1
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Badalyan M, Vardanyan IV, Haroutiunian SG, Dalyan YB. Structural Transitions in Complementary G-Rich and C-Rich Strands and Their Mixture at Various pH Conditions. ACS OMEGA 2023; 8:47051-47056. [PMID: 38107945 PMCID: PMC10719991 DOI: 10.1021/acsomega.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
We used circular dichroism spectroscopy, UV spectrophotometry, and differential scanning calorimetry to investigate pH-dependent structural transitions in an equimolar mixture of complementary G-rich d[5'-A(GGGTTA)3GGG-3'] (TelG) and C-rich d[3'-T(CCCAAT)3CCC-5'] (TelC) human telomeric DNA strands. Our studies were conducted at neutral (pH 7.0) and slightly acidic (pH 5.5 and 6.5) pH. We analyzed the melting thermodynamics of TelG and TelC and their equimolar mixture. Our analysis revealed that the preferred conformation of an equimolar mixture of TelG and TelC is the duplex. At pH 5.5, however, in addition to the duplex state, we observed a significant population of the i-motif state formed by TelC. Our results are consistent with the picture in which an increase in pH from 5.5 to 7.0 has little effect on the melting enthalpy of an isolated G-quadruplex while causing a strong reduction in the melting enthalpy of an isolated i-motif (the latter diminishes to 0 at pH 7.0). These effects summarily lead to a decrease in the contribution of the i-motif to the melting enthalpy of the mixture and, hence, an increase in the apparent melting enthalpy and overall stability of the duplex state.
Collapse
Affiliation(s)
- Milena
Kh. Badalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | - Ishkhan V. Vardanyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | | | - Yeva B. Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
3
|
Conrad JW, Sowers ML, Yap DY, Cherryhomes E, Pettitt BM, Khanipov K, Sowers LC. Transition Mutations in the hTERT Promoter Are Unrelated to Potential i-motif Formation in the C-Rich Strand. Biomolecules 2023; 13:1308. [PMID: 37759708 PMCID: PMC10526324 DOI: 10.3390/biom13091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Increased expression of the human telomere reverse transcriptase (hTERT) in tumors promotes tumor cell survival and diminishes the survival of patients. Cytosine-to-thymine (C-to-T) transition mutations (C250T or C228T) in the hTERT promoter create binding sites for transcription factors, which enhance transcription. The G-rich strand of the hTERT promoter can form G-quadruplex structures, whereas the C-rich strand can form an i-motif in which multiple cytosine residues are protonated. We considered the possibility that i-motif formation might promote cytosine deamination to uracil and C-to-T mutations. We computationally probed the accessibility of cytosine residues in an i-motif to attack by water. We experimentally examined regions of the C-rich strand to form i-motifs using pH-dependent UV and CD spectra. We then incubated the C-rich strand with and without the G-rich complementary strand DNA under various conditions, followed by deep sequencing. Surprisingly, deamination rates did not vary substantially across the 46 cytosines examined, and the two mutation hotspots were not deamination hotspots. The appearance of mutational hotspots in tumors is more likely the result of the selection of sequences with increased promoter binding affinity and hTERT expression.
