1
|
Rowghani K, Patel B, Martinez-Guryn K. Dietary impact on the gut microbiome and epigenome and regulation of gut inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:369-398. [DOI: 10.1016/b978-0-443-18979-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Mal S, Das TK, Pradhan S, Ghosh K. Probiotics as a Therapeutic Approach for Non-infectious Gastric Ulcer Management: a Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10348-7. [PMID: 39190267 DOI: 10.1007/s12602-024-10348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A gastric ulcer is a stomach lining or nearby intestine disruption caused by acid and pepsin. Helicobacter pylori (H. pylori) and NSAIDs are the primary culprits behind stomach infections that can lead to gastric ulcers and other digestive disorders. Additionally, lifestyle choices such as alcohol consumption and cigarette smoking, stress, and exposure to cold environments can also contribute to non-infectious gastric ulcers. Various treatments are available for gastric ulcers, including antibiotics, anticholinergics, and antacids. However, potential concerns include antibiotic resistance, side effects, and treatment failure. Considering this, there is a need for an alternative approach to manage it. Fortunately, probiotics, typically Lactobacillus and Bifidobacterium, show potential for healing gastric ulcers, offering a non-invasive alternative to conventional treatments. A notable concern arises from applying probiotic bacteria stemming from the propensity of pathogenic bacteria to develop antimicrobial resistance in response to antibiotic therapies. Therefore, the use of yeast becomes more imperative due to its natural resistance to antibacterial antibiotics for antibacterial-treated patients. Probiotic bacteria and yeasts could heal gastric ulcers by regulating the immune response, reducing inflammation, and restoring the balance between defensive and aggressive factors of the gastric layer. This comprehensive review provides an in-depth analysis of the benefits of probiotics and their potential as a therapeutic treatment for non-infectious gastric ulcers, along with other probiotic options. In particular, this review provides a succinct summary of multiple literature studies on probiotics, emphasising the distinctive properties of yeast probiotics, as well as their (bacteria and yeasts) application in the management of non-infectious gastric ulcers.
Collapse
Affiliation(s)
- Subhasree Mal
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Tridip K Das
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
3
|
Dubey D, Kar B, Biswaroy P, Rath G, Mishra D, Ghosh G. The prospect of probiotics in -induced peptic ulcer disease: A perspective review. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:87-94. [DOI: 10.18231/j.ijmmtd.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/05/2025]
Abstract
The relationship between the human host and the intestinal microbiota is dynamic and symbiotic. This review examines whether there is a correlation between a disruption in host-microbial interactions caused by an alternative composition of gut microbiota and an increased susceptibility to peptic ulcer disease, mainly when hazardous bacteria are present in the coexistence. Peptic ulcers frequently arise from infections caused by (), a pathogen that evades the host's immune system and establishes a lifelong colony. This protracted infection gives rise to chronic inflammation, which substantially raises the risk of developing gastric ulcers and gastric cancer. One of the significant obstacles in the treatment of infection is antibiotic resistance, which develops as a result of improper antibiotic treatment for bacterial infections. Such misuse of antibiotics also results in dysbiosis. In such cases, probiotics become an essential tool that restores the balance of the normal flora in the body and eliminates critical infections. This results in probiotics being utilized extensively for ulcer treatment and potentially serving a dual purpose in combating infection; consequently, antibiotic usage will be reduced, and human health will advance.
