1
|
Petrovskaya LE, Bolshakov VA, Lukashev EP, Kryukova EA, Maksimov EG, Rubin AB, Dolgikh DA, Balashov SP, Kirpichnikov MP. Engineering of thermal stability in the recombinant xanthorhodopsin from Salinibacter ruber. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149547. [PMID: 39978528 DOI: 10.1016/j.bbabio.2025.149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Solubilization in detergents is a widely used technique for the isolation of membrane proteins and the study of their properties. Unfortunately, protein stability in detergent micelles can sometimes be compromised. We encountered this issue with xanthorhodopsin (XR) from Salinibacter ruber, which had been previously engineered for expression in Escherichia coli cells. To explore the factors affecting stability and to enhance thermal stability of recombinant XR preparations following solubilization of membranes using n-dodecyl-β-D-maltopyranoside and nickel-affinity chromatography, we developed a series of hybrid proteins based on the homology between XR and a stable rhodopsin from Gloeobacter violaceus (GR). Functional studies of these hybrids and measurements of their melting temperatures revealed the structural elements of XR that account for its notable difference in stability compared to GR, despite their high overall homology of approximately 50 % identical residues. In particular, XR variants with an engineered loop between transmembrane helices D and E, similar to that in GR, demonstrated enhanced stability. However, we found that replacing the DE loop affects carotenoid binding. Additionally, two hybrid proteins containing the C and D helices from GR exhibited increased stability as well as improved photocycle and proton transport rates. In conclusion, we have demonstrated that optimizing the amino acid sequence of xanthorhodopsin from S. ruber based on its homology with Gloeobacter rhodopsin is an effective approach to enhance its thermal stability in vitro and improve its potential for optogenetic applications.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | - Vadim A Bolshakov
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow, 119234, Russia
| | - Evgeniy P Lukashev
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow, 119234, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Eugene G Maksimov
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow, 119234, Russia
| | - Andrei B Rubin
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow, 119234, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow, 119234, Russia
| |
Collapse
|
2
|
Okuyama A, Hososhima S, Kandori H, Tsunoda SP. Driving forces of proton-pumping rhodopsins. Biophys J 2024; 123:4274-4284. [PMID: 39243129 DOI: 10.1016/j.bpj.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Proton-pumping rhodopsins are light-driven proton transporters that have been discovered from various microbiota. They are categorized into two groups: outward-directed and inward-directed proton pumps. Although the directions of transport are opposite, they are active proton transporters that create an H+ gradient across a membrane. Here, we aimed to study the driving force of the proton-pumping rhodopsins and the effect of ΔΨ and ΔpH on their pumping functions. We systematically characterized the H+ transport properties of nine different rhodopsins, six outward-directed H+ pumps and three inward-directed pumps, by patch-clamp measurements after expressing them in mammalian cells. The driving force of each pump was estimated from the slope of the current-voltage relations (I-V plot). Notably, among the tested rhodopsins, we found a large variation in driving forces, ranging from 83 to 399 mV. The driving force and decay rate of each pump current exhibited a good correlation. We determined driving forces under various pHs. pH dependency was less than predicted by the Nernst potential in most of the rhodopsins. Our study demonstrates that the H+-pumping rhodopsins from different organisms exhibit various pumping properties in terms of driving force, kinetics, and pH dependency, which could be evolutionarily derived from adaptations to their environments.
Collapse
Affiliation(s)
- Akari Okuyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Urui T, Mizutani Y. Origin of the Difference in Proton Transport Direction between Inward and Outward Proton-Pumping Rhodopsins. Acc Chem Res 2024; 57:3292-3302. [PMID: 39509145 DOI: 10.1021/acs.accounts.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
ConspectusActive transport is a vital and ubiquitous process in biological phenomena. Ion-pumping rhodopsins are light-driven active ion transporters that share a heptahelical transmembrane structural scaffold in which the all-trans retinal chromophore is covalently bonded through a Schiff base to a conserved lysine residue in the seventh transmembrane helix. Bacteriorhodopsin from Halobacterium salinarum was the first ion-pumping rhodopsin to be discovered and was identified as an outward proton-pumping rhodopsin. Since the discovery of bacteriorhodopsin in 1971, many more ion-pumping rhodopsins have been isolated from diverse microorganisms spanning three domains (bacteria, archaea, and eukaryotes) and giant viruses. In addition to proton-pumping rhodopsins, chloride ion- and sodium ion-pumping rhodopsins have also been discovered. Furthermore, diversity of ion-pumping rhodopsins was found in the direction of ion transport; i.e., rhodopsins that pump protons inward have recently been discovered. Very intriguingly, the inward proton-pumping rhodopsins share structural features and many conserved key residues with the outward proton-pumping rhodopsins. However, a central question remains unchanged despite the increasing variety: how and why do the ion-pumping rhodopsins undergo interlocking conformational changes that allow unidirectional ion transfer within proteins? In this regard, it is an effective strategy to compare the structures and their evolutions in the proton-pumping processes of both inward and outward proton-pumping rhodopsins because the comparison sheds light on key elements for the unidirectional proton transport. We elucidated the proton-pumping mechanism of the inward and outward proton-pumping rhodopsins by time-resolved resonance Raman spectroscopy, a powerful technique for tracking the structural evolutions of proteins at work that are otherwise inaccessible.In this Account, we primarily review our endeavors in the elucidation of the proton-pumping mechanisms and determination factors for the transport directions of inward and outward proton-pumping rhodopsins. We begin with a brief summary of previous findings on outward proton-pumping rhodopsins revealed by vibrational spectroscopy. Next, we provide insights into the mechanism of inward proton-pumping rhodopsins, schizorhodopsins, obtained in our studies. Time-resolved resonance Raman spectroscopy provided valuable information about the structures of the retinal chromophore in the unphotolyzed state and intermediates of schizorhodopsins. As we ventured further into our investigations, we succeeded in uncovering the factors determining the directions of proton release and uptake in the retinal Schiff base. While it is intriguing that the proton-pumping rhodopsins actively transport protons against a concentration gradient, it is even more curious that proteins with structural similarities transport protons in opposite directions. Solving the second mystery led to solving the first. When we considered our findings, we realized that we would probably not have been able to elucidate the mechanism if we had studied only the outward pump. Our Account concludes by outlining future opportunities and challenges in the growing research field of ion-pumping rhodopsins, with a particular emphasis on elucidating their sequence-structure-function relationships. We aim to inspire further advances toward the understanding and creation of light-driven active ion transporters.