1
|
Yalon M, Mohammadinejad P, Inoue A, Takahashi H, Ehman EC, Esquivel A, Fletcher EC, Behnke CJ, Lee YS, Fidler JL, Hansel SL, Jairath V, Feagan BG, Rieder F, Baker ME, Bruining DH, Fletcher JG. Discordance between MR enterography and endoscopic detection of Crohn's disease ileal strictures: evidence to inform recommendations. Abdom Radiol (NY) 2024:10.1007/s00261-024-04721-x. [PMID: 39692760 DOI: 10.1007/s00261-024-04721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE To evaluate correlation between terminal ileal (TI) stricture diagnosis at MR enterography (MRE) and ileocolonoscopy (IC) in patients with Crohn's disease (CD). METHODS One hundred and four patients with CD (51% females; 41 ± 15 years) underwent IC and MRE within 3 months in this retrospective case-control study. Positive cases had TI strictures diagnosed by endoscopy (n = 35); or MRE (threshold small bowel dilation ≥ 3cm; n = 34). Negative controls did not have stricture by either modality (n = 35). Three radiologists examined MRE exams, with per-patient stricture diagnosis based on majority agreement. Sensitivity for stricture diagnosis using threshold dilation of 2.5 cm at MRE was also evaluated. RESULTS There were 69 CD TI strictures (57 by endoscopy; 43 by MRE). Sensitivity by endoscopy and MRE criteria were 82.6% (57/69) and 62.3% (43/69), respectively, with additional 20.3% (14/69) of MRE exams classified as "probable stricture" by SAR/AGA/SPR criteria. Lowering MRE small bowel dilation threshold to 2.5 cm increased MRE sensitivity for endoscopically-diagnosed strictures to 71.9% (41/57; up from 56.1% [32/57]), without sacrificing interobserver agreement (κ = 0.684 vs. κ = 0.587). Of 25 new patients diagnosed with a TI stricture using a 2.5 cm threshold by 2 or more readers, 96% (24/25) had hospitalization, small bowel obstruction, endoscopic dilation, and/or surgical resection during clinical follow-up. Nine false negative MRE exams had short strictures with bowel dilation ≥ 2.5 cm. CONCLUSION Either IC or MRE alone is insufficient to diagnose Crohn's small bowel strictures. Diagnostic criteria should incorporate endoscopic and MRE findings. Lowering threshold dilation to 2.5 cm increases sensitivity in stricture diagnosis and identifies clinically significant strictures.
Collapse
Affiliation(s)
| | | | - Akitoshi Inoue
- Mayo Clinic, Rochester, USA
- Shiga University, Hikone, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Sayar S, Öztürk O. A Case of Stricturing Crohn's Disease Treated With Multiple Session Balloon Dilatation and Self-Expandable Metal Stent. Inflamm Bowel Dis 2024; 30:154-155. [PMID: 38006201 DOI: 10.1093/ibd/izad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Süleyman Sayar
- Department of Gastroenterology, Ümraniye Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Oğuzhan Öztürk
- Department of Gastroenterology, Ümraniye Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| |
Collapse
|
4
|
Solitano V, Dal Buono A, Gabbiadini R, Wozny M, Repici A, Spinelli A, Vetrano S, Armuzzi A. Fibro-Stenosing Crohn's Disease: What Is New and What Is Next? J Clin Med 2023; 12:jcm12093052. [PMID: 37176493 PMCID: PMC10179180 DOI: 10.3390/jcm12093052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Fibro-stenosing Crohn's disease (CD) is a common disease presentation that leads to impaired quality of life and often requires endoscopic treatments or surgery. From a pathobiology perspective, the conventional view that intestinal fibro-stenosis is an irreversible condition has been disproved. Currently, there are no existing imaging techniques that can accurately quantify the amount of fibrosis within a stricture, and managing patients is challenging, requiring a multidisciplinary team. Novel therapies targeting different molecular components of the fibrotic pathways are increasing regarding other diseases outside the gut. However, a large gap between clinical need and the lack of anti-fibrotic agents in CD remains. This paper reviews the current state of pathobiology behind fibro-stenosing CD, provides an updated diagnostic and therapeutic approach, and finally, focuses on clinical trial endpoints and possible targets of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 4V2, Canada
