1
|
Moghadamnia M, Dashti-Khavidaki S, Alimadadi H. Role of mTOR Inhibitors in Pediatric Liver Transplant Recipients: A Systematic Review. Paediatr Drugs 2024; 26:673-693. [PMID: 39251556 DOI: 10.1007/s40272-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Immunosuppressive medications play a crucial role in determining both organ and patient survival following liver transplantation (LT). Typically, immunosuppressive protocols for pediatric LT patients rely on calcineurin inhibitors (CNIs). While inhibitors of mammalian target of rapamycin (mTOR) have demonstrated beneficial outcomes in adult recipients of liver allografts, such as improved renal function post-LT, their application in pediatric liver transplant recipients is a subject of debate due to uncertain efficacy and potential adverse effects. OBJECTIVES This review evaluates the potential roles of mTOR inhibitors in the context of pediatric LT patients. METHODS This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for conduct and reporting. Databases until 31 August 2023 were searched using specific terms and keywords. All clinical studies focusing on mTOR inhibitors in pediatric LT were included. RESULTS Out of 888 identified articles, 30 studies, involving 386 children who had undergone liver transplantation and received mTOR-inhibitor-based immunosuppressive regimens, met the inclusion criteria. The beneficial impacts of switching from a CNI to an mTOR inhibitor or adding an mTOR inhibitor to CNI-reduced immunosuppression in LT pediatric patients with impaired kidney function are controversial, and high-powered clinical studies are need. It appears that enhancing immunosuppression by adding an mTOR inhibitor to CNI is helpful for pediatric LT recipients who are experiencing refractory acute rejection or chronic rejection. mTOR-inhibitor-containing regimens failed to reduce the occurrence of post-transplant lymphoproliferative disorders (PTLD) among children with LT that may be due to concomitant high CNI concentration among studied patients. The effectiveness of mTOR inhibitors in treating PTLD remains uncertain; however, in patients with PTLD who are at high risk of rejection, mTOR inhibitors may be administered. Conversion to or the addition of mTOR inhibitors to maintenance immunosuppression seems to be suitable for pediatric patients who received a transplant due to hepatic malignancies such as hepatoblastoma or hepatocellular carcinoma or for those with post-transplant primary or recurrent malignancies. Switching to an mTOR inhibitor may improve some CNI-related adverse effects such as gingival hyperplasia, neurotoxicity, nephropathy, hypertrophic cardiomyopathy, or thrombotic microangiopathy. CONCLUSION Although the exact role of mTOR inhibitors among pediatric patients who have received a liver transplant needs further study, two algorithms are presented in this review to guide conversion from CNIs to mTOR inhibitors or the addition of mTOR inhibitor to a CNI-minimization immunosuppressive regimen for pediatric patients who may benefit from this class of drugs. This review mainly consisted of retrospective studies with inadequate sample sizes and lacked a control group, which represents the main limitation of this study.
Collapse
Affiliation(s)
- Marjan Moghadamnia
- Department of Pharmacotherapy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simin Dashti-Khavidaki
- Liver Transplantation Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hosein Alimadadi
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
3
|
Schmidt K, Spann A, Khan MQ, Izzy M, Watt KD. Minimizing Metabolic and Cardiac Risk Factors to Maximize Outcomes After Liver Transplantation. Transplantation 2024; 108:1689-1699. [PMID: 38060378 DOI: 10.1097/tp.0000000000004875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Cardiovascular disease (CVD) is a leading complication after liver transplantation and has a significant impact on patients' outcomes posttransplant. The major risk factors for post-liver transplant CVD are age, preexisting CVD, nonalcoholic fatty liver disease, chronic kidney disease, and metabolic syndrome. This review explores the contemporary strategies and approaches to minimizing cardiometabolic disease burden in liver transplant recipients. We highlight areas for potential intervention to reduce the mortality of patients with metabolic syndrome and CVD after liver transplantation.