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Li G, Meng J, Yu S, Bai X, Dai J, Song Y, Peng X, Zhao Q. Excited-State Dynamics of a CRABPII-Based Microbial Rhodopsin Mimic. J Phys Chem B 2024; 128:7712-7721. [PMID: 38940335 DOI: 10.1021/acs.jpcb.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Microbial rhodopsin, a pivotal photoreceptor protein, has garnered widespread application in diverse fields such as optogenetics, biotechnology, biodevices, etc. However, current microbial rhodopsins are all transmembrane proteins, which both complicates the investigation on the photoreaction mechanism and limits their further applications. Therefore, a specific mimic for microbial rhodopsin can not only provide a better model for understanding the mechanism but also can extend the applications. The human protein CRABPII turns out to be a good template for design mimics on rhodopsin due to the convenience in synthesis and the stability after mutations. Recently, Geiger et al. designed a new CRABPII-based mimic M1-L121E on microbial rhodopsin with the 13-cis, syn (13C) isomerization after irradiation. However, it still remains a question as to how similar it is compared with the natural microbial rhodopsin, in particular, in the aspect of the photoreaction dynamics. In this article, we investigate the excited-state dynamics of this mimic by measuring its transient absorption spectra. Our results reveal that there are two components in the solution of mimic M1-L121E at pH 8, known as protonated Schiff base (PSB) and unprotonated Schiff base (USB) states. In both states, the photoreaction process from 13-cis, syn(13C) to all-trans,anti (AT) is faster than that from the inverse direction. In addition, the photoreaction process in the PSB state is faster than that in the USB state. We compared the isomerization time of the PSB state to that of microbial rhodopsin. Our findings indicate that M1-L121E exhibits behaviors similar to those of microbial rhodopsins in the general pattern of PSB isomerization, where the isomerization from 13C to AT is much faster than its inverse direction. However, our results also reveal significant differences in the excited-state dynamics of the mimic relative to the native microbial rhodopsin, including the slower PSB isomerization rates as well as the unusual USB photoreaction dynamics at pH = 8. By elucidating the distinctive characteristics of mimics M1-L121E, this study enhances our understanding of microbial rhodopsin mimics and their potential applications.
Collapse
Affiliation(s)
- Gaoshang Li
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiajia Meng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuang Yu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Bai
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Dai
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yin Song
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100081, China
| | - Qing Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Bertalan É, Konno M, Del Carmen Marín M, Bagherzadeh R, Nagata T, Brown L, Inoue K, Bondar AN. Hydrogen-Bonding and Hydrophobic Interaction Networks as Structural Determinants of Microbial Rhodopsin Function. J Phys Chem B 2024; 128:7407-7426. [PMID: 39024507 DOI: 10.1021/acs.jpcb.4c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microbial pump rhodopsins are highly versatile light-driven membrane proteins that couple protein conformational dynamics with ion translocation across the cell membranes. Understanding how microbial pump rhodopsins use specific amino acid residues at key functional sites to control ion selectivity and ion pumping direction is of general interest for membrane transporters, and could guide site-directed mutagenesis for optogenetics applications. To enable direct comparisons between proteins with different sequences we implement, for the first time, a unique numbering scheme for the microbial pump rhodopsin residues, NS-mrho. We use NS-mrho to show that distinct microbial pump rhodopsins typically have hydrogen-bond networks that are less conserved than anticipated from the amino acid residue conservation, whereas their hydrophobic interaction networks are largely conserved. To illustrate the role of the hydrogen-bond networks as structural elements that determine the functionality of microbial pump rhodopsins, we performed experiments, atomic-level simulations, and hydrogen bond network analyses on GR, the outward proton pump from Gloeobacter violaceus, and KR2, the outward sodium pump from Krokinobacter eikastus. The experiments indicate that multiple mutations that recover KR2 amino acid residues in GR not only fail to convert it into a sodium pump, but completely inactivate GR by abolishing photoisomerization of the retinal chromophore. This observation could be attributed to the drastically altered hydrogen-bond interaction network identified with simulations and network analyses. Taken together, our findings suggest that functional specificity could be encoded in the collective hydrogen-bond network of microbial pump rhodopsins.
Collapse
Affiliation(s)
- Éva Bertalan
- Department of Mathematics and Natural Sciences, RWTH Aachen University, Templergraben 59, 52062 Aachen, Germany
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - María Del Carmen Marín
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Reza Bagherzadeh
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Leonid Brown
- Department of Physics, University of Guelph, 488 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Ana-Nicoleta Bondar
- Institute of Computational Biomedicine, Forschungszentrum Jülich, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
- Faculty of Physics, University of Bucharest, Atomiştilor 405, 077125 Măgurele, Romania
| |
Collapse
|
6
|
Tu W, Thompson IP, Huang WE. Engineering bionanoreactor in bacteria for efficient hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2404958121. [PMID: 38985767 PMCID: PMC11260135 DOI: 10.1073/pnas.2404958121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 μmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.
