1
|
Robins D, Lehmann A, Krollik K, Vertzoni M. Analyzing parametric influences driving age-associated changes in absorption using a PBPK-GSA approach. Eur J Pharm Sci 2024; 202:106881. [PMID: 39179162 DOI: 10.1016/j.ejps.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The advanced age population may be susceptible to an increased risk of adverse effects due to increased drug exposure after oral dosing. Factors such as high-interindividual variability and lack of data has led to poor characterization of absorption's role in pharmacokinetic changes in this population. Physiologically based pharmacokinetic (PBPK) models are increasingly being used during the drug development process, as their unique qualities are advantageous in atypical scenarios such as drug-drug interactions or special populations such as older people. Along with relying on various sources of data, auxiliary tools including parameter estimation and sensitivity analysis techniques are employed to support model development and other applications. However, sensitivity analyses have mostly been limited to localized techniques in the majority of reported PBPK models using them. This is disadvantageous, since local sensitivity analyses are unsuitable for risk analysis, which require assessment of parametric interactions and proper coverage of the input space to better estimate and subsequently mitigate the effects of the phenomenon of interest. For this reason, this study seeks to integrate a global sensitivity analysis screening method with PBPK models based in PK-Sim® to characterize the consequences of potential changes in absorption that are often associated with advanced age. The Elementary Effects (Morris) method and visualization of the results are implemented in R and three model drugs representing Biopharmaceutical Classification System classes I-III that are expected to exhibit some sensitivity to three age-associated hypotheses were successfully tested.
Collapse
Affiliation(s)
- Donnia Robins
- Global Drug Product Development, Global CMC Development, Merck KGaA, Frankfurter Straße 250, Darmstadt, Germany; Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Andreas Lehmann
- Global Drug Product Development, Global CMC Development, Merck KGaA, Frankfurter Straße 250, Darmstadt, Germany.
| | - Katharina Krollik
- Global Drug Product Development, Global CMC Development, Merck KGaA, Frankfurter Straße 250, Darmstadt, Germany
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
2
|
Heeba GH, Morsy MA, Mahmoud ME, Abdel-Latif R. Gastro-protective effect of l-arginine against nitric oxide deficiency-related mucosal injury induced by indomethacin: Does age matter? J Biochem Mol Toxicol 2023; 37:e23479. [PMID: 37483153 DOI: 10.1002/jbt.23479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Gastric ulcer is a common disease with increased prevalence in the aged population. Aged gastric mucosa has increased susceptibility to injury along with nonsteroidal anti-inflammatory drugs use due to impaired mucosal defense and decreased vasodilator release. We investigated whether l-arginine could protect against age-related gastric ulceration induced by indomethacin. Aged and adult male Wistar rats were administered sole and combined treatment of l-arginine and Nω -nitro-l-arginine methyl ester ( l-NAME) before induction of gastric ulceration by indomethacin. The gastroprotective effect of l-arginine was displayed only in adult rats with indomethacin-induced gastric ulceration, as evidenced by a significant decrease in ulcer index, oxidative stress parameters, and mucosal myeloperoxidase activity along with increased mucosal PGE2 levels. Interestingly, the mucosal gene expressions of NF-кB, iNOS, and COX-2 were significantly suppressed by l-arginine pretreatment and aggregated upon pretreatment with l-NAME in both adult and aged rats treated with indomethacin. In conclusion, l-arginine protected the rats' gastric mucosa against indomethacin-induced gastric ulceration, possibly, at least in part, by enhancement of mucosal nitric oxide/PGE2 content along with suppressing gastric inflammation and oxidative stress. This study supposed that the gastroprotective effect of l-arginine depends on aging, and even so, the adoption of a new approach to gastric ulcer treatment for the aged population is warranted.