Collapse
Affiliation(s)
| | - Biswakanth Kar
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Prativa Biswaroy
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Goutam Rath
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | | | - Goutam Ghosh
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| |
Collapse
|
4
|
Jang HJ, Kim JA, Kim Y. Characterization of feline-originated probiotics Lactobacillus rhamnosus CACC612 and Bifidobacterium animalis subsp. lactis CACC789 and and evaluation of their host response. BMC Vet Res 2024; 20:128. [PMID: 38561808 PMCID: PMC10983674 DOI: 10.1186/s12917-024-03975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Probiotics are beneficial for animal health and new potential probiotics need to be characterized for their prospective use in improving animal health. In this study, 32 bacterial strains were isolated from a Norwegian forest cat (castrated, 12 years old) and a Persian cat (castrated, 10 years old), which were privately owned and had indoor access. RESULTS Lactobacillus rhamnosus CACC612 (CACC612) and Bifidobacterium animalis subsp. lactis CACC789 (CACC789) were selected as potential probiotics; characterization of the two strains showed equivalent acid tolerance, similar cell adhesion rates on the HT-29 monolayer cell line, and superior bile tolerance compared to Lactobacillus rhamnosus GG (LGG). Subsequently, they exhibited inhibitory effects against a broad spectrum of pathogenic bacteria, including E. coli (KCTC 2617), Salmonella Derby (NCCP 12,238), Salmonella Enteritidis (NCCP 14,546), Salmonella Typhimurium (NCCP 10,328), Clostridium difficile JCM 1296T. From evaluating host effects, the viability of the feline macrophage cell line (Fcwf-4) increased with the treatment of CACC612 or CACC789 (P < 0.05). The induced expression of immune-related genes such as IFN-γ, IL1β, IL2, IL4, and TNF-α by immune stimulation was significantly attenuated by the treatment of CACC612 or CACC789 (P < 0.05). When 52 clinical factors of sera from 21 healthy cats were analyzed using partial least squares discriminant analysis (PLS-DA), the animals were obviously clustered before and after feeding with CACC612 or CACC789. In addition, hemoglobin and mean corpuscular hemoglobin concentration (MCHC) significantly increased after CACC612 feeding (P < 0.05). CONCLUSIONS In this study, feline-originated probiotics were newly characterized and their potentially probiotic effects were evaluated. These results contribute to our understanding of the functional effects of feline-derived probiotics and support their industrial applications.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea.
| |
Collapse
|
5
|
Li H, Hu Y, Huang Y, Ding S, Zhu L, Li X, Lan M, Huang W, Lin X. The mutual interactions among Helicobacter pylori, chronic gastritis, and the gut microbiota: a population-based study in Jinjiang, Fujian. Front Microbiol 2024; 15:1365043. [PMID: 38419635 PMCID: PMC10899393 DOI: 10.3389/fmicb.2024.1365043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objectives Helicobacter pylori (H. pylori) is a type of bacteria that infects the stomach lining, and it is a major cause of chronic gastritis (CG). H. pylori infection can influence the composition of the gastric microbiota. Additionally, alterations in the gut microbiome have been associated with various health conditions, including gastrointestinal disorders. The dysbiosis in gut microbiota of human is associated with the decreased secretion of gastric acid. Chronic atrophic gastritis (CAG) and H. pylori infection are also causes of reduced gastric acid secretion. However, the specific details of how H. pylori infection and CG, especially for CAG, influence the gut microbiome can vary and are still an area of ongoing investigation. The incidence of CAG and infection rate of H. pylori has obvious regional characteristics, and Fujian Province in China is a high incidence area of CAG as well as H. pylori infection. We aimed to characterize the microbial changes and find potential diagnostic markers associated with infection of H. pylori as well as CG of subjects in Jinjiang City, Fujian Province, China. Participants Enrollment involved sequencing the 16S rRNA gene in fecal samples from 176 cases, adhering to stringent inclusion and exclusion criteria. For our study, we included healthy volunteers (Normal), individuals with chronic non-atrophic gastritis (CNAG), and those with CAG from Fujian, China. The aim was to assess gut microbiome dysbiosis based on various histopathological features. QIIME and LEfSe analyses were performed. There were 176 cases, comprising 126 individuals who tested negative for H. pylori and 50 who tested positive defined by C14 urea breath tests and histopathological findings in biopsies obtained through endoscopy. CAG was also staged by applying OLGIM system. Results When merging the outcomes from 16S rRNA gene sequencing results, there were no notable variations in alpha diversity among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and H. pylori positive [Hp (+)] and H. pylori negative [Hp (-)] groups. Beta diversity among different groups show significant