Collapse
Affiliation(s)
- Kathryn Schmidt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Ashley Spann
- Division of Gastroenterology and Hepatology, Vanderbilit University, Nashville, TN
| | - Mohammad Qasim Khan
- Division of Gastroenterology and Hepatology, University of Western Ontario, London, ON, Canada
| | - Manhal Izzy
- Division of Gastroenterology and Hepatology, Vanderbilit University, Nashville, TN
| | - Kymberly D Watt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Savino A, Loglio A, Neri F, Camagni S, Pasulo L, Lucà MG, Trevisan R, Fagiuoli S, Viganò M. Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) after Liver Transplantation: A Narrative Review of an Emerging Issue. J Clin Med 2024; 13:3871. [PMID: 38999436 PMCID: PMC11242808 DOI: 10.3390/jcm13133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The development of steatotic liver disease after liver transplant (LT) is widely described, and epidemiological data have revealed an increased incidence in recent times. Its evolution runs from simple steatosis to steatohepatitis and, in a small proportion of patients, to significant fibrosis and cirrhosis. Apparently, post-LT steatotic disease has no impact on the recipient's overall survival; however, a higher cardiovascular and malignancy burden has been reported. Many donors' and recipients' risk factors have been associated with this occurrence, although the recipient-related ones seem of greater impact. Particularly, pre- and post-LT metabolic alterations are strictly associated with steatotic graft disease, sharing common pathophysiologic mechanisms that converge on insulin resistance. Other relevant risk factors include genetic variants, sex, age, baseline liver diseases, and immunosuppressive drugs. Diagnostic evaluation relies on liver biopsy, although non-invasive methods are being increasingly used to detect and monitor both steatosis and fibrosis stages. Management requires a multifaceted approach focusing on lifestyle modifications, the optimization of immunosuppressive therapy, and the management of metabolic complications. This review aims to synthesize the current knowledge of post-LT steatotic liver disease, focusing on the recent definition of metabolic-dysfunction-associated steatotic liver disease (MASLD) and its metabolic and multisystemic concerns.
Collapse
Affiliation(s)
- Alberto Savino
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| | - Alessandro Loglio
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Flavia Neri
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Luisa Pasulo
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Maria Grazia Lucà
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Roberto Trevisan
- Endocrine and Diabetology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| | - Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
5
|
Russo MW, Wheless W, Vrochides D. Management of long-term complications from immunosuppression. Liver Transpl 2024; 30:647-658. [PMID: 38315054 DOI: 10.1097/lvt.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
This review discusses long-term complications from immunosuppressants after liver transplantation and the management of these complications. Common complications of calcineurin inhibitors include nephrotoxicity and metabolic diseases. Nephrotoxicity can be managed by targeting a lower drug level and/or adding an immunosuppressant of a different class. Metabolic disorders can be managed by treating the underlying condition and targeting a lower drug level. Gastrointestinal adverse effects and myelosuppression are common complications of antimetabolites that are initially managed with dose reduction or discontinuation if adverse events persist. Mammalian targets of rapamycin inhibitors are associated with myelosuppression, proteinuria, impaired wound healing, and stomatitis, which may require dose reduction or discontinuation. Induction agents and agents used for steroid-refractory rejection or antibody-mediated rejection are reviewed. Other rare complications of immunosuppressants are discussed as well.
Collapse
Affiliation(s)
- Mark W Russo
- Division of Hepatology, Department of Medicine, Carolinas Medical Center Wake Forest, University School of Medicine, Atrium Health, Charlotte, North Carolina, USA
| | - William Wheless
- Division of Hepatology, Department of Medicine, Carolinas Medical Center Wake Forest, University School of Medicine, Atrium Health, Charlotte, North Carolina, USA
| | - Dionisios Vrochides
- Transplant Surgery, Carolinas Medical Center Wake Forest, University School of Medicine, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
6
|
Augusto JF, Benden C, Diekmann F, Zuckermann A. The value of extracorporeal photopheresis as an immunosuppression-modifying approach in solid organ transplantation: a potential solution to an unmet medical need. Front Immunol 2024; 15:1371554. [PMID: 38846942 PMCID: PMC11154098 DOI: 10.3389/fimmu.2024.1371554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Allograft rejection is a critical issue following solid organ transplantation (SOT). Immunosuppressive therapies are crucial in reducing risk of rejection yet are accompanied by several significant side effects, including infection, malignancy, cardiovascular diseases, and nephrotoxicity. There is a current unmet medical need with a lack of effective minimization strategies for these side effects. Extracorporeal photopheresis (ECP) has shown potential as an immunosuppression (IS)-modifying technique in several SOT types, with improvements seen in acute and recurrent rejection, allograft survival, and associated side effects, and could fulfil this unmet need. Through a review of the available literature detailing key areas in which ECP may benefit patients, this review highlights the IS-modifying potential of ECP in the four most common SOT procedures (heart, lung, kidney, and liver transplantation) and highlights existing gaps in data. Current evidence supports the use of ECP for IS modification following SOT, however there is a need for further high-quality research, in particular randomized control trials, in this area.