Collapse
Affiliation(s)
- Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Magda E Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
3
|
Lu W, Cheng Z, Xie X, Li K, Duan Y, Li M, Ma C, Liu S, Qiu J. An atlas of glucose uptake across the entire human body as measured by the total-body PET/CT scanner: a pilot study. LIFE METABOLISM 2022; 1:190-199. [PMID: 39872349 PMCID: PMC11749875 DOI: 10.1093/lifemeta/loac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 01/30/2025]
Abstract
Glucose uptake differs in organs and tissues across the human body. To date, however, there has been no single atlas providing detailed glucose uptake profiles across the entire human body. Therefore, we aimed to generate a detailed profile of glucose uptake across the entire human body using the uEXPLORER positron emission tomography/computed tomography scanner, which offers the opportunity to collect glucose metabolic imaging quickly and simultaneously in all sites of the body. The standardized uptake value normalized by lean body mass (SUL) of 18F-fluorodeoxyglucose was used as a measure of glucose uptake. We developed a fingerprint of glucose uptake reflecting the mean SULs of major organs and parts across the entire human body in 15 healthy-weight and 18 overweight subjects. Using the segmentation of organs and body parts from the atlas, we uncovered the significant impacts of age, sex, and obesity on glucose uptake in organs and parts across the entire body. A difference was recognized between the right and left side of the body. Overall, we generated a total-body glucose uptake atlas that could be used as the reference for the diagnosis and evaluation of disordered states involving dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Zhaoping Cheng
- Department of PET/CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Xue Xie
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Kun Li
- Department of PET/CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Yanhua Duan
- Department of PET/CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Min Li
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Chao Ma
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Sijin Liu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250100, China
- State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
4
|
Lamm R, Bloom J, Collins M, Goldman D, Beausang D, Costanzo C, Schwenk ES, Phillips B. A Role for Gastric Point of Care Ultrasound in Postoperative Delayed Gastrointestinal Functioning. J Surg Res 2022; 276:92-99. [PMID: 35339785 DOI: 10.1016/j.jss.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/21/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Delayed bowel function (DBF) and postoperative ileus (POI) are common gastrointestinal complications after surgery. There is no reliable imaging study to help diagnose these complications, forcing clinicians to rely solely on patient history and physical exam. Gastric point of care ultrasound (POCUS) is a simple bedside imaging technique to evaluate gastric contents but has not been evaluated in postoperative patients. METHODS Twenty colorectal patients were enrolled in this pilot study. Patients were categorized as either full or empty stomach based upon their postoperative day one gastric POCUS exams and previously published definitions. The primary outcome was GI-3 recovery, a dual end point defined as tolerance of solid food and either flatus or bowel movement. Secondary outcomes were length of stay, emesis, time to first flatus, time to first bowel movement, nasogastric tube placement, aspiration events, and mortality. RESULTS Nine of 20 patients had a full stomach postoperatively. Patients with full stomachs were younger and received greater perioperative opioid doses (74.0 ± 28.2 v 42.6 ± 32.9 morphine equivalents, P = 0.0363) compared to empty stomach patients. GI-3 recovery occurred significantly later for patients with postoperative day 1 full stomachs (2.1 ± 0.4 versus 1 ± 0 days, P = 0.00091). CONCLUSIONS Based upon this pilot study, gastric POCUS may hold promise as a noninvasive and simple bedside modality to potentially help identify colorectal patients at risk for postoperative DBF and POI and should be evaluated in a larger study.