separation through the NMDS diagrams. LEfSe analyses confirmed 2, 3, and 6 bacterial species were in abundance in the Normal, CNAG, and CAG groups; 26 and 2 species in the OLGIM I and OLGIM II group; 22 significant phylotypes were identified in Hp (+) and Hp (-) group, 21 and 1, respectively; 9 bacterial species exhibited significant differences between individuals with CG who were Hp (+) and those who were Hp (-). Conclusion The study uncovered notable distinctions in the characteristics of gut microbiota among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and Hp (+) and Hp (-) groups. Through the analysis of H. pylori infection in CNAG and CAG groups, we found the gut microbiota characteristics of different group show significant difference because of H. pylori infection. Several bacterial genera could potentially serve as diagnostic markers for H. pylori infection and the progression of CG.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yingying Hu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yanyu Huang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Shanshan Ding
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Long Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Xinghui Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Meng Lan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Weirong Huang
- Jinjiang Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Jinjiang, China
| | - Xuejuan Lin
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| |
Collapse
|
6
|
Dong Z, Yu K, Xin Y, Gao X, Bu F, Zhao D, Ren D, Lu J, Wang D. Association between gut microbiota and peptic ulcer disease, particularly gastric ulcer and duodenal ulcer: a two-sample Mendelian randomization study. Front Microbiol 2024; 14:1277300. [PMID: 38274744 PMCID: PMC10808813 DOI: 10.3389/fmicb.2023.1277300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background Recent an observational study has suggested a potential connection between gut microbiota (GM) and peptic ulcer diseases (PUDs), particularly gastric ulcer (GU) and duodenal ulcer (DU). However, the causal connection remains unsure. Methods A two-sample Mendelian randomization (MR) is carried out to explore the connection between the GM and DU or GU. Data on the GM comes from the MiBioGend database, and GU or DU data are based on the FinnGen database. One group of single nucleotide polymorphisms (SNPs) (P < 5 × 10-8) are served as instrumental variables (IVs). To obtain a more comprehensive conclusion, the other SNPs (P < 1 × 10-5) are selected as IVs. Inverse variance weighting (IVW) is used to determine the causal relationship. Results At the level of P < 1 × 10-5, the IVW analysis suggests that Clostridiaceae1, Butyriccoccus, and Peptcoccus have harmful effects on GU, while LachnospiraceaeUCG004 and MollicutesRF9 have beneficial effects on GU. Then, in the case of DU, the IVW analysis suggested that Lentisphaeria, Negativicutes, Clostridiaceae1, ClostridiumseMnsustricto1, ErysipelotrichaceaeUCG003, LachnospiraceaeNC2004group, Selenomonadale, Victivallales, and Lentisphaerae have harmful effects, while Catenibacterium, Escherichia.Shigella, LachnospiraceaeUCG008, and Sutterella have beneficial effects. When P < 5 × 10-8, IVW analysis suggests that GM has no significant influence on GU or DU. Conclusion This two-sample MR indicates a causal relationship between GM and GU or DU.
Collapse
Affiliation(s)
- Zhenhua Dong
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University Changchun, Jilin, China
| | - Kai Yu
- Department of Urology, The First Hospital of Jilin University Changchun, Jilin, China
| | - Yuchao Xin
- Second Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University Changchun, Jilin, China
| | - Xulei Gao
- Second Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University Changchun, Jilin, China
| | - Fan Bu
- Department of Plastic and Aesthetic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dingliang Zhao
- Department of Second Urology, The First Hospital of Jilin University Changchun, Jilin, China
| | - Donghui Ren
- Department of Urology, The First Hospital of Jilin University Changchun, Jilin, China
| | - Ji Lu
- Department of Urology, The First Hospital of Jilin University Changchun, Jilin, China
| | - Daguang Wang
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University Changchun, Jilin, China
| |
Collapse
|
7
|
Shen S, Ren F, Qin H, Bukhari I, Yang J, Gao D, Ouwehand AC, Lehtinen MJ, Zheng P, Mi Y. Lactobacillus acidophilus NCFM and Lactiplantibacillus plantarum Lp-115 inhibit Helicobacter pylori colonization and gastric inflammation in a murine model. Front Cell Infect Microbiol 2023; 13:1196084. [PMID: 37621875 PMCID: PMC10445763 DOI: 10.3389/fcimb.2023.1196084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/07/2023] [Indexed: 08/26/2023] Open
Abstract