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Endoscopy, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Colon and Rectal Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
5
|
Endoscopic small bowel balloon dilations in patients with Crohn's disease: a Danish nationwide cohort study, 1997-2015. Eur J Gastroenterol Hepatol 2022; 34:831-837. [PMID: 35694802 DOI: 10.1097/meg.0000000000002390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Small bowel strictures are a common complication in Crohn's disease. Endoscopic balloon dilation (EBD) is an emerging therapeutic approach that is minimally invasive and helps to preserve the bowel. The aim of this study was to describe the use of EBD in adult Crohn's disease patients with small bowel strictures. METHODS This nationwide cohort comprised individuals ≥18 years old, diagnosed with Crohn's disease in Denmark between 1 January 1997 and 31 December 2015, according to the National Patient Registry (NPR). RESULTS The cohort consisted of 9737 incident Crohn's disease patients that were followed for a median of 8.2 years [interquartile range (IQR) = 4.1-13.3]. During the observation period, a total of 90 (1%) patients underwent a small bowel-related EBD. After a follow-up period of a median of 3.4 (IQR = 1.8-5.0) years, primary small bowel strictures treated only with one dilation and no subsequent small bowel surgery accounted for 29 (59%) of 49 cases. A median of 7.2 (IQR = 2.4-13.2) months after their first dilation, 13 (27%) of those 49 patients underwent small bowel surgery. Forty-one patients with postsurgical strictures were dilated after a median of 6.5 (IQR = 2.5-10.2) years following small bowel surgery. Postsurgical strictures treated with only one dilation and no further small bowel surgery accounted for 20 (49%) of the 41 cases. CONCLUSION The frequency of EBD in this Danish nationwide cohort was low. During a median follow-up of 5 years after EBD, most patients did not require further surgery. This suggests that EBD is an effective treatment and could be offered to more patients with Crohn's disease.
Collapse
|
6
|
Johnson LA, Rodansky ES, Tran A, Collins SG, Eaton KA, Malamet B, Steiner CA, Huang S, Spence JR, Higgins PDR. Effect of ABT-263 on Intestinal Fibrosis in Human Myofibroblasts, Human Intestinal Organoids, and the Mouse Salmonella typhimurium Model. Inflamm Bowel Dis 2022; 28:161-175. [PMID: 34302470 PMCID: PMC9017142 DOI: 10.1093/ibd/izab166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intestinal fibrosis and subsequent intestinal obstruction are common complications of Crohn's disease (CD). Current therapeutics combat inflammation, but no pharmacological therapy exists for fibrostenotic disease. Pathological persistence of activated intestinal myofibroblasts is a key driver of fibrosis in CD. In other organ systems, BH-3 mimetic drugs that affect Bcl-2 apoptotic pathways induce apoptosis in activated myofibroblasts and reduce fibrogenic gene expression, thereby reducing fibrosis. METHODS We evaluated the proapoptotic and antifibrotic efficacy of several classes of BH-3 mimetics in 2 in vitro fibrogenesis models. The candidate molecule, ABT-263, was advanced to a 3-dimensional human intestinal organoid (HIO) model. Finally, the therapeutic efficacy of ABT-263 was evaluated in the mouse Salmonella typhimurium intestinal fibrosis model. RESULTS The BH-3 mimetics induced apoptosis, repressed fibrotic protein expression, and reduced fibrogenic gene expression in normal human intestinal myofibroblasts. The BH-3 mimetics that target Bcl-2 and Bcl-xl demonstrated the greatest efficacy in vitro. The ABT-199 and ABT-263 induced apoptosis and ameliorated fibrogenesis in the in vitro myofibroblast models. In the HIO model, ABT-263 inhibited fibrogenesis and induced apoptosis. In the mouse S. typhimurium model, dose-dependent reduction in macroscopic pathology, histological inflammation, inflammatory and fibrotic gene expression, and extracellular matrix protein expression indicated ABT-263 may reduce intestinal fibrosis. CONCLUSIONS In vitro, the antifibrotic efficacy of BH-3 mimetics identifies the Bcl-2 pathway as a druggable target and BH-3 mimetics as putative therapeutics. Reduction of inflammation and fibrosis in the mouse intestinal fibrosis model by ABT-263 indicates BH-3 mimetics as potential, novel antifibrotic therapeutics for Crohn's disease.