Collapse
Affiliation(s)
- Ryan Lamm
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Jamie Bloom
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Micaela Collins
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Daniel Goldman
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David Beausang
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Caitlyn Costanzo
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric S Schwenk
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Phillips
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Hayashi Y, Asuzu DT, Bardsley MR, Gajdos GB, Kvasha SM, Linden DR, Nagy RA, Saravanaperumal SA, Syed SA, Toyomasu Y, Yan H, Chini EN, Gibbons SJ, Kellogg TA, Khazaie K, Kuro-o M, Machado Espindola Netto J, Singh MP, Tidball JG, Wehling-Henricks M, Farrugia G, Ordog T. Wnt-induced, TRP53-mediated Cell Cycle Arrest of Precursors Underlies Interstitial Cell of Cajal Depletion During Aging. Cell Mol Gastroenterol Hepatol 2020; 11:117-145. [PMID: 32771388 PMCID: PMC7672319 DOI: 10.1016/j.jcmgh.2020.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Gastric dysfunction in the elderly may cause reduced food intake, frailty, and increased mortality. The pacemaker and neuromodulator cells interstitial cells of Cajal (ICC) decline with age in humans, and their loss contributes to gastric dysfunction in progeric klotho mice hypomorphic for the anti-aging Klotho protein. The mechanisms of ICC depletion remain unclear. Klotho attenuates Wnt (wingless-type MMTV integration site) signaling. Here, we examined whether unopposed Wnt signaling could underlie aging-associated ICC loss by up-regulating transformation related protein TRP53 in ICC stem cells (ICC-SC). METHODS Mice aged 1-107 weeks, klotho mice, APCΔ468 mice with overactive Wnt signaling, mouse ICC-SC, and human gastric smooth muscles were studied by RNA sequencing, reverse transcription-polymerase chain reaction, immunoblots, immunofluorescence, histochemistry, flow cytometry, and methyltetrazolium, ethynyl/bromodeoxyuridine incorporation, and ex-vivo gastric compliance assays. Cells were manipulated pharmacologically and by gene overexpression and RNA interference. RESULTS The klotho and aged mice showed similar ICC loss and impaired gastric compliance. ICC-SC decline preceded ICC depletion. Canonical Wnt signaling and TRP53 increased in gastric muscles of klotho and aged mice and middle-aged humans. Overstimulated canonical Wnt signaling increased DNA damage response and TRP53 and reduced ICC-SC self-renewal and gastric ICC. TRP53 induction persistently inhibited G1/S and G2/M cell cycle phase transitions without activating apoptosis, autophagy, cellular quiescence, or canonical markers/mediators of senescence. G1/S block reflected increased cyclin-dependent kinase inhibitor 1B and reduced cyclin D1 from reduced extracellular signal-regulated kinase activity. CONCLUSIONS Increased Wnt signaling causes age-related ICC loss by up-regulating TRP53, which induces persistent ICC-SC cell cycle arrest without up-regulating canonical senescence markers.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota,Yujiro Hayashi, PhD, Mayo Clinic, Guggenheim 10, 200 First Street SW, Rochester, Minnesota 55906. fax: (507) 255-6318.
| | - David T. Asuzu
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael R. Bardsley
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B. Gajdos
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sergiy M. Kvasha
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rea A. Nagy
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Siva Arumugam Saravanaperumal
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sabriya A. Syed
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yoshitaka Toyomasu
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Eduardo N. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center and Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Simon J. Gibbons
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | - Makoto Kuro-o
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas,Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Jair Machado Espindola Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center and Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | | | - Gianrico Farrugia
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Tamas Ordog
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota,Correspondence Address correspondence to: Tamas Ordog, MD, Mayo Clinic, Guggenheim 10, 200 First Street SW, Rochester, Minnesota 55906. fax: (507) 255-6318.
| |
Collapse
|
6
|
Teal E, Dua-Awereh M, Hirshorn ST, Zavros Y. Role of metaplasia during gastric regeneration. Am J Physiol Cell Physiol 2020; 319:C947-C954. [PMID: 32755448 DOI: 10.1152/ajpcell.00415.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spasmolytic polypeptide/trefoil factor 2 (TFF2)-expressing metaplasia (SPEM) is a mucous-secreting reparative lineage that emerges at the ulcer margin in response to gastric injury. Under conditions of chronic inflammation with parietal cell loss, SPEM has been found to emerge and evolve into neoplasia. Cluster-of-differentiation gene 44 (CD44) is known to coordinate normal and metaplastic epithelial cell proliferation. In particular, CD44 variant isoform 9 (CD44v9) associates with the cystine-glutamate transporter xCT, stabilizes the protein, and provides defense against reactive oxygen species (ROS). xCT stabilization by CD44v9 leads to defense against ROS by cystine uptake, glutathione (GSH) synthesis, and maintenance of the redox balance within the intracellular environment. Furthermore, p38 signaling is a known downstream ROS target, leading to diminished cell proliferation and migration, two vital processes of gastric epithelial repair. CD44v9 emerges during repair of the gastric epithelium after injury, where it is coexpressed with other markers of SPEM. The regulatory mechanisms for the emergence of CD44v9 and the role of CD44v9 during the process of gastric epithelial regeneration are largely unknown. Inflammation and M2 macrophage infiltration have recently been demonstrated to play key roles in the induction of SPEM after injury. The following review proposes new insights into the functional role of metaplasia in the process of gastric regeneration in response to ulceration. Our insights are extrapolated from documented studies reporting oxyntic atrophy and SPEM development and our current unpublished findings using the acetic acid-induced gastric injury model.