Purpose To determine the role of Lactobacillus strains and their combinations in inhibiting the colonization of H. pylori and gastric mucosa inflammation. Methods Human gastric adenocarcinoma AGS cells were incubated with H. pylori and six probiotic strains (Lactobacillus acidophilus NCFM, L. acidophilus La-14, Lactiplantibacillus plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37, Lacticaseibacillus rhamnosus Lr-32, and L. rhamnosus GG) and the adhesion ability of H. pylori in different combinations was evaluated by fluorescence microscopy and urease activity assay. Male C57BL/6 mice were randomly divided into five groups (uninfected, H. pylori, H. pylori+NCFM, H. pylori+Lp-115, and H. pylori+NCFM+Lp-115) and treated with two lactobacilli strains (NCFM and Lp-115) for six weeks. H. pylori colonization and tissue inflammation statuses were determined by rapid urease test, Hematoxylin-Eosin (HE) staining, immunohistochemistry, and qRT-PCR and ELISA. Results L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, L. paracasei Lpc-37, L. rhamnosus Lr-32, and L. rhamnosus GG reduced H. pylori adhesion and inflammation caused by H. pylori infection in AGS cells and mice. Among all probiotics L. acidophilus NCFM and L. plantarum, Lp-115 showed significant effects on the H. pylori eradication and reduction of inflammation in-vitro and in-vivo. Compared with the H. pylori infection group, the mRNA and protein expression levels of IL-8 and TNF-α in the six Lactobacillus intervention groups were significantly reduced. The changes in the urease activity (ureA and ureB) for 1-7h in each group showed that L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, and L. rhamnosus GG effectively reduced the colonization of H. pylori. We observed a higher ratio of lymphocyte and plasma cell infiltration into the lamina propria of the gastric mucosa and neutrophil infiltration in H. pylori+NCFM+Lp-115 mice. The infiltration of inflammatory cells in lamina propria of the gastric mucosa was reduced in the H. pylori+NCFM+Lp-115 group. Additionally, the expression of IFN-γ was decreased significantly in the NCFM and Lp-115 treated C57BL/6 mice. Conclusions L. acidophilus NCFM and L. plantarum Lp-115 can reduce the adhesion of H. pylori and inhibit the gastric inflammatory response caused by H. pylori infection.
Collapse
Affiliation(s)
- Siqi Shen
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - FeiFei Ren
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiming Qin
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- R&D Health & Biosciences, Danisco (China) Holding Co. Ltd, Shanghai, China
| | - Dafang Gao
- R&D Health & Biosciences, Danisco (China) Holding Co. Ltd, Shanghai, China
| | - Arthur C. Ouwehand
- IFF Health & Biosciences, Global Health and Nutrition Science, Kantvik, Finland
| | - Markus J. Lehtinen
- IFF Health & Biosciences, Global Health and Nutrition Science, Kantvik, Finland
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Baryshnikova NV, Ilina AS, Ermolenko EI, Uspenskiy YP, Suvorov AN. Probiotics and autoprobiotics for treatment of Helicobacter pylori infection. World J Clin Cases 2023; 11:4740-4751. [PMID: 37583996 PMCID: PMC10424037 DOI: 10.12998/wjcc.v11.i20.4740] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
The article discusses various approaches for probiotic treatment of Helicobacter pylori (H. pylori) infection: Probiotics as an adjuvant treatment in the standard eradication therapy; probiotic strains as a monotherapy; and autoprobiotics as a monotherapy. Autoprobiotics refer to indigenous bifidobacteria, lactobacilli, or enterococci isolated from a specific individual, intended to restore his/her microbiota and improve his/her health. The potential mechanisms of probiotic action against H. pylori include correction of the gut microbiota, immunological effects (enhancement of humoral and cellular immunity, and reduction of oxidative stress), direct antagonistic effects against H. pylori (such as colonization resistance and bacteriocin synthesis), and stimulation of local immunological protection (strengthening of the mucous protective barrier and reduction of gastric mucosa inflammation). The incorporation of probiotics into comprehensive eradication therapy shows promise in optimizing the treatment of H. pylori infection. Probiotics can enhance the eradication rates of H. pylori, reduce the occurrence and severity of side effects, and improve patient compliance. Probiotic or autoprobiotic monotherapy can be considered as an alternative treatment approach in cases of allergic reactions and insufficient effectiveness of antibiotics. We recommend including probiotics as adjunctive medications in anti-H. pylori regimens. However, further randomized multicenter studies are necessary to investigate the effects of probiotics and autoprobiotics against H. pylori, in order to gain a better understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Natalia V Baryshnikova
- Department of Molecular Microbiology, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Internal Diseases Department of Stomatological Faculty, Pavlov First St-Petersburg State Medical University, St. Petersburg 197022, Russia
- Laboratory of Medical and Social Pediatric Problems, St-Petersburg State Pediatric Medical University, St. Petersburg 194100, Russia
| | - Anastasia S Ilina
- Clinical Department, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Elena I Ermolenko