Collapse
Affiliation(s)
- Jean-François Augusto
- Department of Nephrology-Dialysis-Transplantation, University Hospital of Angers, Angers, France
| | | | - Fritz Diekmann
- Renal Transplantation Unit, Department of Nephrology and Kidney Transplantation, Hospital Clinic, Barcelona, Spain
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Zhou AW, Jin J, Liu Y. Cellular strategies to induce immune tolerance after liver transplantation: Clinical perspectives. World J Gastroenterol 2024; 30:1791-1800. [PMID: 38659486 PMCID: PMC11036497 DOI: 10.3748/wjg.v30.i13.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/03/2024] Open
Abstract
Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.
Collapse
Affiliation(s)
- Ai-Wei Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Jin
- Department of Nursing, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Liver Transplantation, Shanghai Immune Therapy Institute, Shanghai 200127, China
| |
Collapse
|
8
|
Garg K, Jain AK, Nimje GR, Kajal K. Perioperative care in acute liver failure: An anaesthesiologist perspective in the operating theatre. Indian J Gastroenterol 2024; 43:387-396. [PMID: 38753226 DOI: 10.1007/s12664-024-01575-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 05/28/2024]
Abstract
Acute liver failure (ALF) is a life-threatening condition characterized by rapid liver function deterioration, necessitating a multidisciplinary approach for optimal perioperative care. This comprehensive review focuses on the critical role of the anaesthesiologist throughout the preoperative, intraoperative, and postoperative phases, addressing the unique challenges posed by ALF. The article begins with an exploration of ALF, underlining the urgency of timely referral to specialized hepatology centres. Liver transplantation emerges as a life-saving intervention, and the complex decision-making process is discussed, emphasizing the need for a multidisciplinary team to assess transplantation candidacy based on established prognostic criteria. In the preoperative phase, the review stresses the importance of early engagement with tertiary liver centres for timely referrals and identifies patients suitable for transplantation. Safe transport protocols are detailed, highlighting the meticulous planning required for the secure transfer of ALF patients between healthcare facilities. The intraoperative management section delves into the anaesthesiologist's key concerns, including neurological status, sepsis, acute kidney injury, body mass index, and preoperative fasting. Hemodynamic stability, fluid management, and coagulation balance during surgery are emphasized, with insights into anaesthesia techniques, vascular access, monitoring, and hemodynamic management tailored to the challenges posed by ALF patients. The postoperative care is thoroughly examined covering neurological, hemodynamic, metabolic, renal, and nutritional aspects. Management of ALF involves multidisciplinary team, including nephrology for continuous renal replacement therapy, transfusion medicine for plasma exchange, critical care for overall patient care, nutritionists for ensuring adequate nutrition, and hepatologists as the primary guides. In conclusion, the review recognizes the anaesthesiologist as a linchpin in the perioperative care of ALF patients. The integration of safe transport protocols and multidisciplinary approach is deemed crucial for navigating complexities of ALF, contributing to improved patient outcomes. This article serves as an invaluable resource for gastroenterologist and intensivists, enhancing their understanding of the anaesthesiologist's indispensable role in the holistic care of ALF patients in an ever-evolving healthcare landscape.