Collapse
Affiliation(s)
- Weiming Tu
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| |
Collapse
|
7
|
Urui T, Shionoya T, Mizuno M, Inoue K, Kandori H, Mizutani Y. Chromophore-Protein Interactions Affecting the Polyene Twist and π-π* Energy Gap of the Retinal Chromophore in Schizorhodopsins. J Phys Chem B 2024; 128:2389-2397. [PMID: 38433395 DOI: 10.1021/acs.jpcb.3c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The properties of a prosthetic group are broadened by interactions with its neighboring residues in proteins. The retinal chromophore in rhodopsins absorbs light, undergoes structural changes, and drives functionally important structural changes in proteins during the photocycle. It is therefore crucial to understand how chromophore-protein interactions regulate the molecular structure and electronic state of chromophores in rhodopsins. Schizorhodopsin is a newly discovered subfamily of rhodopsins found in the genomes of Asgard archaea, which are extant prokaryotes closest to the last common ancestor of eukaryotes and of other microbial species. Here, we report the effects of a hydrogen bond between a retinal Schiff base and its counterion on the twist of the polyene chain and the color of the retinal chromophore. Correlations between spectral features revealed the unexpected fact that the twist of the polyene chain is reduced as the hydrogen bond becomes stronger, suggesting that the twist is caused by tight atomic contacts between the chromophore and nearby residues. In addition, the strength of the hydrogen bond is the primary factor affecting the color-tuning of the retinal chromophore in schizorhodopsins. The findings of this study are valuable for manipulating the molecular structure and electronic state of the chromophore by controlling chromophore-protein interactions.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomomi Shionoya
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Urui T, Hayashi K, Mizuno M, Inoue K, Kandori H, Mizutani Y. Cis- Trans Reisomerization Preceding Reprotonation of the Retinal Chromophore Is Common to the Schizorhodopsin Family: A Simple and Rational Mechanism for Inward Proton Pumping. J Phys Chem B 2024; 128:744-754. [PMID: 38204413 DOI: 10.1021/acs.jpcb.3c07510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The creation of unidirectional ion transporters across membranes represents one of the greatest challenges in chemistry. Proton-pumping rhodopsins are composed of seven transmembrane helices with a retinal chromophore bound to a lysine side chain via a Schiff base linkage and provide valuable insights for designing such transporters. What makes these transporters particularly intriguing is the discovery of both outward and inward proton-pumping rhodopsins. Surprisingly, despite sharing identical overall structures and membrane topologies, these proteins facilitate proton transport in opposite directions, implying an underlying rational mechanism that can transport protons in different directions within similar protein structures. In this study, we unraveled this mechanism by examining the chromophore structures of deprotonated intermediates in schizorhodopsins, a recently discovered subfamily of inward proton-pumping rhodopsins, using time-resolved resonance Raman spectroscopy. The photocycle of schizorhodopsins revealed the cis-trans thermal isomerization that precedes reprotonation at the Schiff base of the retinal chromophore. Notably, this order has not been observed in other proton-pumping rhodopsins, but here, it was observed in all seven schizorhodopsins studied across the archaeal domain, strongly suggesting that cis-trans thermal isomerization preceding reprotonation is a universal feature of the schizorhodopsin family. Based on these findings, we propose a structural basis for the remarkable order of events crucial for facilitating inward proton transport. The mechanism underlying inward proton transport by schizorhodopsins is straightforward and rational. The insights obtained from this study hold great promise for the design of transmembrane unidirectional ion transporters.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kouhei Hayashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Hasegawa-Takano M, Hosaka T, Kojima K, Nishimura Y, Kurihara M, Nakajima Y, Ishizuka-Katsura Y, Kimura-Someya T, Shirouzu M, Sudo Y, Yoshizawa S. Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria. THE ISME JOURNAL 2024; 18:wrae175. [PMID: 39485071 PMCID: PMC11528372 DOI: 10.1093/ismejo/wrae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
Collapse
Affiliation(s)
- Masumi Hasegawa-Takano
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277–8563, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Marie Kurihara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Yoshiko Ishizuka-Katsura
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277–8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| |
Collapse
|
10
|
Cárdenas G, Ledentu V, Huix-Rotllant M, Olivucci M, Ferré N. Automatic Rhodopsin Modeling with Multiple Protonation Microstates. J Phys Chem A 2023; 127:9365-9380. [PMID: 37877699 DOI: 10.1021/acs.jpca.3c05413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Automatic Rhodopsin Modeling (ARM) is a simulation protocol providing QM/MM models of rhodopsins capable of reproducing experimental electronic absorption and emission trends. Currently, ARM is restricted to a single protonation microstate for each rhodopsin model. Herein, we incorporate an extension of the minimal electrostatic model (MEM) into the ARM protocol to account for all relevant protonation microstates at a given pH. The new ARM+MEM protocol determines the most important microstates contributing to the description of the absorption spectrum. As a test case, we have applied this methodology to simulate the pH-dependent absorption spectrum of a toy model, showing that the single-microstate picture breaks down at certain pH values. Subsequently, we applied ARM+MEM toAnabaenasensory rhodopsin, confirming an improved description of its absorption spectrum when the titration of several key residues is considered.