Collapse
Affiliation(s)
- Emma Teal
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martha Dua-Awereh
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Sabrina T Hirshorn
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
7
|
Zielinski GD, Teichert M, Klok FA, Rosendaal FR, Huisman MV, Cannegieter SC, Lijfering WM. Direct oral anticoagulant use and subsequent start of proton pump inhibitors as proxy for gastric complaints. Pharmacoepidemiol Drug Saf 2018; 27:1371-1378. [PMID: 30443944 DOI: 10.1002/pds.4684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/06/2022]
Abstract
PURPOSE Dabigatran use has been linked to gastrointestinal complaints, but it is unknown if this leads to more use of proton pump inhibitors (PPI). Furthermore, it is unknown whether gastrointestinal complaints occur more frequently in dabigatran users compared with other direct oral anticoagulant (DOACs) users. We investigated the association between DOAC use (dabigatran, rivaroxaban, or apixaban) and subsequent PPI initiation as a proxy for gastrointestinal complaints. METHODS In this population-based observational study with an active-comparator new user study design, anonymised dispensing data from Community Pharmacies in the Netherlands from 2012 to 2016 were used. Patients initiating DOAC for the treatment of atrial fibrillation without any PPI use before or at time of DOAC initiation were included. The outcome measure, subsequent PPI initiation, was determined in 28553 DOAC users. RESULTS The patients initiating dabigatran (10 942), apixaban (4897), or rivaroxaban (12714) were comparable for age (mean 69 years), sex (62% men), socioeconomic class, and concomitant medication use. The risk of PPI initiation in apixaban versus rivaroxaban users was similar (adjusted hazard ratio 1.06; 95% confidence interval 0.96-1.31) The adjusted hazard ratio of initiating PPI for dabigatran users was 1.21 (95% confidence interval 1.14-1.29) compared with rivaroxaban/apixaban users. The cumulative incidence of PPI initiation at 6 months of follow-up for patients using dabigatran was 13.0%, and 10.0% for those using rivaroxaban/apixaban, yielding a number needing treatment of 33. CONCLUSIONS Proton pump inhibitor initiation occurred frequently in incident DOAC users but more often in patients treated with dabigatran than in those treated with rivaroxaban or apixaban.