Collapse
Affiliation(s)
- Kashish Garg
- Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Satellite Centre, Sangrur, Punjab, India
| | - Anand Kumar Jain
- Department of Organ Transplant Anaesthesia and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Ganesh Ramaji Nimje
- Department of Organ Transplant Anaesthesia and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Kamal Kajal
- Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
De Simone P, Precisi A, Lai Q, Ducci J, Campani D, Marchetti P, Gitto S. Everolimus Mitigates the Risk of Hepatocellular Carcinoma Recurrence after Liver Transplantation. Cancers (Basel) 2024; 16:1243. [PMID: 38610921 PMCID: PMC11010831 DOI: 10.3390/cancers16071243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
To obtain long-term data on the use of everolimus in patients who underwent liver transplantation for hepatocellular carcinoma, we conducted a retrospective, single-center analysis of adult recipients transplanted between 2013 and 2021. Patients on everolimus-incorporating immunosuppression were matched with those on tacrolimus using an inverse probability of treatment weighting methodology. Two propensity-matched groups of patients were thus compared: 233 (45.6%) receiving everolimus versus 278 (54.4%) on tacrolimus. At a median (interquartile range) follow-up of 4.4 (3.8) years after transplantation, everolimus patients showed a reduced risk of recurrence versus tacrolimus (7.7% versus 16.9%; RR = 0.45; p = 0.002). At multivariable analysis, microvascular infiltration (HR = 1.22; p < 0.04) and a higher tumor grading (HR = 1.27; p < 0.04) were associated with higher recurrence rate while being within Milan criteria at transplant (HR = 0.56; p < 0.001), a successful pre-transplant downstaging (HR = 0.63; p = 0.01) and use of everolimus (HR = 0.46; p < 0.001) had a positive impact on the risk of post-transplant recurrence. EVR patients with earlier drug introduction (≤30 days; p < 0.001), longer treatment duration (p < 0.001), and higher drug exposure (≥5.9 ng/mL; p < 0.001) showed lower recurrence rates versus TAC. Based on our experience, everolimus provides a reduction in the relative risk of hepatocellular carcinoma recurrence, especially for advanced-stage patients and those with earlier drug administration, higher drug exposure, and longer time on treatment. These data advocate for early everolimus introduction after liver transplantation to reduce the attrition rate consequent to chronic immunosuppression.
Collapse
Affiliation(s)
- Paolo De Simone
- Liver Transplant Program, University of Pisa Medical School Hospital, 56124 Pisa, Italy
- Department of Surgical, Medical, Biochemical Pathology and Intensive Care, University of Pisa, 56126 Pisa, Italy;
| | - Arianna Precisi
- Transplant Laboratory, University of Pisa Medical School Hospital, 56126 Pisa, Italy;
| | - Quirino Lai
- AOU Umberto I Policlinico of Rome, Sapienza University of Rome, 00161 Rome, Italy;
| | - Juri Ducci
- Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy;
| | - Daniela Campani
- Department of Surgical, Medical, Biochemical Pathology and Intensive Care, University of Pisa, 56126 Pisa, Italy;
- Department of Pathology, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Piero Marchetti
- Diabetology Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy;
| | - Stefano Gitto
- Internal Medicine and Liver Unit, University Hospital Careggi, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
10
|
Li H, Yu S, Liu H, Chen L, Liu H, Liu X, Shen C. Immunologic barriers in liver transplantation: a single-cell analysis of the role of mesenchymal stem cells. Front Immunol 2023; 14:1274982. [PMID: 38143768 PMCID: PMC10748593 DOI: 10.3389/fimmu.2023.1274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background This study aimed to analyze the biomarkers that may reliably indicate rejection or tolerance and the mechanism that underlie the induction and maintenance of liver transplantation (LT) tolerance related to immunosuppressant or mesenchymal stem cells (MSCs). Methods LT models of Lewis-Lewis and F344-Lewis rats were established. Lewis-Lewis rats model served as a control (Syn). F344-Lewis rats were treated with immunosuppressant alone (Allo+IS) or in combination with MSCs (Allo+IS+MSCs). Intrahepatic cell composition particularly immune cells was compared between the groups by single-cell sequencing. Analysis of subclusters, KEGG pathway analysis, and pseudotime trajectory analysis were performed to explore the potential immunoregulatory mechanisms of immunosuppressant alone or combined with MSCs. Results Immunosuppressants alone or combined with MSCs increases the liver tolerance, to a certain extent. Single-cell sequencing identified intrahepatic cell composition signature, including cell subpopulations of B cells, cholangiocytes, endothelial cells, erythrocytes, hepatic stellate cells, hepatocytes, mononuclear phagocytes, neutrophils, T cells, and plasmacytoid dendritic cells. Immunosuppressant particularly its combination with MSCs altered the landscape of intrahepatic cells in transplanted livers, as well as gene expression patterns in immune cells. MSCs may be included in the differentiation of T cells, classical monocytes, and non-classical monocytes. Conclusion These findings provided novel insights for better understanding the heterogeneity and biological functions of intrahepatic immune cells after LT treated by IS alone or in combination with MSCs. The identified markers of immune cells may serve as the immunotherapeutic targets for MSC treatment of liver transplant rejection.