Collapse
Affiliation(s)
| | | | | | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
11
|
Abstract
Microbial rhodopsins are photoreceptive membrane proteins of microorganisms that express diverse photobiological functions. All-trans-retinylidene Schiff base, the so-called all-trans-retinal, is a chromophore of microbial rhodopsins, which captures photons. It isomerizes into the 13-cis form upon photoexcitation. Isomerization of retinal leads to sequential conformational changes in the protein, giving rise to active states that exhibit biological functions. Despite the rapidly expanding diversity of microbial rhodopsin functions, the photochemical behaviors of retinal were considered to be common among them. However, the retinal of many recently discovered rhodopsins was found to exhibit new photochemical characteristics, such as highly red-shifted absorption, isomerization to 7-cis and 11-cis forms, and energy transfer from a secondary carotenoid chromophore to the retinal, which is markedly different from that established in canonical microbial rhodopsins. Here, I review new aspects of retinal found in novel microbial rhodopsins and highlight the emerging problems that need to be addressed to understand noncanonical retinal photochemistry.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
12
|
Wang H, Zheng Z, Zheng L, Zhang Z, Dong C, Zhao J. Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus. PHOTOSYNTHESIS RESEARCH 2023; 158:81-90. [PMID: 36847892 DOI: 10.1007/s11120-023-01003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Gloeobacter violaceus is an ancient cyanobacterium as it branches out from the basal position in the phylogenic tree of cyanobacteria. It lacks thylakoid membranes and its unique bundle-shaped type of phycobilisomes (PBS) for light harvesting in photosynthesis are located on the interior side of cytoplasmic membranes. The PBS from G. violaceus have two large linker proteins that are not present in any other PBS, Glr2806, and Glr1262, which are encoded by the genes glr2806 and glr1262, respectively. The location and functions of the linkers Glr2806 and Glr1262 are currently unclear. Here, we report the studies of mutagenetic analysis of glr2806 and the genes of cpeBA, encoding the β and α subunits of phycoerythrin (PE), respectively. In the mutant lacking glr2806, the length of the PBS rods remains unchanged, but the bundles are less tightly packed as examined by electron microscopy with negative staining. It is also shown that two hexamers are missing in the peripheral area of the PBS core, strongly suggesting that the linker Glr2806 is located in the core area instead of the rods. In the mutant lacking the cpeBA genes, PE is no longer present and the PBS rods have only three layers of phycocyanin hexamers. The construction of deletional mutants in G. violaceus, achieved for the first time, provides critical information for our understanding of its unique PBS and should be useful in studies of other aspects of this interesting organism as well.
Collapse
Affiliation(s)
- Hongrui Wang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lvqin Zheng
- State Key Laboratory of Membranes and Membrane Engineering, PKU-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhengdong Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Misra R, Das I, Dér A, Steinbach G, Shim JG, Busse W, Jung KH, Zimányi L, Sheves M. Impact of protein-chromophore interaction on the retinal excited state and photocycle of Gloeobacter rhodopsin: role of conserved tryptophan residues. Chem Sci 2023; 14:9951-9958. [PMID: 37736621 PMCID: PMC10510653 DOI: 10.1039/d3sc02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
The function of microbial as well as mammalian retinal proteins (aka rhodopsins) is associated with a photocycle initiated by light excitation of the retinal chromophore of the protein, covalently bound through a protonated Schiff base linkage. Although electrostatics controls chemical reactions of many organic molecules, attempt to understand its role in controlling excited state reactivity of rhodopsins and, thereby, their photocycle is scarce. Here, we investigate the effect of highly conserved tryptophan residues, between which the all-trans retinal chromophore of the protein is sandwiched in microbial rhodopsins, on the charge distribution along the retinal excited state, quantum yield and nature of the light-induced photocycle and absorption properties of Gloeobacter rhodopsin (GR). Replacement of these tryptophan residues by non-aromatic leucine (W222L and W122L) or phenylalanine (W222F) does not significantly affect the absorption maximum of the protein, while all the mutants showed higher sensitivity to photobleaching, compared to wild-type GR. Flash photolysis studies revealed lower quantum yield of trans-cis photoisomerization in W222L as well as W222F mutants relative to wild-type. The photocycle kinetics are also controlled by these tryptophan residues, resulting in altered accumulation and lifetime of the intermediates in the W222L and W222F mutants. We propose that protein-retinal interactions facilitated by conserved tryptophan residues are crucial for achieving high quantum yield of the light-induced retinal isomerization, and affect the thermal retinal re-isomerization to the resting state.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University Seoul 04107 South Korea
| | - Wayne Busse
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin Berlin 10115 Germany
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University Seoul 04107 South Korea
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
14
|
Singh M, Ito S, Hososhima S, Abe-Yoshizumi R, Tsunoda SP, Inoue K, Kandori H. Light-Driven Chloride and Sulfate Pump with Two Different Transport Modes. J Phys Chem B 2023; 127:7123-7134. [PMID: 37552856 DOI: 10.1021/acs.jpcb.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ion pumps are membrane proteins that actively translocate ions by using energy. All known pumps bind ions in the resting state, and external energy allows ion transport through protein structural changes. The light-driven sodium-ion pump Krokinobacter eikastus rhodopsin 2 (KR2) is an exceptional case in which ion binding follows the energy input. In this study, we report another case of this unusual transport mode. The NTQ rhodopsin from Alteribacter aurantiacus (AaClR) is a natural light-driven chloride pump, in which the chloride ion binds to the resting state. AaClR is also able to pump sulfate ions, though the pump efficiency is much lower for sulfate ions than for chloride ions. Detailed spectroscopic analysis revealed no binding of the sulfate ion to the resting state of AaClR, indicating that binding of the substrate (sulfate ion) to the resting state is not necessary for active transport. This property of the AaClR sulfate pump is similar to that of the KR2 sodium pump. Photocycle dynamics of the AaClR sulfate pump resemble a non-functional cycle in the absence of anions. Despite this, flash photolysis and difference Fourier transform infrared spectroscopy suggest transient binding of the sulfate ion to AaClR. The molecular mechanism of this unusual active transport by AaClR is discussed.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| |
Collapse
|
15
|
Phelps SM, Tutol JN, Advani D, Peng W, Dodani SC. Unlocking chloride sensing in the red at physiological pH with a fluorescent rhodopsin-based host. Chem Commun (Camb) 2023; 59:8460-8463. [PMID: 37337864 PMCID: PMC11136539 DOI: 10.1039/d3cc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chloride is a vital ion for all forms of life. Protein-based fluorescent biosensors can enable researchers to visualize chloride in cells but remain underdeveloped. Here, we demonstrate how a single point mutation in an engineered microbial rhodopsin results in ChloRED-1-CFP. This membrane-bound host is a far-red emitting, ratiometric sensor that provides a reversible readout of chloride in live bacteria at physiological pH, setting the stage to investigate the roles of chloride in diverse biological contexts.