- Department of Molecular Microbiology, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Yury P Uspenskiy
- Internal Diseases Department of Stomatological Faculty, Pavlov First St-Petersburg State Medical University, St. Petersburg 197022, Russia
- Department of Faculty Therapy Named After V.A. Valdman, St-Petersburg State Pediatric Medical University, St. Petersburg 194100, Russia
| | - Alexander N Suvorov
- Department of Molecular Microbiology, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
9
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Xing Y, Gu X, Ruan G, Chen S. Probiotics for the Treatment of Gastric Diseases. Nutr Cancer 2022; 74:3051-3057. [PMID: 35441576 DOI: 10.1080/01635581.2022.2067335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Common gastric diseases include chronic gastritis, gastric ulcers and gastric cancer. The etiology of gastric diseases is complicated, including genetics, diet, excessive smoking and drinking, environmental factors, and bacterial infections. As live microorganisms, probiotics can confer health benefits to the host. At present, probiotics have been widely used in the preparation of foods, health products, and medicines. Due to their positive effects in improving diarrhea, constipation, alleviating allergies, enhancing immunity, and maintaining intestinal homeostasis, studies worldwide have focused on whether probiotics also provide therapeutic effects on gastric diseases. Thus, this review summarizes the possible mechanism of probiotics in the treatment of gastric diseases and provides a reference for expanding not only their application but also that of other microecological agents.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Lacerda DC, Trindade da Costa PC, Paulino do Nascimento LC, de Brito Alves JL. Probiotics for gastrointestinal health and disease treatment. PROBIOTICS FOR HUMAN NUTRITION IN HEALTH AND DISEASE 2022:431-448. [DOI: 10.1016/b978-0-323-89908-6.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Mousavi T, Nikfar S, Abdollahi M. The pharmacotherapeutic management of duodenal and gastric ulcers. Expert Opin Pharmacother 2021; 23:63-89. [PMID: 34435515 DOI: 10.1080/14656566.2021.1959914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Although the incidence and prevalence of duodenal and gastric ulcers have been declining, it remains challenging for health care systems. Based on the underlying cause, history, and characteristics of ulcers, management is generally provided by administering proton pump inhibitors (PPIs) or antibiotics. AREAS COVERED This article is based on global guidelines and English language literature from the past decade obtained through searches using PubMed, Clinicaltrials.gov, the US FDA, and the Cochrane library. Using a stepwise approach, dose and duration of treatment, drug interactions, warnings and contraindications, adverse effects, and administration points were specified. New drug candidates that may get American and European approvals were also introduced. EXPERT OPINION Despite the wide use of PPIs, their development lags behind the clinical need. There is an absolute requirement to develop third-generation PPIs with higher potency and improved pharmacokinetic and safety profiles. Regarding the antibiotic resistance crisis, including those used against H. pylori, conducting more clinical trials and investigating regional antibiotic resistance are warranted. Potassium competitive acid blockers, ilaprazole, and an H. pylori vaccine all show promise for the future.
Collapse
Affiliation(s)
- Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, Pharmaceutical Sciences Research Center (PSRC), and the Pharmaceutical Management and Economics Research Center (PMERC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
14
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
15
|
Namdev A, Jain D. Floating Drug Delivery Systems: An Emerging Trend for the Treatment of Peptic Ulcer. Curr Drug Deliv 2020; 16:874-886. [PMID: 31894738 DOI: 10.2174/1567201816666191018163519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/13/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Floating drug delivery system (FDDS) is the main approach to prolonging the gastric residence time in the stomach in which the bilayer floating tablet has the main role. It is more suitable for the treatment of local infections such as peptic ulcer, gastritis, Zollinger-Ellision syndrome, indigestion, and other local infections related to the gastrointestinal tract and also used for systemic applications. FDDS provides protection for those drugs which are acid labile and have a short half-life. It also improves bioavailability, reduces drug waste, and enhances the residence time of drugs. Nowadays, various technologies are being used for the development of FDDS. Novel drug delivery systems incorporation into bilayer floating tablets have also broadened the role of FDDS. Polymers have the main role in the development of FDDS, which serve as carriers for the drug and determine the gastric retention time and drug protection. FDDS is also an easy, cheap, and more convenient method for dual drug delivery of drugs.