Collapse
Affiliation(s)
- Haitao Li
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Saihua Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Haiyan Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xingwen Liu
- Department of Nursing, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Conglong Shen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Chao S, Jia L, Zhu K, Chen L, Niu Y. The effect of tacrolimus conversion from immediate- to extended-release formulation on renal function in renal transplant patients: a meta-analysis. Front Pharmacol 2023; 14:1226647. [PMID: 37860110 PMCID: PMC10582328 DOI: 10.3389/fphar.2023.1226647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Objective: Tacrolimus formulation affects the outcomes of a renal transplant, while the effect of its immediate- to extended-release conversion remains controversial. This meta-analysis aimed to compare the renal function before and after tacrolimus immediate- to extended-release conversion in renal transplant patients. Methods: PubMed, Cochrane, Embase, CNKI, CQVIP, and Wanfang databases were searched for articles regarding the effect of tacrolimus conversion from immediate- to extended-release formulation on renal function in renal transplant patients. The data on serum creatinine (Scr) or the estimated glomerular filtration rate (eGFR) before and after conversion were extracted and analyzed. Results: Ten studies with 743 renal transplant patients were included. Scr was reduced after conversion versus before conversion [mean difference (MD) (95% confidence interval (CI)): -8.00 (-14.33; -1.66) μmol/L, p = 0.01]. However, eGFR only showed an increased trend after conversion versus before conversion (MD (95% CI): 2.21 (-1.62, 6.03) mL/min/1.73 m2, p = 0.26) but without statistical significance. Furthermore, in patients with a follow-up duration ≥48 weeks, Scr was decreased after conversion versus before conversion (p = 0.005), but eGFR remained unchanged (p = 0.68). However, in patients with a follow-up duration <48 weeks, both Scr (p = 0.36) and eGFR (p = 0.24) were not different before conversion versus after conversion. Moreover, publication bias risk was low, and robustness assessed by sensitivity analysis was generally good. Conclusion: This meta-analysis favors studies indicating that the conversion of tacrolimus from an immediate-release to an extended-release formulation could improve the kidney function to some extent in renal transplant patients, and this advancement may be related to the administration period.
Collapse
Affiliation(s)
| | | | | | | | - Yulin Niu
- Department of Organ Transplantation, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Chen Q, Yang Z, Lin H, Lai J, Hu D, Yan M, Wu Z, Liu W, Li Z, He Y, Sun Z, Shuai L, Peng Z, Wang Y, Li S, Cui Y, Zhang H, Zhang L, Bai L. Comparative effects of hepatocyte growth factor and tacrolimus on acute liver allograft early tolerance. Front Immunol 2023; 14:1162439. [PMID: 37614233 PMCID: PMC10444199 DOI: 10.3389/fimmu.2023.1162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Allostimulated CD8+ T cells (aCD8+ T cells), as the main mediators of acute liver rejection (ARJ), are hyposensitive to apoptosis due to the inactivation of death receptor FAS-mediated pathways and fail to allow tolerance induction, eventually leading to acute graft rejection. Although tacrolimus (FK506), the most commonly used immunosuppressant (IS) in the clinic, allows tolerance induction, its use is limited because its target immune cells are unknown and it is associated with increased incidences of malignancy, infection, and nephrotoxicity, which substantially impact long-term liver transplantation (LTx) outcomes. The dark agouti (DA)-to-Lewis rat LTx model is a well-known ARJ model and was hence chosen for the present study. We show that both hepatocyte growth factor (HGF) (cHGF, containing the main form of promoting HGF production) and recombinant HGF (h-rHGF) exert immunoregulatory effects mainly on allogeneic aCD8+ T cell suppression through FAS-mediated apoptotic pathways by inhibiting cMet to FAS antagonism and Fas trimerization, leading to acute tolerance induction. We also showed that such inhibition can be abrogated by treatment with neutralizing antibodies against cMet (HGF-only receptor). In contrast, we did not observe these effects in rats treated with FK506. However, we observed that the effect of anti-rejection by FK506 was mainly on allostimulated CD4+ T cell (aCD4+ T cell) suppression and regulatory T cell (Treg) promotion, in contrast to the mechanism of HGF. In addition, the protective mechanism of HGF in FK506-mediated nephrotoxicity was addressed. Therefore, HGF as a tolerance inducer, whether used in combination with FK506 or as monotherapy, may have good clinical value. Additional roles of these T-cell subpopulations in other biological systems and studies in these fields will also be meaningful.