Collapse
Affiliation(s)
- Laura A Johnson
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| | - Eva S Rodansky
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| | - Anhdao Tran
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| | - Stephen G Collins
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of
Michigan, Ann Arbor, MI, USA
| | - Benjamin Malamet
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| | - Calen A Steiner
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of
Michigan, Ann Arbor, MI, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of
Michigan, Ann Arbor, MI, USA
| | - Peter D R Higgins
- Division of Gastroenterology, Department of Internal Medicine,
University of Michigan, Ann Arbor, MI,
USA
| |
Collapse
|
7
|
Therapeutic Targeting of Intestinal Fibrosis in Crohn's Disease. Cells 2022; 11:cells11030429. [PMID: 35159238 PMCID: PMC8834168 DOI: 10.3390/cells11030429] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Intestinal fibrosis is one of the most threatening complications of Crohn’s disease. It occurs in more than a third of patients with this condition, is associated with increased morbidity and mortality, and surgery often represents the only available therapeutic option. The mechanisms underlying intestinal fibrosis are partly known. Studies conducted so far have shown a relevant pathogenetic role played by mesenchymal cells (especially myofibroblasts), cytokines (e.g., transforming growth factor-β), growth factors, microRNAs, intestinal microbiome, matrix stiffness, and mesenteric adipocytes. Further studies are still necessary to elucidate all the mechanisms involved in intestinal fibrosis, so that targeted therapies can be developed. Although several pre-clinical studies have been conducted so far, no anti-fibrotic therapy is yet available to prevent or reverse intestinal fibrosis. The aim of this review is to provide an overview of the main therapeutic targets currently identified and the most promising anti-fibrotic therapies, which may be available in the near future.
Collapse
|
8
|
Lin XX, Qiu Y, Zhuang XJ, Liu F, Wu XM, Chen MH, Mao R. Intestinal stricture in Crohn's disease: A 2020 update. J Dig Dis 2021; 22:390-398. [PMID: 34014617 DOI: 10.1111/1751-2980.13022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic and relapsing-remitting inflammatory disorder of the gastrointestinal tract. Approximately 70% of patients inevitably develop fibrosis-associated intestinal stricture after 10 years of CD diagnosis, which seriously affects their quality of life. Current therapies play limited role in preventing or reversing the process of fibrosis and no specific anti-fibrotic therapy is yet available. Nearly half of patients thus have no alternative but to receive surgery. The potential mechanisms of intestinal fibrosis remain poorly understood; extracellular matrix remodeling, aberrant immune response, intestinal microbiome imbalance and creeping fat might exert fundamental influences on the multiple physiological and pathophysiological processes. Recently, the emerging new diagnostic techniques have markedly promoted an accurate assessment of intestinal stricture by distinguishing fibrosis from inflammation, which is crucial for guiding treatment and predicting prognosis. In this review, we concisely summarized the key studies published in the year 2020 covering pathogenesis, diagnostic modalities, and therapeutic strategy of intestinal stricture. A comprehensive and timely review of the updated researches in intestinal stricture could provide insight to further elucidate its pathogenesis and identify novel drug targets with anti-fibrotic potentiality.
Collapse
Affiliation(s)
- Xiao Xuan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Jun Zhuang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fen Liu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Min Wu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Min Hu Chen
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Molecular targets and the use of biologics in the management of small bowel fibrosis in inflammatory bowel disease. Curr Opin Gastroenterol 2021; 37:275-283. [PMID: 33769380 DOI: 10.1097/mog.0000000000000729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Small bowel fibrosis is a significant burden on Crohn's disease patients with limited effective medical treatments that then requires surgery. A better understanding of the molecular mechanisms causing fibrosis and the evidence of benefit of available biologics will potentially lighten this burden and avoid the need for surgery. RECENT FINDINGS Transforming growth factor-beta and it's associated pathways remain the central cog in the wheel of fibrosis formation. Various new enzymes, cellular pathways, interleukins and molecules have been associated with beneficial modification of the fibrotic process. Licensed biologics such as antitumour necrosis factors continue to show evidence of efficacy in the treatment of fibrostenotic small bowel disease as well as the newer biologics ustekinumab and vedolizumab. SUMMARY Fibrostenotic disease of the small bowel is a significant and common debilitating complication in Crohn's disease patients. Multiple new molecular targets have been identified that may prove to become effective therapies in future. Antitumour necrosis factors remain the treatment with the best available evidence to date in fibrostenotic Crohn's disease.