Collapse
Affiliation(s)
- Ankit Namdev
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (MP), India
| | - Dharmendra Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (MP), India
| |
Collapse
|
16
|
Frakolaki G, Giannou V, Kekos D, Tzia C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr 2020; 61:1515-1536. [DOI: 10.1080/10408398.2020.1761773] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Georgia Frakolaki
- Laboratory of Food Chemistry and Technology, National Technical University of Athens School of Chemical Engineering, Athens, Greece
| | - Virginia Giannou
- Laboratory of Food Chemistry and Technology, National Technical University of Athens School of Chemical Engineering, Athens, Greece
| | - Dimitrios Kekos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Polytechnioupoli Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, National Technical University of Athens School of Chemical Engineering, Athens, Greece
| |
Collapse
|
17
|
Park H, Cho D, Huang E, Seo JY, Kim WG, Todorov SD, Ji Y, Holzapfel WH. Amelioration of Alcohol Induced Gastric Ulcers Through the Administration of Lactobacillus plantarum APSulloc 331261 Isolated From Green Tea. Front Microbiol 2020; 11:420. [PMID: 32256476 PMCID: PMC7090068 DOI: 10.3389/fmicb.2020.00420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric inflammation is an indication of gastric ulcers and possible other underlying gastric malignancies. Epidemiological studies have revealed that several Asian countries, including South Korea, suffer from a high incidence of gastric diseases derived from high levels of stress, alcoholic consumption, pyloric infection and usage of non-steroidal anti-inflammatory drugs (NSAIDs). Clinical treatments of gastric ulcers are generally limited to proton pump inhibitors that neutralize the stomach acid, and the application of antibiotics for Helicobacter pylori eradication, both of which are known to have a negative effect on the gut microbiota. The potential of probiotics for alleviating gastrointestinal diseases such as intestinal bowel syndrome and intestinal bowel disease receives increasing scientific interest. Probiotics may support the amelioration of disease-related symptoms through modulation of the gut microbiota without causing dysbiosis. In this study the potential of Lactobacillus plantarum APSulloc 331261 (GTB1TM), isolated from green tea, was investigated for alleviating gastric inflammation in an alcohol induced gastric ulcer murine model (positive control). Treatment with the test strain significantly influenced the expression of pro-inflammatory and anti-inflammatory biomarkers, interleukin 6 (IL6) and interleukin 10 (IL10), of which the former was down- and the latter up-regulated when the alcohol induced mice were treated with the test strain. This positive effect was also indicated by less severe gastric morphological changes and the histological score of the gastric tissues. A significant increase in the abundance of Akkermansia within the GTB1TM treated group compared to the positive control group also correlated with a decrease in the ratio of acetate over propionate. The increased levels of propionate in the GTB1TM group appear to result from the impact of the test strain on the microbial population and the resulting metabolic activities. Moreover, there was a significant increase in beta-diversity in the group that received GTB1TM over that of the alcohol induced control group.