Collapse
Affiliation(s)
- James W. Conrad
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- MD-PhD Combined Degree Program, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ellie Cherryhomes
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - B. Montgomery Pettitt
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Nicholson DA, Nesbitt DJ. Kinetic and Thermodynamic Control of G-Quadruplex Polymorphism by Na + and K + Cations. J Phys Chem B 2023; 127:6842-6855. [PMID: 37504511 DOI: 10.1021/acs.jpcb.3c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
G-Quadruplexes (G4s) are ubiquitous nucleic acid folding motifs that exhibit structural diversity that is dependent on cationic conditions. In this work, we exploit temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) to elucidate the kinetic and thermodynamic mechanisms by which monovalent cations (K+ and Na+) impact folding topologies for a simple G-quadruplex sequence (5'-GGG-(TAAGGG)3-3') with a three-state folding equilibrium. Kinetic measurements indicate that Na+ and K+ influence G4 formation in two distinctly different ways: the presence of Na+ modestly enhances an antiparallel G4 topology through an induced fit (IF) mechanism with a low affinity (Kd = 228 ± 26 mM), while K+ drives G4 into a parallel/hybrid topology via a conformational selection (CS) mechanism with much higher affinity (Kd = 1.9 ± 0.2 mM). Additionally, temperature-dependent studies of folding rate constants and equilibrium ratios reveal distinctly different thermodynamic driving forces behind G4 binding to K+ (ΔH°bind > 0, ΔS°bind > 0) versus Na+ (ΔH°bind < 0, ΔS°bind < 0), which further illuminates the diversity of the possible pathways for monovalent facilitation of G-quadruplex folding.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Tsao L, Shepardson-Fungairiño S, Murayama H, Cecere A, Wren E, Núñez M. Assessing the Potential for DNA Quadruplex Formation in the Predatory Bacterium Bdellovibrio bacteriovorus. Biochemistry 2022; 61:2073-2087. [PMID: 36193632 PMCID: PMC9536305 DOI: 10.1021/acs.biochem.2c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 11/29/2022]
Abstract
During its life cycle, the predatory bacterium Bdellovibrio bacteriovorus switches between an attack and a growth phase, each of which is characterized by a distinct pattern of gene expression. Twenty-one potential G-quadruplex-forming sequences (PQFS) have been identified in the Bdellovibrio genome. These G-rich sequences are prevalent within open reading frames and nearly evenly distributed between the template and the coding strand, suggesting that they could play a role in gene expression and life cycle switching. Published transcriptomic data show that the genes nearest these sequences are not (de)activated together during the same phases of the life cycle. We explored the biophysical properties of three identified PQFS using circular dichroism (CD) spectroscopy and gel electrophoresis and demonstrated that all three sequences fold into stable unimolecular quadruplexes with distinct topologies. In the presence of their complementary strands, each forms an equilibrium mixture of duplex and quadruplex in which quadruplex formation is favored at higher temperatures. Once the quadruplexes are folded, they are slow to form a duplex when the complementary strand is added, with one sequence requiring the equivalent of many Bdellovibrio lifetimes to do so. Using a variety of cosolutes, we showed that molecular crowding mimicking cellular conditions stabilizes the quadruplex structures and induces structural transitions to the parallel topology regardless of the original topology. Taken together, these experiments suggest that Bdellovibrio PQFS are capable of forming quadruplexes in vivo and thereby playing a role in gene expression.
Collapse
Affiliation(s)
- Lucille
H. Tsao
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Sally Shepardson-Fungairiño
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Hikari Murayama
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Amelia Cecere
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Elizabeth Wren
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Megan Núñez
- Department of Chemistry and
Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| |
Collapse
|
6
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
7
|
New insights into the effect of molecular crowding environment induced by dimethyl sulfoxide on the conformation and stability of G-quadruplex. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Modulation of Aptamer-Ligand-Binding by Complementary Oligonucleotides: A G-Quadruplex Anti-Ochratoxin A Aptamer Case Study. Int J Mol Sci 2022; 23:ijms23094876. [PMID: 35563267 PMCID: PMC9103105 DOI: 10.3390/ijms23094876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer-ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer-ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs' features that determine these effects. Within this, the interactions between the OTA-specific G-quadruplex aptamer 1.12.2 (5'-GATCGGGTGTGGGTGGCGTAAAGGGA GCATCGGACA-3') and 21 single-stranded DNA (ssDNA) oligonucleotides complementary to different regions of the aptamer were studied. Two sets of aptamer-ssDNA dissociation constants were obtained in the absence and in the presence of OTA by isothermal calorimetry and fluorescence anisotropy, respectively. In both sets, the binding constants depend on the number of hydrogen bonds formed in the aptamer-ssDNA complex. The ssDNAs' having more than 23 hydrogen bonds with the aptamer have a lower aptamer dissociation constant than for aptamer-OTA interactions. The ssDNAs' having less than 18 hydrogen bonds did not affect the aptamer-OTA affinity. The location of ssDNA's complementary site in the aptamer affeced the kinetics of the interaction and retention of OTA-binding in aptamer-ssDNA complexes. The location of the ssDNA site in the aptamer G-quadruplex led to its unfolding. In the presence of OTA, the unfolding process was longer and takes from 20 to 70 min. The refolding in the presence of OTA was possible and depends on the length and location of the ssDNA's complementary site. The location of the ssDNA site in the tail region led to its rapid displacement and wasn't affecting the G-qaudruplex's integrity. It makes the tail region more perspective for the development of ssDNA-based tools using this aptamer.