Collapse
Affiliation(s)
- G Denise Zielinski
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martina Teichert
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederikus A Klok
- Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno V Huisman
- Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem M Lijfering
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
The Age of Angiogenesis: A Novel Role of NGF in Gastric Repair. Cell Mol Gastroenterol Hepatol 2018; 6:227-228. [PMID: 30105285 PMCID: PMC6085493 DOI: 10.1016/j.jcmgh.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/05/2018] [Indexed: 01/31/2023]
|
9
|
Kim HJ, Kim N, Kim YS, Nam RH, Lee SM, Park JH, Choi D, Hwang YJ, Lee J, Lee HS, Kim MS, Lee MY, Lee DH. Changes in the interstitial cells of Cajal and neuronal nitric oxide synthase positive neuronal cells with aging in the esophagus of F344 rats. PLoS One 2017; 12:e0186322. [PMID: 29182640 PMCID: PMC5705109 DOI: 10.1371/journal.pone.0186322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023] Open
Abstract
The aging-associated cellular and molecular changes in esophagus have not been established, yet. Thus we evaluated histological structure, interstitial cells of Cajal (ICCs), neuronal nitric oxide synthase (nNOS)-positive cells, and contractility in the esophagus of Fischer 344 rat at different ages (6-, 31-, 74-weeks, and 2-years). The lamina propria thickness and endomysial area were calculated. The immunoreactivity of c-Kit, nNOS and protein gene product (PGP) 9.5 was counted after immunohistochemistry. Expression of c-Kit, stem cell factor (SCF), nNOS and PGP 9.5 mRNA was measured by real-time PCR, and expression of c-Kit and nNOS protein was detected by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS) were conducted. The lamina propria thickness increased (6 week vs 2 year, P = 0.005) and the endomysial area of longitudinal muscle decreased with aging (6 week vs 2 year, P<0.001), while endomysial area of circular muscle did not significantly decrease. The proportions of NOS-immunoreactive cells and c-Kit-immunoreactive areas declined with aging (6 week vs 2 year; P<0.001 and P = 0.004, respectively), but there was no significant change of PGP 9.5-immunopositiviy. The expressions of nNOS, c-Kit and SCF mRNA also reduced with aging (6 week vs 2 year; P = 0.006, P = 0.001 and P = 0.006, respectively), while the change of PGP 9.5 mRNA expression was not significant. Western blot showed the significant decreases of nNOS and c-Kit protein expression with aging (6 week vs 2 year; P = 0.008 and P = 0.012, respectively). The EFS-induced esophageal contractions significantly decreased in 2-yr-old rat compared with 6-wk-old rats, however, L-NG-Nitroarginine methylester did not significantly increase the spontaneous and EFS-induced contractions in the 6-wk- and 2-yr-old rat esophagus. In conclusion, an increase of lamina propria thickness, a decrease of endomysial area, c-Kit, SCF and NOS expression with preserved total enteric neurons, and contractility in aged rat esophagus may explain the aging-associated esophageal dysmotility.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
- Department of Internal Medicine, Myongji Hospital, Goyang, S. Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, S. Korea
- * E-mail:
| | - Yong Sung Kim
- Department of Gastroenterology and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, S. Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Ji Hyun Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Daeun Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Young-Jae Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Jongchan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, S. Korea
| | - Min-Seob Kim
- Department of Physiology and Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, S. Korea
| | - Moon Young Lee
- Department of Physiology and Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, S. Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, S. Korea
| |
Collapse
|
10
|
Bertaux-Skeirik N, Wunderlich M, Teal E, Chakrabarti J, Biesiada J, Mahe M, Sundaram N, Gabre J, Hawkins J, Jian G, Engevik AC, Yang L, Wang J, Goldenring JR, Qualls JE, Medvedovic M, Helmrath MA, Diwan T, Mulloy JC, Zavros Y. CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium. J Pathol 2017; 242:463-475. [PMID: 28497484 DOI: 10.1002/path.4918] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022]
Abstract
