to human erythrocytes were observed by scanning electron microscopy. Results with these techniques indicated that ΔM3 interacted with the inner monolayer of the erythrocyte membrane, which is rich in anionic lipids. Additionally, the cytotoxic effects of ΔM3 on red blood cells were evaluated by monitoring the hemoglobin release from erythrocytes. The results obtained from these different approaches showed ΔM3 to be a non-cytotoxic peptide with antibacterial activity.
Collapse
Affiliation(s)
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | | | | | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, JagiellonianUniversity, Krakow, Poland
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, JagiellonianUniversity, Krakow, Poland
| |
Collapse
|
21
|
Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum. mSphere 2020; 5:5/3/e00339-20. [PMID: 32554713 PMCID: PMC7300354 DOI: 10.1128/msphere.00339-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comprehensive lipidomics of S. aureus grown in the presence of human serum suggests that human serum lipids can associate with the cell envelope without being truly integrated into the lipid membrane. However, fatty acids derived from human serum lipids, including unsaturated fatty acids, can be incorporated into lipid classes that can be biosynthesized by S. aureus itself. Cholesteryl esters and triglycerides are found to be the major source of incorporated fatty acids upon hydrolysis by lipases. These findings have significant implications for the nature of the S. aureus cell surface when grown in vivo. Changes in phospholipid and glycolipid abundances and fatty acid composition could affect membrane biophysics and function and the activity of membrane-targeting antimicrobials. Finally, the association of serum lipids with the cell envelope has implications for the physicochemical nature of the cell surface and its interaction with host defense systems. Staphylococcus aureus can incorporate exogenous straight-chain unsaturated and saturated fatty acids (SCUFAs and SCFAs, respectively) to replace some of the normally biosynthesized branched-chain fatty acids and SCFAs. In this study, the impact of human serum on the S. aureus lipidome and cell envelope structure was comprehensively characterized. When S. aureus was grown in the presence of 20% human serum, typical human serum lipids, such as cholesterol, sphingomyelin, phosphatidylethanolamines, and phosphatidylcholines, were present in the total lipid extracts. Mass spectrometry showed that SCUFAs were incorporated into all major S. aureus lipid classes, i.e., phosphatidylglycerols, lysyl-phosphatidylglycerols, cardiolipins, and diglucosyldiacylglycerols. Heat-killed S. aureus retained fewer serum lipids and failed to incorporate SCUFAs, suggesting that association and incorporation of serum lipids with S. aureus require a living or nondenatured cell. Cytoplasmic membranes isolated from lysostaphin-produced protoplasts of serum-grown cells retained serum lipids, but washing cells with Triton X-100 removed most of them. Furthermore, electron microscopy studies showed that serum-grown cells had thicker cell envelopes and associated material on the surface, which was partially removed by Triton X-100 washing. To investigate which serum lipids were preferentially hydrolyzed by S. aureus lipases for incorporation, we incubated individual serum lipid classes with S. aureus and found that cholesteryl esters (CEs) and triglycerides (TGs) are the major donors of the incorporated fatty acids. Further experiments using purified Geh lipase confirmed that CEs and TGs were the substrates of this enzyme. Thus, growth in the presence of serum altered the nature of the cell surface with implications for interactions with the host. IMPORTANCE Comprehensive lipidomics of S. aureus grown in the presence of human serum suggests that human serum lipids can associate with the cell envelope without being truly integrated into the lipid membrane. However, fatty acids derived from human serum lipids, including unsaturated fatty acids, can be incorporated into lipid classes that can be biosynthesized by S. aureus itself. Cholesteryl esters and triglycerides are found to be the major source of incorporated fatty acids upon hydrolysis by lipases. These findings have significant implications for the nature of the S. aureus cell surface when grown in vivo. Changes in phospholipid and glycolipid abundances and fatty acid composition could affect membrane biophysics and function and the activity of membrane-targeting antimicrobials. Finally, the association of serum lipids with the cell envelope has implications for the physicochemical nature of the cell surface and its interaction with host defense systems.
Collapse
|
22
|
Perczyk P, Wójcik A, Hachlica N, Wydro P, Broniatowski M. The composition of phospholipid model bacterial membranes determines their endurance to secretory phospholipase A2 attack – The role of cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183239. [DOI: 10.1016/j.bbamem.2020.183239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
|
23
|
Liposomal membrane permeability assessment by fluorescence techniques: Main permeabilizing agents, applications and challenges. Int J Pharm 2020; 580:119198. [PMID: 32169353 DOI: 10.1016/j.ijpharm.2020.119198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Liposomes are lipid vesicles made of one or multiple lipid bilayers surrounding an internal aqueous core. They are broadly employed as models to study membrane structure and properties. Among these properties, liposome membrane permeability is crucial and widely assessed by fluorescence techniques. The first part of this review is devoted to describe the various techniques used for membrane permeability assessment. Attention is paid to fluorescence techniques based on vesicle leakage of self-quenching probes, dye/quencher pair or cation/ligand pair. Secondly, the membrane-active agents inducing membrane permeabilization is presented and details on their mechanisms of action are given. Emphasis is also laid on the intrinsic and extrinsic factors that can modulate the membrane permeability. Hence, a suitable liposomal membrane should be formulated according to the aim of the study and its application.