Collapse
|
9
|
Molnár OR, Végh A, Somkuti J, Smeller L. Characterization of a G-quadruplex from hepatitis B virus and its stabilization by binding TMPyP4, BRACO19 and PhenDC3. Sci Rep 2021; 11:23243. [PMID: 34853392 PMCID: PMC8636512 DOI: 10.1038/s41598-021-02689-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
Specific guanine rich nucleic acid sequences can form non-canonical structures, like the four stranded G-quadruplex (GQ). We studied the GQ-forming sequence (named HepB) found in the genome of the hepatitis B virus. Fluorescence-, infrared- and CD-spectroscopy were used. HepB shows a hybrid form in presence of K+, but Na+, Li+, and Rb+ induce parallel structure. Higher concentrations of metal ions increase the unfolding temperature, which was explained by a short thermodynamic calculation. Temperature stability of the GQ structure was determined for all these ions. Na+ has stronger stabilizing effect on HepB than K+, which is highly unusual. The transition temperatures were 56.6, 53.8, 58.5 and 54.4 °C for Na+, K+, Li+, and Rb+ respectively. Binding constants for Na+ and K+ were 10.2 mM and 7.1 mM respectively. Study of three ligands designed in cancer research for GQ targeting (TMPyP4, BRACO19 and PhenDC3) showed unequivocally their binding to HepB. Binding was proven by the increased stability of the bound form. The stabilization was higher than 20 °C for TMPyP4 and PhenDC3, while it was considerably lower for BRACO19. These results might have medical importance in the fight against the hepatitis B virus.
Collapse
Affiliation(s)
- Orsolya Réka Molnár
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
| | - András Végh
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary.,Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
10
|
Matsumoto S, Tateishi-Karimata H, Ohyama T, Sugimoto N. Effect of DNA modifications on the transition between canonical and non-canonical DNA structures in CpG islands during senescence. RSC Adv 2021; 11:37205-37217. [PMID: 35496393 PMCID: PMC9043837 DOI: 10.1039/d1ra07201c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Patterns and levels of DNA modifications play important roles in senescence. Two major epigenetic modifications of DNA, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), target CpG sites. Importantly, CpG concentrated regions, known as CpG islands, contain GC-rich sequences, which have the potential to fold into non-canonical DNA structures such as i-motifs and G-quadruplexes. In this study, we investigated the effect of 5mC and 5hmC modifications on the transition between a duplex, and i-motif and G-quadruplexes. To examine the transition, we firstly investigated the stability and structure of the i-motif and G-quadruplexes, considering the molecular environment in senescent cells. Analyses of their stability showed that the modifications did not drastically affect the stability. However, noteworthily, the modification can weaken the (de)stabilisation effect on G-quadruplexes caused by cosolute(s) and cations. Circular dichroism analyses indicated that the surrounding environments, including the molecular crowding and the type of cations such as K+ and Na+, regulate the topology of G-quadruplexes, while neither 5mC nor 5hmC had a drastic effect. On the other hand, the modifications changed the transition between duplexes and quadruplexes. Unmodified DNA preferred to fold into quadruplexes, whereas DNA with 5mC and 5hmC preferred to fold into duplexes in the absence of PEG200; on the other hand, DNA with or without modifications tended to fold into i-motifs under crowded conditions. Furthermore, an investigation of quadruplexes forming sequences in CpG islands, which are hyper- or hypomethylated during senescence, followed by gene ontology enrichment analysis for each gene group classified by the presence of quadruplexes, showed a difference in function between genes with and without quadruplexes in the CpG region. These results indicate that it is important to consider the effects of patterns and levels of DNA modifications on the transition between canonical and non-canonical DNA structures to understand gene regulation by epigenetic modification during senescence. The modification of DNA can regulate the transition between a duplex and quadruplexes during senescence responding to surrounding environments.![]()