Collapse
|
10
|
Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in Crohn's disease. Scand J Immunol 2020; 92:e12990. [PMID: 33119150 PMCID: PMC7757243 DOI: 10.1111/sji.12990] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that leads to substantial suffering for millions of patients. In some patients, the chronic inflammation leads to remodelling of the extracellular matrix and fibrosis. Fibrosis, in combination with expansion of smooth muscle layers, leaves the bowel segment narrowed and stiff resulting in strictures, which often require urgent medical intervention. Although stricture development is associated with inflammation in the affected segment, anti‐inflammatory therapies fall far short of treating strictures. At best, current therapies might allow some patients to avoid surgery in a shorter perspective and no anti‐fibrotic therapy is yet available. This likely relates to our poor understanding of the mechanism underlying stricture development. Chronic inflammation is a prerequisite, but progression to strictures involves changes in fibroblasts, myofibroblasts and smooth muscle cells in a poorly understood interplay with immune cells and environmental cues. Much of the experimental evidence available is from animal models, cell lines or non‐strictured patient tissue. Accordingly, these limitations create the basis for many previously published reviews covering the topic. Although this information has contributed to the understanding of fibrotic mechanisms in general, in the end, data must be validated in strictured tissue from patients. As stricture formation is a serious complication of CD, we endeavoured to summarize findings exclusively performed using strictured tissue from patients. Here, we give an update of the mechanism driving this serious complication in patients, and how the strictured tissue differs from adjacent unaffected tissue and controls.
Collapse
Affiliation(s)
- Johannes Alfredsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Mohan HM, Coffey JC. Surgical treatment of intestinal stricture in inflammatory bowel disease. J Dig Dis 2020; 21:355-359. [PMID: 32410340 DOI: 10.1111/1751-2980.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Fibroblast infiltration and collagen deposition result in structural changes in the bowel wall, and lead to strictures in intestinal inflammatory disease. While strictures can also occur in other contexts, such as malignancy, this review focuses on the surgical treatment of stricture secondary to inflammatory bowel disease. Distinguishing between predominantly inflammation vs established fibrosis as the cause of a stricture can be challenging. While inflammatory strictures may be responsive to medication, predominantly fibrotic strictures usually need surgical intervention. Both endoluminal and extraluminal approaches are described in this review. Endoscopic dilatation of strictures is suitable for short-segment isolated small bowel strictures. Other options are to divide the stricture surgically but preserve the length, performing a strictureplasty or resecting the strictured segment. The mesentery is increasingly recognized as playing a role in stricture recurrence. In a relapsing-remitting disease such as Crohn's disease, the preservation of intestinal length is essential and balance is needed between this and a complete resection to reduce the risk of recurrence. Pre- and postoperative involvement of the multidisciplinary team is essential to improve outcomes in this challenging clinical scenario.
Collapse
Affiliation(s)
- Helen M Mohan
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - John C Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,University of Limerick Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity, Limerick, Ireland
| |
Collapse
|
12
|
Lourenssen SR, Blennerhassett MG. M2 Macrophages and Phenotypic Modulation of Intestinal Smooth Muscle Cells Characterize Inflammatory Stricture Formation in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1843-1858. [PMID: 32479820 DOI: 10.1016/j.ajpath.2020.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
The progression of Crohn disease to intestinal stricture formation is poorly controlled, and the pathogenesis is unclear, although increased smooth muscle mass is present. A previously described rat model of trinitrobenzenesulfonic acid-induced colitis is re-examined here. Although inflammation of the mid-descending colon typically resolved, a subset showed characteristic stricturing by day 16, with an inflammatory infiltrate in the neuromuscular layers including eosinophils, CD3-positive T cells, and CD68-positive macrophages. Closer study identified CD163-positive, CD206-positive, and arginase-positive cells, indicating a M2 macrophage phenotype. Stricturing involved ongoing proliferation of intestinal smooth muscle cells (ISMC) with expression of platelet-derived growth factor receptor beta and progressive loss of phenotypic markers, and stable expression of hypoxia inducible factor 1 subunit alpha. In parallel, collagen I and III showed a selective and progressive increase over time. A culture model of the stricture phenotype of ISMC showed stable hypoxia inducible factor 1 subunit alpha expression that promoted growth and improved both survival and growth in models of experimental ischemia. This phenotype was hyperproliferative to serum and platelet-derived growth factor BB, and unresponsive to transforming growth factor beta, a prominent cytokine of M2 macrophages, compared with control ISMC. We identified a hyperplastic phenotype of ISMC, uniquely adapted to an ischemic environment to drive smooth muscle layer expansion, which may reveal new targets for treating intestinal fibrosis.
Collapse
Affiliation(s)
- Sandra R Lourenssen
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|