The CD44 gene encodes several protein isoforms due to alternative splicing and post translational modifications. Given that CD44 variant isoform 9 (CD44v9) is expressed within Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) glands during repair, CD44v9 may be play a funcitonal role during the process of regeneration of the gastric epithelium. Here we hypothesize that CD44v9 marks a regenerative cell lineage responsive to infiltrating macrophages during regeneration of the gastric epithelium. Ulcers were induced in CD44-deficient (CD44KO) and C57BL/6 (BL6) mice by a localized application of acetic acid to the serosal surface of the stomach. Gastric organoids expressing CD44v9 were derived from mouse stomachs and transplanted at the ulcer site of CD44KO mice. Ulcers, CD44v9 expression, proliferation and histology were measured 1, 3, 5 and 7-days post-injury. Human-derived gastric organoids were generated from stomach tissue collected from elderly (>55 years) or young (14-20 years) patients. Organoids were transplanted into the stomachs of NOD scid gamma (NSG) mice at the site of injury. Gastric injury was induced in NRG-SGM3 (NRGS) mice harboring human-derived immune cells (hnNRGS) and the immune profile anlayzed by CyTOF. CD44v9 expression emerged within regenerating glands the ulcer margin in response to injury. While ulcers in BL6 mice healed within 7-days post-injury, CD44KO mice exhibited loss of repair and epithelial regeneration. Ulcer healing was promoted in CD44KO mice by transplanted CD55v9-expressing gastric organoids. NSG mice exhibited loss of CD44v9 expression and gastric repair. Transplantation of human-derived gastric organoids from young, but not aged stomachs promoted repair in NSG mouse stomachs in response to injury. Finally, compared to NRGS mice, huNRGS animals exhibited reduced ulcer sizes, an infiltration of human CD162+ macrophages and an emergence of CD44v9 expression in SPEM. Thus, during repair of the gastic epithelium CD44v9 emerges within a regenerative cell lineage that coincides with macrophage inflitration within the injured mucosa. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Mark Wunderlich
- Cancer and Blood Disease Institute, Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma Teal
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jayati Chakrabarti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jacek Biesiada
- Department of Environmental Health, Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maxime Mahe
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nambirajan Sundaram
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joel Gabre
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer Hawkins
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gao Jian
- Department of Pediatrics, WF Maternal and Child Health Hospital, 76 Qingnian Road, Weifang, 261011, PR China
| | - Amy C Engevik
- Nashville VA Medical Center and Departments of Surgery and Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Yang
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jiang Wang
- Department of Pathology and Lab Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James R Goldenring
- Nashville VA Medical Center and Departments of Surgery and Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph E Qualls
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario Medvedovic
- Department of Environmental Health, Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Helmrath
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tayyab Diwan
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - James C Mulloy
- Cancer and Blood Disease Institute, Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Change in the Interstitial Cells of Cajal and nNOS Positive Neuronal Cells with Aging in the Stomach of F344 Rats. PLoS One 2017; 12:e0169113. [PMID: 28045993 PMCID: PMC5207530 DOI: 10.1371/journal.pone.0169113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022] Open
Abstract
The gastric accommodation reflex is an important mechanism in gastric physiology. However, the aging-associated structural and functional changes in gastric relaxation have not yet been established. Thus, we evaluated the molecular changes of interstitial cell of Cajal (ICC) and neuronal nitric oxide synthase (nNOS) and the function changes in the corpus of F344 rats at different ages (6-, 31-, 74-wk and 2-yr). The proportion of the c-Kit-positive area in the submucosal border (SMB) and myenteric plexus (MP) layer was significantly lower in the older rats, as indicated by immunohistochemistry. The density of the nNOS-positive immunoreactive area also decreased with age in the SMB, circular muscle (CM), and MP. Similarly, the percent of nNOS-positive neuronal cells per total neuronal cells and the proportion of nNOS immunoreactive area of MP also decreased in aged rats. In addition, the mRNA and protein expression of c-Kit and nNOS significantly decreased with age. Expression of stem cell factor (SCF) and the pan-neuronal marker PGP 9.5 mRNA was significantly lower in the older rats than in the younger rats. Barostat studies showed no difference depending on age. Instead, the change of volume was significantly decreased by L-NG63-nitroarginine methyl ester in the 2-yr-old rats compared with the 6-wk-old rats (P = 0.003). Taken together, the quantitative and molecular nNOS changes in the stomach might play a role in the decrease of gastric accommodation with age.