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| |
Collapse
|
11
|
Pal C, Varma S, Majumder S. Oxygen vacancy assisted condensation of DNA molecule observed on ZnO thin film. Biophys Chem 2021; 277:106659. [PMID: 34340002 DOI: 10.1016/j.bpc.2021.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
An exotic condensation of DNA molecules is observed on the nanostructured ZnO surface. The ZnO nanostructures (NS) fabricated by thermal vapor deposition technique were associated with a large number of oxygen vacancies on the surface. These oxygen vacancies induced changes in the DNA conformation which further reflected through changes in the persistence length of the DNA molecules. This indicates a reinforcement of the bonds and binding in both the phosphate and the base regions of the DNA molecules with the positively charged core vacancy sites on the ZnO nanostructured surface through strong interaction mediated via long-range electrostatic forces which effectively reduced the end-to-end distance of the λ-DNA molecule. This strongly suggests a transition of the λ-DNA molecule through structural modification into a more compact higher-order fractal dimension from its native state.
Collapse
Affiliation(s)
| | - Shikha Varma
- Institute of Physics, Bhubaneswar, 751005, India
| | | |
Collapse
|
12
|
Chalikian TV, Macgregor RB. Volumetric Properties of Four-Stranded DNA Structures. BIOLOGY 2021; 10:813. [PMID: 34440045 PMCID: PMC8389613 DOI: 10.3390/biology10080813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute-solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.
Collapse
Affiliation(s)
- Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | | |
Collapse
|
13
|
Mukherjee SK, Knop JM, Oliva R, Möbitz S, Winter R. Untangling the interaction of α-synuclein with DNA i-motifs and hairpins by volume-sensitive single-molecule FRET spectroscopy. RSC Chem Biol 2021; 2:1196-1200. [PMID: 34458831 PMCID: PMC8341996 DOI: 10.1039/d1cb00108f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
The intrinsically disordered protein α-synuclein causes Parkinson's disease by forming toxic oligomeric aggregates inside neurons. Single-molecule FRET experiments revealed conformational changes of noncanonical DNA structures, such as i-motifs and hairpins, in the presence of α-synuclein. Volumetric analyses revealed differences in binding mode, which is also affected by cellular osmolytes. The conformational landscape of noncanonical DNA structures is markedly affected by monomeric and aggregated α-synuclein, by osmolytes such as TMAO, and by pressure.![]()
Collapse
Affiliation(s)
- Sanjib K Mukherjee
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a Dortmund D-44227 Germany
| | - Jim-Marcel Knop
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a Dortmund D-44227 Germany
| | - Rosario Oliva
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a Dortmund D-44227 Germany
| | - Simone Möbitz
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a Dortmund D-44227 Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a Dortmund D-44227 Germany
| |
Collapse
|
14
|
Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor RB, Chalikian TV. Volumetric Interplay between the Conformational States Adopted by Guanine-Rich DNA from the c-MYC Promoter. J Phys Chem B 2021; 125:7406-7416. [PMID: 34185535 DOI: 10.1021/acs.jpcb.1c04075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions. In this work, we report changes in volume, ΔV, and adiabatic compressibility, ΔKS, accompanying interconversions of G-strand between the G-quadruplex, duplex, and coil conformations in the presence and absence of C-strand. We rationalize these volumetric characteristics in terms of the hydration and intrinsic properties of the DNA in each of the sampled conformational states. We further use our volumetric results in conjunction with the reported data on changes in expansibility, ΔE, and heat capacity, ΔCP, associated with G-quadruplex-to-coil transitions to construct the pressure-temperature phase diagram describing the stability of the G-quadruplex. The phase diagram is elliptic in shape, resembling the classical elliptic phase diagram of a globular protein, and is distinct from the phase diagram for duplex DNA. The observed similarity of the pressure-temperature phase diagrams of G-quadruplexes and globular proteins stems from their shared structural and hydration features that, in turn, result in the similarity of their volumetric properties. To the best of our knowledge, this is the first pressure-temperature stability diagram reported for a G-quadruplex.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lily Scott