Collapse
Affiliation(s)
- Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhiqing Yang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Heng Lin
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Bioengineering College, Chongqing University, Chongqing, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Wei Liu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhehai Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Yu He
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhe Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhiping Peng
- Department of Radiological Medicine, Chongqing Medical University, Chongqing, China
| | - Yangyang Wang
- Bioengineering College, Chongqing University, Chongqing, China
| | - Sijin Li
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Youhong Cui
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Loosen SH, Krieg S, Chaudhari S, Upadhyaya S, Krieg A, Luedde T, Kostev K, Roderburg C. Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation-A Machine Learning Approach. J Clin Med 2023; 12:4877. [PMID: 37510992 PMCID: PMC10381881 DOI: 10.3390/jcm12144877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Liver transplantation (LT) is a routine therapeutic approach for patients with acute liver failure, end-stage liver disease and/or early-stage liver cancer. While 5-year survival rates have increased to over 80%, long-term outcomes are critically influenced by extrahepatic sequelae of LT and immunosuppressive therapy, including diabetes mellitus (DM). In this study, we used machine learning (ML) to predict the probability of new-onset DM following LT. METHODS A cohort of 216 LT patients was identified from the Disease Analyzer (DA) database (IQVIA) between 2005 and 2020. Three ML models comprising random forest (RF), logistic regression (LR), and eXtreme Gradient Boosting (XGBoost) were tested as predictors of new-onset DM within 12 months after LT. RESULTS 18 out of 216 LT patients (8.3%) were diagnosed with DM within 12 months after the index date. The performance of the RF model in predicting the development of DM was the highest (accuracy = 79.5%, AUC 77.5%). It correctly identified 75.0% of the DM patients and 80.0% of the non-DM patients in the testing dataset. In terms of predictive variables, patients' age, frequency and time of proton pump inhibitor prescription as well as prescriptions of analgesics, immunosuppressants, vitamin D, and two antibiotic drugs (broad spectrum penicillins, fluocinolone) were identified. CONCLUSIONS Pending external validation, our data suggest that ML models can be used to predict the occurrence of new-onset DM following LT. Such tools could help to identify LT patients at risk of unfavorable outcomes and to implement respective clinical strategies of prevention.
Collapse
Affiliation(s)
- Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sarah Krieg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | | | | | - Andreas Krieg
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | | | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
14
|
Ravaioli F, De Maria N, Di Marco L, Pivetti A, Casciola R, Ceraso C, Frassanito G, Pambianco M, Pecchini M, Sicuro C, Leoni L, Di Sandro S, Magistri P, Menozzi R, Di Benedetto F, Colecchia A. From Listing to Recovery: A Review of Nutritional Status Assessment and Management in Liver Transplant Patients. Nutrients 2023; 15:2778. [PMID: 37375682 DOI: 10.3390/nu15122778] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Liver transplantation (LT) is a complex surgical procedure requiring thorough pre- and post-operative planning and care. The nutritional status of the patient before, during, and after LT is crucial to surgical success and long-term prognosis. This review aims to assess nutritional status assessment and management before, during, and after LT, with a focus on patients who have undergone bariatric surgery. We performed a comprehensive topic search on MEDLINE, Ovid, In-Process, Cochrane Library, EMBASE, and PubMed up to March 2023. It identifies key factors influencing the nutritional status of liver transplant patients, such as pre-existing malnutrition, the type and severity of liver disease, comorbidities, and immunosuppressive medications. The review highlights the importance of pre-operative nutritional assessment and intervention, close nutritional status monitoring, individualised nutrition care plans, and ongoing nutritional support and monitoring after LT. The review concludes by examining the effect of bariatric surgery on the nutritional status of liver transplant recipients. The review offers valuable insights into the challenges and opportunities for optimising nutritional status before, during, and after LT.