Collapse
|
12
|
Engevik AC, Feng R, Choi E, White S, Bertaux-Skeirik N, Li J, Mahe MM, Aihara E, Yang L, DiPasquale B, Oh S, Engevik KA, Giraud AS, Montrose MH, Medvedovic M, Helmrath MA, Goldenring JR, Zavros Y. The Development of Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) During Gastric Repair Is Absent in the Aged Stomach. Cell Mol Gastroenterol Hepatol 2016; 2:605-624. [PMID: 27990460 PMCID: PMC5042762 DOI: 10.1016/j.jcmgh.2016.05.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS During aging, physiological changes in the stomach result in more tenuous gastric tissue that is less capable of repairing injury, leading to increased susceptibility to chronic ulceration. Spasmolytic polypeptide/trefoil factor 2-expressing metaplasia (SPEM) is known to emerge after parietal cell loss and during Helicobacter pylori infection, however, its role in gastric ulcer repair is unknown. Therefore, we sought to investigate if SPEM plays a role in epithelial regeneration. METHODS Acetic acid ulcers were induced in young (2-3 mo) and aged (18-24 mo) C57BL/6 mice to determine the quality of ulcer repair with advancing age. Yellow chameleon 3.0 mice were used to generate yellow fluorescent protein-expressing organoids for transplantation. Yellow fluorescent protein-positive gastric organoids were transplanted into the submucosa and lumen of the stomach immediately after ulcer induction. Gastric tissue was collected and analyzed to determine the engraftment of organoid-derived cells within the regenerating epithelium. RESULTS Wound healing in young mice coincided with the emergence of SPEM within the ulcerated region, a response that was absent in the aged stomach. Although aged mice showed less metaplasia surrounding the ulcerated tissue, organoid-transplanted aged mice showed regenerated gastric glands containing organoid-derived cells. Organoid transplantation in the aged mice led to the emergence of SPEM and gastric regeneration. CONCLUSIONS These data show the development of SPEM during gastric repair in response to injury that is absent in the aged stomach. In addition, gastric organoids in an injury/transplantation mouse model promoted gastric regeneration.
Collapse
Key Words
- CD44v
- CD44v, variant isoform of CD44
- Cftr, cystic fibrosis transmembrane conductance regulator
- CgA, chromagranin A
- Clu, Clusterin
- Ctss, cathepsin S
- DMEM, Dulbecco's modified Eagle medium
- DPBS, Dulbecco's phosphate buffered saline
- Dmbt1, deleted in malignant brain tumors 1
- ES, enrichment score
- Epithelial Regeneration
- GSEA, gene set enrichment analysis
- GSII, Griffonia simplicifolia II
- Gastric Cancer
- Gpx2, glutathione peroxidase 2 (gastrointestinal)
- HK, hydrogen potassium adenosine triphosphatase
- Human Gastric Organoids
- IF, intrinsic factor
- Mad2I1, MAD2 mitotic arrest deficient-like 1
- Mmp12, matrix metallopeptidase 12 (macrophage elastase)
- PBS, phosphate-buffered saline
- SPEM, spasmolytic polypeptide expressing metaplasia
- TFF, trefoil factor
- TX, Triton X-100 in PBS
- UEA1, ulex europaeus
- Wfdc2, WAP 4-disulfide core domain 2
- YFP, yellow fluorescent protein
- hFGO, human-derived fundic gastric organoid
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
Affiliation(s)
- Amy C. Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eunyoung Choi
- Nashville VA Medical Center, Department of Surgery, Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shana White
- Department of Environmental Health, Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jing Li
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maxime M. Mahe
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Research Center, Cincinnati, Ohio
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Li Yang
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Betsy DiPasquale
- Pathology Research Core, Cincinnati Children's Hospital Medical Research Center, Cincinnati, Ohio
| | - Sunghee Oh
- Department of Computer Science and Statistics, Jeju National University, Jeju, South Korea
| | - Kristen A. Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew S. Giraud
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Marshall H. Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mario Medvedovic
- Department of Environmental Health, Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael A. Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Research Center, Cincinnati, Ohio
| | - James R. Goldenring
- Nashville VA Medical Center, Department of Surgery, Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee,James R. Goldenring, MD, PhD, Vanderbilt University Medical Center, Medical Research Building IV, Room 10435-G, 2213 Garland Avenue, Nashville, Tennessee 37232. fax: (615) 343-1591.Vanderbilt University Medical CenterMedical Research Building IVRoom 10435-G2213 Garland AvenueNashvilleTennessee 37232