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nabeel Tariq
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Takuma Kume
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
15
|
Tran P, Rieu M, Hodeib S, Joubert A, Ouellet J, Alberti P, Bugaut A, Allemand JF, Boulé JB, Croquette V. Folding and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex. Nucleic Acids Res 2021; 49:5189-5201. [PMID: 34009328 PMCID: PMC8136832 DOI: 10.1093/nar/gkab306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence. To address this, we designed a single-molecule assay allowing to measure G4 folding and persistence times in the presence of the complementary strand. We quantified both folding and unfolding rates of biologically relevant G4 sequences, such as the cMYC and cKIT oncogene promoters, human telomeres and an avian replication origin. We confirmed that G4s are found much more stable in tested replication origin and promoters than in human telomere repeats. In addition, we characterized how G4 dynamics was affected by G4 ligands and showed that both folding rate and persistence time increased. Our assay opens new perspectives for the measurement of G4 dynamics in double-stranded DNA mimicking a replication fork, which is important to understand their role in DNA replication and gene regulation at a mechanistic level.
Collapse
Affiliation(s)
- Phong Lan Thao Tran
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Martin Rieu
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Samar Hodeib
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexandra Joubert
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Jimmy Ouellet
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | - Patrizia Alberti
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Anthony Bugaut
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Jean-François Allemand
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Jean-Baptiste Boulé
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Vincent Croquette
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
16
|
Unraveling the binding characteristics of small ligands to telomeric DNA by pressure modulation. Sci Rep 2021; 11:9714. [PMID: 33958702 PMCID: PMC8102477 DOI: 10.1038/s41598-021-89215-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, non-canonical DNA structures, such as G-quadruplexes (GQs), were found to be highly pressure sensitive, suggesting that pressure modulation studies can provide additional mechanistic details of such biomolecular systems. Using FRET and CD spectroscopy as well as binding equilibrium measurements, we investigated the effect of pressure on the binding reaction of the ligand ThT to the quadruplex 22AG in solutions containing different ionic species and a crowding agent mimicking the intracellular milieu. Pressure modulation helped us to identify the different conformational substates adopted by the quadruplex at the different solution conditions and to determine the volumetric changes during complex formation and the conformational transitions involved. The magnitudes of the binding volumes are a hallmark of packing defects and hydrational changes upon ligand binding. The conformational substates of the GQ as well as the binding strength and the stoichiometry of complex formation depend strongly on the solution conditions as well as on pressure. High hydrostatic pressure can also impact GQs inside living cells and thus affect expression of genetic information in deep sea organisms. We show that sub-kbar pressures do not only affect the conformational dynamics and structures of GQs, but also their ligand binding reactions.