Collapse
Affiliation(s)
- Federico Ravaioli
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Nicola De Maria
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Lorenza Di Marco
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Pivetti
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Riccardo Casciola
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Carlo Ceraso
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Gabriella Frassanito
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Martina Pambianco
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Maddalena Pecchini
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Chiara Sicuro
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Laura Leoni
- Division of Metabolic Diseases and Clinical Nutrition, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Stefano Di Sandro
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Renata Menozzi
- Division of Metabolic Diseases and Clinical Nutrition, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
15
|
Barbetta A, Rocque B, Sarode D, Bartlett JA, Emamaullee J. Revisiting transplant immunology through the lens of single-cell technologies. Semin Immunopathol 2023; 45:91-109. [PMID: 35980400 PMCID: PMC9386203 DOI: 10.1007/s00281-022-00958-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Solid organ transplantation (SOT) is the standard of care for end-stage organ disease. The most frequent complication of SOT involves allograft rejection, which may occur via T cell- and/or antibody-mediated mechanisms. Diagnosis of rejection in the clinical setting requires an invasive biopsy as there are currently no reliable biomarkers to detect rejection episodes. Likewise, it is virtually impossible to identify patients who exhibit operational tolerance and may be candidates for reduced or complete withdrawal of immunosuppression. Emerging single-cell technologies, including cytometry by time-of-flight (CyTOF), imaging mass cytometry, and single-cell RNA sequencing, represent a new opportunity for deep characterization of pathogenic immune populations involved in both allograft rejection and tolerance in clinical samples. These techniques enable examination of both individual cellular phenotypes and cell-to-cell interactions, ultimately providing new insights into the complex pathophysiology of allograft rejection. However, working with these large, highly dimensional datasets requires expertise in advanced data processing and analysis using computational biology techniques. Machine learning algorithms represent an optimal strategy to analyze and create predictive models using these complex datasets and will likely be essential for future clinical application of patient level results based on single-cell data. Herein, we review the existing literature on single-cell techniques in the context of SOT.
Collapse
Affiliation(s)
- Arianna Barbetta
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Brittany Rocque
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Deepika Sarode
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Johanna Ascher Bartlett
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Juliet Emamaullee
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA.
- University of Southern California, Los Angeles, CA, USA.
- Division of Hepatobiliary and Abdominal Organ Transplantation Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Hernández Silva G, Puerto Chaparro RG, Martínez Melo JÁ, Porras Bueno CO, Martínez Rodríguez J, González Trillos SJ. Hypertrophic cardiomyopathy secondary to tacrolimus therapy in a kidney transplant patient: A case report and focused review of the literature. Clin Case Rep 2022; 10:e6539. [PMID: 36397856 PMCID: PMC9664538 DOI: 10.1002/ccr3.6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Calcineurin inhibitors have become a pillar of immunosuppressive treatment in solid organ transplant recipients. Several case reports have shown hypertrophic and dilated cardiomyopathy as an adverse effect to tacrolimus therapy. We present the case of a kidney transplant recipient woman who developed hypertrophic cardiomyopathy due to tacrolimus therapy.