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio,Correspondence Address correspondence to: Yana Zavros, PhD, Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, Ohio 45267-0576. fax: (513) 558-5738.Department of Molecular and Cellular PhysiologyUniversity of Cincinnati College of Medicine231 Albert B. Sabin WayRoom 4255 MSBCincinnatiOhio 45267-0576
| |
Collapse
|
13
|
Shim YK, Kim N. Nonsteroidal Anti-inflammatory Drug and Aspirin-induced Peptic Ulcer Disease. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 67:300-12. [DOI: 10.4166/kjg.2016.67.6.300] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Young Kwang Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Sonnenberg A, Genta RM. Changes in the Gastric Mucosa With Aging. Clin Gastroenterol Hepatol 2015; 13:2276-81. [PMID: 25724703 DOI: 10.1016/j.cgh.2015.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS We aimed to characterize age-related changes in the gastric mucosa and investigate the contribution of Helicobacter pylori infection to these changes. METHODS We collected data from a large national pathology database of 895,323 subjects who underwent esophagogastroduodenoscopy with gastric biopsies from January 2008 through December 2013 at endoscopy centers throughout the United States. The prevalence of various types of gastric histopathology was expressed as percent of the total study population, stratified by sex, age, and state. RESULTS Over a lifetime, the gastric mucosa became abnormal in 50% of subjects. A higher proportion of people in areas with a high prevalence of H pylori infection acquired gastric abnormalities. H pylori-associated chronic active gastritis and mucosal changes caused by infection were observed in 22% of biopsies; these were the most common gastric abnormalities observed. Reactive gastropathy, which was detected in 18% of biopsies, increased with age and was the second most common factor of gastric pathology observed. CONCLUSIONS On the basis of an analysis of biopsies collected by esophagogastroduodenoscopy in the United States, gastric abnormalities increase with age. Most pathologic conditions detected by histologic analysis are caused by H pylori infection, but the causes of many others are unknown.
Collapse
Affiliation(s)
- Amnon Sonnenberg
- Miraca Life Sciences, Research Institute, Irving, Texas; Department of Medicine, Oregon Health and Sciences University, Portland, Oregon.
| | - Robert M Genta
- Miraca Life Sciences, Research Institute, Irving, Texas; University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9603. [PMID: 24352567 PMCID: PMC4082571 DOI: 10.1007/s11357-013-9603-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/25/2013] [Indexed: 05/23/2023]
Abstract
Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brain-gut-enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research.
Collapse
Affiliation(s)
- M Jill Saffrey
- Department of Life Health and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, MK7 6AA, UK,
| |
Collapse
|
16
|
Variation in gastric pH may determine kiwifruit's effect on functional GI disorder: an in vitro study. Nutrients 2014; 6:1488-500. [PMID: 24732018 PMCID: PMC4011047 DOI: 10.3390/nu6041488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023] Open
Abstract
Consumption of kiwifruit is reported to relieve symptoms of functional gastrointestinal (GI) disorder. The effect may be related to the proteases in kiwifruit. This in vitro study aimed to measure protein hydrolysis due to kiwifruit protease under gastric and duodenal conditions. A sequence of experiments incubated meat protein, with and without kiwifruit, with varying concentrations of pepsin and hydrochloric acid, at 37 °C for 60 min over the pH range 1.3–6.2 to simulate gastric digestion. Duodenal digestion was simulated by a further 120 min incubation at pH 6.4. Protein digestion efficiency was determined by comparing Kjeldahl nitrogen in pre- and post-digests. Where acid and pepsin concentrations were optimal for peptic digestion, hydrolysis was 80% effective and addition of kiwifruit made little difference. When pH was increased to 3.1 and pepsin activity reduced, hydrolysis decreased by 75%; addition of kiwifruit to this milieu more than doubled protein hydrolysis. This in vitro study has shown, when gastric pH is elevated, the addition of kiwifruit can double the rate of hydrolysis of meat protein. This novel finding supports the hypothesis that consumption of kiwifruit with a meal can increase the rate of protein hydrolysis, which may explain how kiwifruit relieves functional GI disorder.
Collapse
|
17
|
Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci 2012; 169:12-27. [PMID: 22436622 DOI: 10.1016/j.autneu.2012.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/28/2022]
Abstract
Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-2081, USA
| | | |
Collapse
|
18
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|