Collapse
Affiliation(s)
- Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Deeya Advani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
16
|
Kuroi K, Tsukamoto T, Honda N, Sudo Y, Furutani Y. Concerted primary proton transfer reactions in a thermophilic rhodopsin studied by time-resolved infrared spectroscopy at high temperature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148980. [PMID: 37080329 DOI: 10.1016/j.bbabio.2023.148980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
The primary proton transfer reactions of thermophilic rhodopsin, which was first discovered in an extreme thermophile, Thermus thermophilus JL-18, were investigated using time-resolved Fourier transform infrared spectroscopy at various temperatures ranging from 298 to 343 K (25 to 70 °C) and proton transport activity analysis. The analyses were performed using counterion (D95E, D95N, D229E, and D229N) and proton donor mutants (E106D and E106Q) as well. First, the initial proton transfer from the protonated retinal Schiff base (PRSB) to D95 was identified. The temperature dependency showed that the proton transfer reaction in the intermediate states dramatically changed above 318 K (45 °C). In addition, the proton transfer reaction correlated well with the structural change from turn to β-strand in the protein moiety, suggesting that this step may be regulated by the rigidity of the loop region. We also elucidated that the proton transfer reaction from proton donor E106 to the retinal Schiff base occurred synchronously with the primary proton transfer from the PRSB to D95. Surprisingly, we discovered that the direction of proton transfer was regulated by the secondary counterion, D229. Comparative analysis of Gloeobacter rhodopsin from the mesophile, Gloeobacter violaceus, highlighted that the primary proton transfer reactions in thermophilic rhodopsin were optimized at high temperatures partly due to the specific turn to β-strand structural change. This was not observed in Gloeobacter rhodopsin and other related proteins such as bacteriorhodopsin.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan; Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Naoya Honda
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan; Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
17
|
Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung KH, Sheves M. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability. J Phys Chem B 2023; 127:2128-2137. [PMID: 36857147 PMCID: PMC10026069 DOI: 10.1021/acs.jpcb.2c07502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microbial rhodopsin (also called retinal protein)-carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsin-carotenoid complex. Different spectroscopic studies were employed to monitor the retinal-carotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 10-6 to 4 × 10-5 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 10-5 to 2 × 10-4 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsin-carotenoid antenna complexes.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sudeshna Bhattacharya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koushik Majhi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, South Korea
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Urui T, Das I, Mizuno M, Sheves M, Mizutani Y. Origin of a Double-Band Feature in the Ethylenic C═C Stretching Modes of the Retinal Chromophore in Heliorhodopsins. J Phys Chem B 2022; 126:8680-8688. [PMID: 36281583 DOI: 10.1021/acs.jpcb.2c04883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photoreceptor proteins play a critical role in light utilization for energy conversion and environmental sensing. Rhodopsin is a prototypical photoreceptor protein containing a retinal group that functions as a light-receptive site. It is essential to characterize the structure of the retinal chromophore because the chromophore structure, along with retinal-protein interactions, regulates which wavelengths of light are absorbed. Resonance Raman spectroscopy is a powerful tool to characterize chromophore structures in proteins. The resonance Raman spectra of heliorhodopsins, a recently discovered rhodopsin family, were previously reported to exhibit two intense ethylenic C═C stretching bands never observed for type-1 rhodopsins. Here, we show that the double-band feature in the ethylenic C═C stretching modes is not due to structural inhomogeneity but rather to the retinal polyene chain's linear structure. It contrasts with bent all-trans chromophore in type-1 rhodopsins. The linear structure of the chromophore results from weak atomic contacts between the 13-methyl group and a nearby Trp side chain, which can slow thermal reisomerization in the photocycle. It is possible that the deceleration of reisomerization increases the lifetime of the signaling intermediate for photosensory function.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76305, Israel
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76305, Israel
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
19
|
Shionoya T, Mizuno M, Kandori H, Mizutani Y. Contact-Mediated Retinal-Opsin Coupling Enables Proton Pumping in Gloeobacter Rhodopsin. J Phys Chem B 2022; 126:7857-7869. [PMID: 36173382 DOI: 10.1021/acs.jpcb.2c04208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When a chromophore embedded in a photoreceptive protein undergoes a reaction upon photoexcitation, the photoreaction triggers structural changes in the protein moiety that are necessary for the function of the protein. It is thus essential to elucidate the coupling between the chromophore and protein moiety to understand the functional mechanism for photoreceptive proteins, but the mechanism by which this coupling occurs remains poorly understood. Here, we show that nonbonded atomic contacts play an essential role in driving functionally important structural changes following photoisomerization of the chromophore in Gloeobacter rhodopsin (GR). Time-resolved ultraviolet resonance Raman spectroscopy revealed that the substitution of Trp222, which contacts with methyl groups of the retinal chromophore, with a Phe residue reduced the extent of structural change. The proton-pumping activity of the GR mutant was as small as 9% of that of the wild type. Time-resolved visible absorption and resonance Raman spectra showed that the photocycle of the mutant proceeded to the L intermediate following the all-trans to 13-cis photoisomerization step but did not result in the deprotonation of the chromophore. The present results demonstrate that the atomic contacts between the chromophore and the Trp222 side chain induce the structural changes necessary for proton transfer. The requirement for dense atomic packing in a protein structure for the efficient propagation of structural changes through a coupling mechanism is discussed.