Collapse
Affiliation(s)
| | | | - Javier Álvaro Martínez Melo
- Fundación Oftalmológica de SantanderBucaramangaColombia
- Universidad Autónoma de BucaramangaBucaramangaColombia
| | | | | | | |
Collapse
|
17
|
Wang X, Jiang S, Fei L, Dong F, Xie L, Qiu X, Lei Y, Guo J, Zhong M, Ren X, Yang Y, Zhao L, Zhang G, Wang H, Tang C, Yu L, Liu R, Patzak A, Persson PB, Hultström M, Wei Q, Lai EY, Zheng Z. Tacrolimus Causes Hypertension by Increasing Vascular Contractility via RhoA (Ras Homolog Family Member A)/ROCK (Rho-Associated Protein Kinase) Pathway in Mice. Hypertension 2022; 79:2228-2238. [PMID: 35938417 PMCID: PMC9993086 DOI: 10.1161/hypertensionaha.122.19189] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND To provide tacrolimus is first-line treatment after liver and kidney transplantation. However, hypertension and nephrotoxicity are common tacrolimus side effects that limit its use. Although tacrolimus-related hypertension is well known, the underlying mechanisms are not. Here, we test whether tacrolimus-induced hypertension involves the RhoA (Ras homolog family member A)/ROCK (Rho-associated protein kinase) pathway in male C57Bl/6 mice. METHODS Intra-arterial blood pressure was measured under anesthesia. The reactivity of renal afferent arterioles and mesenteric arteries were assessed in vitro using microperfusion and wire myography, respectively. RESULTS Tacrolimus induced a transient rise in systolic arterial pressure that was blocked by the RhoA/ROCK inhibitor Fasudil (12.0±0.9 versus 3.2±0.7; P<0.001). Moreover, tacrolimus reduced the glomerular filtration rate, which was also prevented by Fasudil (187±20 versus 281±8.5; P<0.001). Interestingly, tacrolimus enhanced the sensitivity of afferent arterioles and mesenteric arteries to Ang II (angiotensin II), likely due to increased intracellular Ca2+ mobilization and sensitization. Fasudil prevented increased Ang II-sensitivity and blocked Ca2+ mobilization and sensitization. Preincubation of mouse aortic vascular smooth muscle cells with tacrolimus activated the RhoA/ROCK/MYPT-1 (myosin phosphatase targeting subunit 1) pathway. Further, tacrolimus increased cytoplasmic reactive oxygen species generation in afferent arterioles (107±5.9 versus 163±6.4; P<0.001) and in cultured mouse aortic vascular smooth muscle cells (100±7.5 versus 160±23.2; P<0.01). Finally, the reactive oxygen species scavenger Tempol inhibited tacrolimus-induced Ang II hypersensitivity in afferent arterioles and mesenteric arteries. CONCLUSIONS The RhoA/ROCK pathway may play an important role in tacrolimus-induced hypertension by enhancing Ang II-specific vasoconstriction, and reactive oxygen species may participate in this process by activating the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Lingyan Fei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Fang Dong
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Lanyu Xie
- College of Clinical Medicine, Nanchang University, China (L.X.)
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Jie Guo
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Xiaoqiu Ren
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.R., Q.W.)
| | - Yi Yang
- Department of Nephrology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (Y.Y.)
| | - Liang Zhao
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China (L.Z., G.Z.)
| | - Gensheng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China (L.Z., G.Z.)
| | - Honghong Wang
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Luyang Yu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China (L.Y.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (R.L.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (A.P., P.B.P., E.Y.L.)
| | - Pontus B Persson
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (A.P., P.B.P., E.Y.L.)
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Sweden (M.H.).,Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Sweden (M.H.)
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.R., Q.W.)
| | - En Yin Lai
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.).,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.).,Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (A.P., P.B.P., E.Y.L.)
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| |
Collapse
|
18
|
Hashim M, Mujahid H, Hassan S, Bukhari S, Anjum I, Hano C, Abbasi BH, Anjum S. Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules 2022; 12:1337. [PMID: 36291548 PMCID: PMC9599274 DOI: 10.3390/biom12101337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Shanila Bukhari
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure & Loir Campus, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
19
|
A Comprehensive Review on the Risk of Metabolic Syndrome and Cardiovascular Disease after Liver Transplantation. LIVERS 2022. [DOI: 10.3390/livers2020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Survival rates after liver transplantation have increased dramatically over the past 20 years. Cardiovascular disease is the most common extra-hepatic cause of mortality in the long-term post liver transplant. This is intimately linked with both the higher pre-existing rates of metabolic syndrome in these patients as well as increased propensity to develop de novo metabolic syndrome post-transplant. This unfavorable metabolic profile that contributes to cardiovascular disease is multifactorial and largely preventable. This review explores metabolic syndrome and cardiovascular disease and their contributory factors post liver transplantation to highlight areas for potential intervention and thus reduce the significant morbidity and mortality of patients due to metabolic syndrome and cardiovascular disease.
Collapse
|