Collapse
Affiliation(s)
- Haryung Park
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
| | - Donghyun Cho
- Vital Beautie Research Division, Amore Pacific R&D Unit, Gyeonggi-do, South Korea
| | - Eunchong Huang
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
| | - Ju Yeon Seo
- Vital Beautie Research Division, Amore Pacific R&D Unit, Gyeonggi-do, South Korea
| | - Wan Gi Kim
- Vital Beautie Research Division, Amore Pacific R&D Unit, Gyeonggi-do, South Korea
| | | | - Yosep Ji
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
| | | |
Collapse
|
18
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
19
|
Huang W, Chen R, Peng Y, Duan F, Huang Y, Guo W, Chen X, Nie L. In Vivo Quantitative Photoacoustic Diagnosis of Gastric and Intestinal Dysfunctions with a Broad pH-Responsive Sensor. ACS NANO 2019; 13:9561-9570. [PMID: 31361949 DOI: 10.1021/acsnano.9b04541] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gastrointestinal diseases affect many people in the world and significantly impair life quality and burden the healthcare system. The functional parameters of the gastrointestinal tract such as motility and pH can effectively reflect the changes of gastrointestinal activity in physiological and pathological conditions. Thus, a noninvasive method for real-time and quantitative measurement of gastrointestinal functional parameters in vivo is highly desired. At present, there are many strategies widely used for the diagnosis of gastrointestinal diseases in clinic, including X-ray barium meal examination, ultrasound imaging, radionuclide examination, endoscopy, etc. However, these methods are limited in determining the gastrointestinal status and cannot provide comprehensive quantitative information. Photoacoustic imaging (PAI) is a rapid noninvasive real-time imaging technique in which multiple types of functional and quantitative information can be simultaneously obtained. Unfortunately, very few ratiometric PAI contrast agents have been reported for quantification of gastrointestinal functional parameters in vivo. In this work, a broad, pH-responsive ratiometric sensor based on polyaniline and Au triangular nanoplates was developed. Utilizing the sensor as a contrast agent, PAI served as an all-in-one technique, accurately measuring the gastrointestinal functional parameters in a single test. Notably, this sensor was examined to be ultrasensitive with pH responses as fast as 0.6 s and durability as long as 24 h, and was repeatable and reversible for longitudinal monitoring. The quantitative results demonstrated a significant disorder in motility and decrease in pH for gastric and duodenal ulcers. Collectively, the combination of PAI and this broad pH-responsive sensor might be a promising candidate for quantitative diagnosis of gastrointestinal diseases.
Collapse
Affiliation(s)
- Wenchao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Fei Duan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Yanfang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| |
Collapse
|
20
|
Abstract
In recent years, interest in the relationship between gut microbiota and disease states has grown considerably. Indeed, several strategies have been employed to modify the microbiome through the administration of different diets, by the administration of antibiotics or probiotics, or even by transplantation of feces. In the present manuscript, we focus specifically on the potential application of probiotics, which seem to be a safe strategy, in the management of digestive, pain, and emotional disorders. We present evidence from animal models and human studies, notwithstanding that translation to clinic still deserves further investigation. The microbiome influences gut functions as well as neurological activity by a variety of mechanisms, which are also discussed. The design and performance of larger trials is urgently needed to verify whether these new strategies might be useful not only for the treatment of disorders affecting the gastrointestinal tract but also in the management of emotional and pain disorders not directly related to the gut.
Collapse
|
21
|
Jung JH, Cho IK, Lee CH, Song GG, Lim JH. Clinical Outcomes of Standard Triple Therapy Plus Probiotics or Concomitant Therapy for Helicobacter pylori Infection. Gut Liver 2018; 12:165-172. [PMID: 29212313 PMCID: PMC5832341 DOI: 10.5009/gnl17177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background/Aims The efficacy of standard triple therapy (STT) in treating Helicobacter pylori infection has decreased. Many investigators have attempted to increase the eradication rate. We investigated the outcomes of concomitant therapy (CT) and STT combined with probiotics (STP) as a first-line treatment for H. pylori infection. Methods We reviewed the medical records of 361 patients who received either STP (n=286) or CT (n=75). The STP group received STT combined with a probiotic preparation for 1 week. The CT group received STT and metronidazole for 1 week. Results The intention-to-treat and per-protocol eradication rates were 83.6% (95% confidence interval [CI], 79.0 to 87.7) and 87.1% (95% CI, 81.2 to 89.7) in the STP group and 86.7% (95% CI, 78.7 to 93.3) and 91.4% (95% CI, 83.6 to 97.1) in the CT group (p=0.512 and p=0.324), respectively. The frequency of adverse effects was higher in the CT group (28.2%) than in the STP group (12.8%) (p=0.002). Conclusions STP and CT are encouragingly efficacious as first-line treatments for H. pylori infection. Therefore, adding probiotics to STT may be a feasible option to avoid side effects.