Collapse
Affiliation(s)
- Tomomi Shionoya
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
20
|
Bogachev AV, Baykov AA, Bertsova YV, Mamedov MD. Mechanism of Ion Translocation by Na+-Rhodopsin. BIOCHEMISTRY (MOSCOW) 2022; 87:731-741. [DOI: 10.1134/s0006297922080053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
22
|
Chi H, Zhou Q, Tutol JN, Phelps SM, Lee J, Kapadia P, Morcos F, Dodani SC. Coupling a Live Cell Directed Evolution Assay with Coevolutionary Landscapes to Engineer an Improved Fluorescent Rhodopsin Chloride Sensor. ACS Synth Biol 2022; 11:1627-1638. [PMID: 35389621 PMCID: PMC9184236 DOI: 10.1021/acssynbio.2c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our understanding of chloride in biology has been accelerated through the application of fluorescent protein-based sensors in living cells. These sensors can be generated and diversified to have a range of properties using laboratory-guided evolution. Recently, we established that the fluorescent proton-pumping rhodopsin wtGR from Gloeobacter violaceus can be converted into a fluorescent sensor for chloride. To unlock this non-natural function, a single point mutation at the Schiff counterion position (D121V) was introduced into wtGR fused to cyan fluorescent protein (CFP) resulting in GR1-CFP. Here, we have integrated coevolutionary analysis with directed evolution to understand how the rhodopsin sequence space can be explored and engineered to improve this starting point. We first show how evolutionary couplings are predictive of functional sites in the rhodopsin family and how a fitness metric based on a sequence can be used to quantify the known proton-pumping activities of GR-CFP variants. Then, we couple this ability to predict potential functional outcomes with a screening and selection assay in live Escherichia coli to reduce the mutational search space of five residues along the proton-pumping pathway in GR1-CFP. This iterative selection process results in GR2-CFP with four additional mutations: E132K, A84K, T125C, and V245I. Finally, bulk and single fluorescence measurements in live E. coli reveal that GR2-CFP is a reversible, ratiometric fluorescent sensor for extracellular chloride with an improved dynamic range. We anticipate that our framework will be applicable to other systems, providing a more efficient methodology to engineer fluorescent protein-based sensors with desired properties.
Collapse
|
23
|
Suzuki K, Del Carmen Marín M, Konno M, Bagherzadeh R, Murata T, Inoue K. Structural characterization of proton-pumping rhodopsin lacking a cytoplasmic proton donor residue by X-ray crystallography. J Biol Chem 2022; 298:101722. [PMID: 35151692 PMCID: PMC8927995 DOI: 10.1016/j.jbc.2022.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
DTG/DTS rhodopsin, which was named based on a three-residue motif (DTG or DTS) that is important for its function, is a light-driven proton-pumping microbial rhodopsin using a retinal chromophore. In contrast to other light-driven ion-pumping rhodopsins, DTG/DTS rhodopsin does not have a cytoplasmic proton donor residue, such as Asp, Glu, or Lys. Because of the lack of cytoplasmic proton donor residue, proton directly binds to the retinal chromophore from the cytoplasmic solvent. However, mutational experiments that showed the complicated effects of mutations were not able to clarify the roles played by each residue, and the detail of proton uptake pathway is unclear because of the lack of structural information. To understand the proton transport mechanism of DTG/DTS rhodopsin, here we report the three-dimensional structure of one of the DTG/DTS rhodopsins, PspR from Pseudomonas putida, by X-ray crystallography. We show that the structure of the cytoplasmic side of the protein is significantly different from that of bacteriorhodopsin, the best-characterized proton-pumping rhodopsin, and large cytoplasmic cavities were observed. We propose that these hydrophilic cytoplasmic cavities enable direct proton uptake from the cytoplasmic solvent without the need for a specialized cytoplasmic donor residue. The introduction of carboxylic residues homologous to the cytoplasmic donors in other proton-pumping rhodopsins resulted in higher pumping activity with less pH dependence, suggesting that DTG/DTS rhodopsins are advantageous for producing energy and avoiding intracellular alkalization in soil and plant-associated bacteria.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | | | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Reza Bagherzadeh
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan; Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Inage, Chiba, Japan.