Collapse
|
17
|
Takahashi S, Sugimoto N. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Acc Chem Res 2021; 54:2110-2120. [PMID: 33591181 DOI: 10.1021/acs.accounts.0c00734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleic acids typically form a double helix structure through Watson-Crick base-pairing. In contrast, non-Watson-Crick base pairs can form other three-dimensional structures. Although it is well-known that Watson-Crick base pairs may be more unstable than non-Watson-Crick base pairs under some conditions, the importance of non-Watson-Crick base pairs has not been widely examined. Hoogsteen base pairs, the non-Watson-Crick base pairs, contain important hydrogen-bond patterns that form the helices of nucleic acids, such as in Watson-Crick base pairs, and can form non-double helix structures such as triplexes and quadruplexes. In recent years, non-double helix structures have been discovered in cells and were reported to considerably influence gene expression. The complex behavior of these nucleic acids in cells is gradually being revealed, but the underlying mechanisms remain almost unknown.Quantitatively analyzing the structural stability of nucleic acids is important for understanding their behavior. A nucleic acid is an anionic biopolymer composed of a sugar, base, and phosphoric acid. The physicochemical factors that determine the stability of nucleic acid structures include those derived from the interactions of nucleic acid structures and those derived from the environments surrounding nucleic acids. The Gibbs free energy change (ΔG) of structure formation is the most commonly used physicochemical parameter for analyzing quantitative stability. Quantitatively understanding the intracellular behavior of nucleic acids involves describing the formation of nucleic acid structures and related reactions as ΔG. Based on this concept, we quantitatively analyzed the stability of double helix and non-double helix structures and found that decreased water activity, an important factor in crowded cellular conditions, significantly destabilize the formation of Watson-Crick base pairs but stabilizes Hoogsteen base pairs.Here, we describe a physicochemical approach to understand the regulation of gene expressions based on the stability of nucleic acid structures. We developed new methods for predicting the stability of double and non-double helices in various molecular environments by mimicking intracellular environments. Furthermore, the physicochemical approach used for analyzing gene expression regulated by non-double helix structures is useful for not only determining how gene expression is controlled by cellular environments but also for developing new technologies to chemically regulate gene expression by targeting non-double helix structures. We discuss the roles of Watson-Crick and Hoogsteen base pairs in cells based on our results and why both types of base pairing are required for life. Finally, a new concept in nucleic acid science beyond that of Watson and Crick base pairing is introduced.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
18
|
Pant P, Fisher M. Marshall's nucleic acid: From double-helical structure to a potent intercalator. Biophys Chem 2021; 269:106525. [PMID: 33352335 DOI: 10.1016/j.bpc.2020.106525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Deoxyribonucleic acid (DNA) not only stores genetic information but also emerged as a popular drug target. Modified nucleotides/nucleosides have been extensively studied in recent years wherein the sugar/nucleobase/phosphate-backbone has been altered. Several such molecules are FDA approved, capable of targeting nucleic acids and proteins. In this article, we modified negatively charged phosphate backbone to marshall's acid-based neutral backbone and analyzed the resultant structures by utilizing Gaussian accelerated molecular dynamics simulations (1 μs) in aqueous media at 150 mM salt concentration. We noted that the double-helical marshall's nucleic acid structure was partially denatured during the course of simulations, however, after using conformationally locked sugar, the marshall's nucleic acid (hereby called MNA) maintained the double-helical structure throughout the simulations. Despite the fact that MNA has a more extended backbone than the regular DNA, surprisingly, both showed similar helical rise (~3.4 Å) along with a comparable Watson-Crick hydrogen bond profile. The backbone difference was majorly compensated in terms of helical twist (~56° (MNA) and ~ 35° (control DNA)). Further, we examined a few MNA based ss-dinucleotides as intercalating ligands for a regular B-DNA. Quite strikingly, the ligands unwinded the DNA and showed intercalating properties with high DNA binding affinities. Hence, the use of small fragments of MNA based molecules in DNA targeted drug discovery is foreseen.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, India.
| | - Maria Fisher
- Department of Biosciences, University of Helsinki, Finland
| |
Collapse
|