Collapse
Affiliation(s)
- Jae Hyun Jung
- Korea University College of Medicine, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - In Kuk Cho
- Division of Gastroenterology, Department of Internal Medicine, Incheon Sarang Hospital, Incheon, Korea
| | - Chang Hee Lee
- Division of Gastroenterology, Department of Internal Medicine, Incheon Sarang Hospital, Incheon, Korea
| | - Gwan Gyu Song
- Korea University College of Medicine, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Ji Hyun Lim
- Division of Gastroenterology, Department of Internal Medicine, Incheon Sarang Hospital, Incheon, Korea
| |
Collapse
|
22
|
Nobili V, Putignani L, Mosca A, Del Chierico F, Vernocchi P, Alisi A, Stronati L, Cucchiara S, Toscano M, Drago L. Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players? Arch Med Sci 2018; 14:81-87. [PMID: 29379536 PMCID: PMC5778421 DOI: 10.5114/aoms.2016.62150] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD), considered the leading cause of chronic liver disease in children, can often progress from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). It is clear that obesity is one of the main risk factors involved in NAFLD pathogenesis, even if specific mechanisms have yet to be elucidated. We investigated the distribution of intestinal bifidobacteria and lactobacilli in the stools of four groups of children: obese, obese with NAFL, obese with NASH, and healthy, age-matched controls (CTRLs). MATERIAL AND METHODS Sixty-one obese, NAFL and NASH children and 54 CTRLs were enrolled in the study. Anthropometric and metabolic parameters were measured for all subjects. All children with suspected NASH underwent liver biopsy. Bifidobacteria and lactobacilli were analysed in children's faecal samples, during a broader, 16S rRNA-based pyrosequencing analysis of the gut microbiome. RESULTS Three Bifidobacterium spp. (Bifidobacterium longum, Bifidobacterium bifidum, and Bifidobacterium adolescentis) and five Lactobacillus spp. (L. zeae, L. vaginalis, L. brevis, L. ruminis, and L. mucosae) frequently recurred in metagenomic analyses. Lactobacillus spp. increased in NAFL, NASH, or obese children compared to CTRLs. Particularly, L. mucosae was significantly higher in obese (p = 0.02426), NAFLD (p = 0.01313) and NASH (p = 0.01079) than in CTRLs. In contrast, Bifidobacterium spp. were more abundant in CTRLs, suggesting a protective and beneficial role of these microorganisms against the aforementioned diseases. CONCLUSIONS Bifidobacteria seem to have a protective role against the development of NAFLD and obesity, highlighting their possible use in developing novel, targeted and effective probiotics.
Collapse
Affiliation(s)
- Valerio Nobili
- Hepato-Metabolic Disease Unit, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
- Liver Research Unit, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Parasitology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Mosca
- Hepato-Metabolic Disease Unit, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | | | - Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Liver Research Unit, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Italy
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Marco Toscano
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
23
|
Han X, Zhang J, Tan Y, Zhou G. Probiotics: A non-conventional therapy for oral lichen planus. Arch Oral Biol 2017; 81:90-96. [DOI: 10.1016/j.archoralbio.2017.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
24
|
Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Health-Promoting Effects. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0010-2016. [PMID: 28643627 PMCID: PMC11687494 DOI: 10.1128/microbiolspec.bad-0010-2016] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
Bifidobacteria are members of the intestinal microbiota of mammals and other animals, and some strains are able to exert health-promoting effects. The genus Bifidobacterium belongs to the Actinobacteria phylum. Firmicutes, Bacteroidetes, and Actinobacteria constitute the most abundant phyla in the human intestinal microbiota, Firmicutes and Bacteroidetes being predominant in adults, and Actinobacteria in breast-fed infants, where bifidobacteria can reach levels higher than 90% of the total bacterial population. They are among the first microbial colonizers of the intestines of newborns, and play key roles in the development of their physiology, including maturation of the immune system and use of dietary components. Indeed, some nutrients, such as human milk oligosaccharides, are important drivers of bifidobacterial development. Some Bifidobacterium strains are considered probiotic microorganisms because of their beneficial effects, and they have been included as bioactive ingredients in functional foods, mainly dairy products, as well as in food supplements and pharma products, alone, or together with, other microbes or microbial substrates. Well-documented scientific evidence of their activities is currently available for bifidobacteria-containing preparations in some intestinal and extraintestinal pathologies. In this review, we focus on the role of bifidobacteria as members of the human intestinal microbiota and their use as probiotics in the prevention and treatment of disease.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
25
|
|
26
|
Amar N, Peretz A, Gerchman Y. A cheap, simple high throughput method for screening native Helicobacter pylori urease inhibitors using a recombinant Escherichia coli , its validation and demonstration of Pistacia atlantica methanolic extract effectivity and specificity. J Microbiol Methods 2017; 133:40-45. [DOI: 10.1016/j.mimet.2016.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023]
|