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
24
|
Fang B, Zhao L, Du X, Liu Q, Yang H, Li F, Sheng Y, Zhao W, Zhong H. Studying the
Rhodopsin‐Like
G Protein Coupled Receptors by Atomic Force Microscopy. Cytoskeleton (Hoboken) 2022; 78:400-416. [DOI: 10.1002/cm.21692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bin Fang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Li Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Xiaowei Du
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Qiyuan Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
- School of Basic Medicine Gannan Medical University Ganzhou People's Republic of China
| | - Hui Yang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Fangzuo Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Yaohuan Sheng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Weidong Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Haijian Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| |
Collapse
|
25
|
Chuon K, Kim SY, Meas S, Shim JG, Cho SG, Kang KW, Kim JH, Cho HS, Jung KH. Assembly of Natively Synthesized Dual Chromophores Into Functional Actinorhodopsin. Front Microbiol 2021; 12:652328. [PMID: 33995310 PMCID: PMC8113403 DOI: 10.3389/fmicb.2021.652328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Microbial rhodopsin is a simple solar energy-capturing molecule compared to the complex photosynthesis apparatus. Light-driven proton pumping across the cell membrane is a crucial mechanism underlying microbial energy production. Actinobacteria is one of the highly abundant bacterial phyla in freshwater habitats, and members of this lineage are considered to boost heterotrophic growth via phototrophy, as indicated by the presence of actino-opsin (ActR) genes in their genome. However, it is difficult to validate their function under laboratory settings because Actinobacteria are not consistently cultivable. Based on the published genome sequence of Candidatus aquiluna sp. strain IMCC13023, actinorhodopsin from the strain (ActR-13023) was isolated and characterized in this study. Notably, ActR-13023 assembled with natively synthesized carotenoid/retinal (used as a dual chromophore) and functioned as a light-driven outward proton pump. The ActR-13023 gene and putative genes involved in the chromophore (retinal/carotenoid) biosynthetic pathway were detected in the genome, indicating the functional expression ActR-13023 under natural conditions for the utilization of solar energy for proton translocation. Heterologous expressed ActR-13023 exhibited maximum absorption at 565 nm with practical proton pumping ability. Purified ActR-13023 could be reconstituted with actinobacterial carotenoids for additional light-harvesting. The existence of actinorhodopsin and its chromophore synthesis machinery in Actinobacteria indicates the inherent photo-energy conversion function of this microorganism. The assembly of ActR-13023 to its synthesized chromophores validated the microbial community's importance in the energy cycle.
Collapse
Affiliation(s)
- Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - So Young Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Hyun-Suk Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| |
Collapse
|
26
|
Tutol JN, Lee J, Chi H, Faizuddin FN, Abeyrathna SS, Zhou Q, Morcos F, Meloni G, Dodani SC. A single point mutation converts a proton-pumping rhodopsin into a red-shifted, turn-on fluorescent sensor for chloride. Chem Sci 2021; 12:5655-5663. [PMID: 34163777 PMCID: PMC8179538 DOI: 10.1039/d0sc06061e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli. This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The binding of chloride tunes the pK a of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single-cell fluorescence microscopy experiments with E. coli, expressing a GR1 fusion with a cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of changes in extracellular chloride at the membrane. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin-based fluorescent chloride sensors with improved properties for cellular applications and learn how proteins can evolve and adapt to bind anions in water.
Collapse
Affiliation(s)
- Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jessica Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Hsichuan Chi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Farah N Faizuddin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Qin Zhou
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Faruck Morcos
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Bioengineering, The University of Texas at Dallas Richardson TX 75080 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
27
|
Matsuo J, Kikukawa T, Fujisawa T, Hoff WD, Unno M. "Watching" a Molecular Twist in a Protein by Raman Optical Activity. J Phys Chem Lett 2020; 11:8579-8584. [PMID: 32945678 DOI: 10.1021/acs.jpclett.0c02448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light-absorbing chromophores in photoreceptors contain a π-electron system and are intrinsically planar molecules. However, within a protein environment these cofactors often become nonplanar and chiral in a manner that is widely believed to be functionally important. When the same chromophore is out-of-plane distorted in opposite directions in different members of a protein family, such conformers become a set of enantiomers. In techniques using chiral optical spectroscopy such as Raman optical activity (ROA), such proteins are expected to show opposite signs in their spectra. Here we use two microbial rhodopsins, Gloeobacter rhodopsin and sodium ion pump rhodopsin (NaR), to provide the first experimental and theoretical evidence that the twist direction of the retinal chromophore indeed determines the sign of the ROA spectrum. We disrupt the hydrogen bond responsible for the distortion of the retinal in NaR and show that the sign of the ROA signals of this nonfunctional mutant is flipped. The reported ROA spectra are monosignate, a property that has been seen for a variety of photoreceptors, which we attribute to an energetically favorable gradual curvature of the chromophore.
Collapse
Affiliation(s)
- Junpei Matsuo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
28
|
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, Yoshizawa S. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci Rep 2020; 10:16752. [PMID: 33028840 PMCID: PMC7541481 DOI: 10.1038/s41598-020-73606-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial rhodopsin is a photoreceptor protein found in various bacteria and archaea, and it is considered to be a light-utilization device unique to heterotrophs. Recent studies have shown that several cyanobacterial genomes also include genes that encode rhodopsins, indicating that these auxiliary light-utilizing proteins may have evolved within photoautotroph lineages. To explore this possibility, we performed a large-scale genomic survey to clarify the distribution of rhodopsin and its phylogeny. Our surveys revealed a novel rhodopsin clade, cyanorhodopsin (CyR), that is unique to cyanobacteria. Genomic analysis revealed that rhodopsin genes show a habitat-biased distribution in cyanobacterial taxa, and that the CyR clade is composed exclusively of non-marine cyanobacterial strains. Functional analysis using a heterologous expression system revealed that CyRs function as light-driven outward H+ pumps. Examination of the photochemical properties and crystal structure (2.65 Å resolution) of a representative CyR protein, N2098R from Calothrix sp. NIES-2098, revealed that the structure of the protein is very similar to that of other rhodopsins such as bacteriorhodopsin, but that its retinal configuration and spectroscopic characteristics (absorption maximum and photocycle) are distinct from those of bacteriorhodopsin. These results suggest that the CyR clade proteins evolved together with chlorophyll-based photosynthesis systems and may have been optimized for the cyanobacterial environment.