Collapse
|
24
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
25
|
Malik E, Phoenix DA, Badiani K, Snape TJ, Harris F, Singh J, Morton LHG, Dennison SR. Biophysical studies on the antimicrobial activity of linearized esculentin 2EM. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183141. [PMID: 31790693 DOI: 10.1016/j.bbamem.2019.183141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Linearized esculentin 2 EM (E2EM-lin) from the frog, Glandirana emeljanovi was highly active against Gram-positive bacteria (minimum lethal concentration ≤ 5.0 μM) and strongly α-helical in the presence of lipid mimics of their membranes (>55.0%). The N-terminal α-helical structure adopted by E2EM-lin showed the potential to form a membrane interactive, tilted peptide with an hydrophobicity gradient over residues 9 to 23. E2EM-lin inserted strongly into lipid mimics of membranes from Gram-positive bacteria (maximal surface pressure changes ≥5.5 mN m-1), inducing increased rigidity (Cs-1 ↑), thermodynamic instability (ΔGmix < 0 → ΔGmix > 0) and high levels of lysis (>50.0%). These effects appeared to be driven by the high anionic lipid content of membranes from Gram-positive bacteria; namely phosphatidylglycerol (PG) and cardiolipin (CL) species. The high levels of α-helicity (60.0%), interaction (maximal surface pressure change = 6.7 mN m-1) and lysis (66.0%) shown by E2EM-lin with PG species was a major driver in the ability of the peptide to lyse and kill Gram-positive bacteria. E2EM-lin also showed high levels of α-helicity (62.0%) with CL species but only low levels of interaction (maximal surface pressure change = 2.9 mN m-1) and lysis (21.0%) with the lipid. These combined data suggest that E2EM-lin has a specificity for killing Gram-positive bacteria that involves the formation of tilted structure and appears to be primarily driven by PG-mediated membranolysis. These structure/function relationships are used to help explain the pore forming process proposed to describe the membranolytic, antibacterial action of E2EM-lin.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire LE19 4JS, UK
| | - Timothy J Snape
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Frederick Harris
- School of Forensic and Applied Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - Jaipaul Singh
- School of Forensic and Applied Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - Leslie Hugh Glyn Morton
- School of Forensic and Applied Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
26
|
Perez-Lopez MI, Mendez-Reina R, Trier S, Herrfurth C, Feussner I, Bernal A, Forero-Shelton M, Leidy C. Variations in carotenoid content and acyl chain composition in exponential, stationary and biofilm states of Staphylococcus aureus, and their influence on membrane biophysical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:978-987. [PMID: 30771288 DOI: 10.1016/j.bbamem.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
Bacteria are often found in close association with surfaces, resulting in the formation of biofilms. In Staphylococcus aureus (S. aureus), biofilms are implicated in the resilience of chronic infections, presenting a serious clinical problem world-wide. Here, S. aureus biofilms are grown under flow within clinical catheters at 37 °C. The lipid composition and biophysical properties of lipid extracts from these biofilms are compared with those from exponential growth and stationary phase cells. Biofilms show a reduction in iso and anteiso branching compensated by an increase in saturated fatty acids compared to stationary phase. A drastic reduction in carotenoid levels is also observed during biofilm formation. Thermotropic measurements of Laurdan GP and DPH polarization, show a reduction of lipid packing at 37 °C for biofilms compared to stationary phase. We studied the effects of carotenoid content on DMPG and DPPG model membranes showing trends in thermotropic behavior consistent with those observed in bacterial isolates, indicating that carotenoids participate in modulating lipid packing. Additionally, bending elastic constant (kc) measurements using vesicle fluctuation analysis (VFA) show that the presence of carotenoids can increase membrane bending rigidity. The antimicrobial peptide Magainin H2 was less activity on liposomes composed of stationary phase compared to biofilms or exponential growth isolates. This study contributes to an understanding of how Staphylococcus aureus modulates the composition of its membrane lipids, and how those changes affect the biophysical properties of membranes, which in turn may play a role in its virulence and its resistance to different membrane-active antimicrobial agents.
Collapse
Affiliation(s)
- Maria Isabel Perez-Lopez
- Department of Physics, Universidad de los Andes, Bogotá, Colombia; Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | | | - Steve Trier
- Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany; Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Adriana Bernal
- Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | | | - Chad Leidy
- Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
27
|
Poger D, Pöyry S, Mark AE. Could Cardiolipin Protect Membranes against the Action of Certain Antimicrobial Peptides? Aurein 1.2, a Case Study. ACS OMEGA 2018; 3:16453-16464. [PMID: 30613806 PMCID: PMC6312644 DOI: 10.1021/acsomega.8b02710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The activity of a host of antimicrobial peptides has been examined against a range of lipid bilayers mimicking bacterial and eukaryotic membranes. Despite this, the molecular mechanisms and the nature of the physicochemical properties underlying the peptide-lipid interactions that lead to membrane disruption are yet to be fully elucidated. In this study, the interaction of the short antimicrobial peptide aurein 1.2 was examined in the presence of an anionic cardiolipin-containing lipid bilayer using molecular dynamics simulations. Aurein 1.2 is known to interact strongly with anionic lipid membranes. In the simulations, the binding of aurein 1.2 was associated with buckling of the lipid bilayer, the degree of which varied with the peptide concentration. The simulations suggest that the intrinsic properties of cardiolipin, especially the fact that it promotes negative membrane curvature, may help protect membranes against the action of peptides such as aurein 1.2 by counteracting the tendency of the peptide to induce positive curvature in target membranes.
Collapse
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sanja Pöyry
- Department
of Physics, Tampere University of Technology, POB 692, F1-33720 Tampere, Finland
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|