Collapse
Affiliation(s)
- Masumi Hasegawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8766, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
29
|
Ueta T, Kojima K, Hino T, Shibata M, Nagano S, Sudo Y. Applicability of Styrene-Maleic Acid Copolymer for Two Microbial Rhodopsins, RxR and HsSRI. Biophys J 2020; 119:1760-1770. [PMID: 33086044 DOI: 10.1016/j.bpj.2020.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-embedded protein rhodopsin is widely produced in organisms as a photoreceptor showing a variety of light-dependent biological functions. To investigate its molecular features, rhodopsin is often extracted from cellular membrane lipids by a suitable detergent as "micelles." The extracted protein is purified by column chromatography and then is often reconstituted into "liposomes" by removal of the detergent. The styrene-maleic acid ("SMA") copolymer spontaneously forms nanostructures containing lipids without detergent. In this study, we applied SMA to characterize two microbial rhodopsins, a thermally stable rhodopsin, Rubrobacter xylanophilus rhodopsin (RxR), and an unstable one, Halobacterium salinarum sensory rhodopsin I (HsSRI), and evaluated their physicochemical properties in SMA lipid particles compared with rhodopsins in micelles and in liposomes. Those two rhodopsins were produced in Escherichia coli cells and were successfully extracted from the membrane by the addition of SMA (5 w/v %) without losing their visible color. Analysis by dynamic light scattering revealed that RxR in SMA lipid particles (RxR-SMA) formed a discoidal structure with a diameter of 54 nm, which was 10 times smaller than RxR in phosphatidylcholine liposomes. The small particle size of RxR-SMA allowed us to obtain scattering-less visible spectra with a high signal-to-noise ratio similar to RxR in detergent micelles composed of n-dodecyl-β-D-maltoside. High-speed atomic force microscopy revealed that a single particle contained an average of 4.1 trimers of RxR (12.3 monomers). In addition, RxR-SMA showed a fast cyclic photoreaction (k = 13 s-1) comparable with RxR in phosphatidylcholine liposomes (17 s-1) but not to RxR in detergent micelles composed of n-dodecyl-β-D-maltoside (0.59 s-1). By taking advantage of SMA, we determined the dissociation constant (Kd) of chloride for HsSRI as 34 mM. From these results, we conclude that SMA is a useful molecule forming a membrane-mimicking assembly for microbial rhodopsins having the advantages of detergents and liposomes.
Collapse
Affiliation(s)
- Tetsuya Ueta
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Keiichi Kojima
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Mikihiro Shibata
- Nano Life Science Institute (WPI-NanoLSI), and High-Speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Yuki Sudo
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan.
| |
Collapse
|
30
|
The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling. Sci Rep 2020; 10:13992. [PMID: 32814821 PMCID: PMC7438509 DOI: 10.1038/s41598-020-70697-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/29/2020] [Indexed: 11/08/2022] Open
Abstract
Retinal proteins play significant roles in light-induced protons/ions transport across the cell membrane. A recent studied retinal protein, gloeobacter rhodopsin (gR), functions as a proton pump, and binds the carotenoid salinixanthin (sal) in addition to the retinal chromophore. We have studied the interactions between the two chromophores as reflected in the circular dichroism (CD) spectrum of gR complex. gR exhibits a weak CD spectrum but following binding of sal, it exhibits a significant enhancement of the CD bands. To examine the CD origin, we have substituted the retinal chromophore of gR by synthetic retinal analogues, and have concluded that the CD bands originated from excitonic interaction between sal and the retinal chromophore as well as the sal chirality induced by binding to the protein. Temperature increase significantly affected the CD spectra, due to vanishing of excitonic coupling. A similar phenomenon of excitonic interaction lose between chromophores was recently reported for a photosynthetic pigment-protein complex (Nature Commmun, 9, 2018, 99). We propose that the excitonic interaction in gR is weaker due to protein conformational alterations. The excitonic interaction is further diminished following reduction of the retinal protonated Schiff base double bond. Furthermore, the intact structure of the retinal ring is necessary for obtaining the excitonic interaction.
Collapse
|
31
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
32
|
Mizuno M, Shimoo Y, Kandori H, Mizutani Y. Effect of a bound anion on the structure and dynamics of halorhodopsin from Natronomonas pharaonis. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054703. [PMID: 31673569 PMCID: PMC6811361 DOI: 10.1063/1.5125621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Active ion transport across membranes is vital to maintaining the electrochemical gradients of ions in cells and is mediated by transmembrane proteins. Halorhodopsin (HR) functions as a light-driven inward pump for chloride ions. The protein contains all-trans-retinal bound to a specific lysine residue through a protonated Schiff base. Interaction between the bound chloride ion and the protonated Schiff base is crucial for ion transport because chloride ion movement is driven by the flipping of the protonated Schiff base upon photoisomerization. However, it remains unknown how this interaction evolves in the HR photocycle. Here, we addressed the effect of the bound anion on the structure and dynamics of HR from Natronomonas pharaonis in the early stage of the photocycle. Comparison of the chloride-bound, formate-bound, and anion-depleted forms provided insights into the interaction between the bound anion and the chromophore/protein moiety. In the unphotolyzed state, the bound anion affects the π-conjugation of the polyene chain and the hydrogen bond of the protonated Schiff base of the retinal chromophore. Picosecond time scale measurements showed that the band intensities of the W16 and W18 modes of the tryptophan residues decreased instantaneously upon photoexcitation of the formate-bound form. In contrast, these intensity decreases were delayed for the chloride-bound and anion-depleted forms. These observations suggest the stronger interactions of the bound formate ion with the retinal chromophore and the chromophore pocket. On the nanosecond to microsecond timescales, we found that the interaction between the protonated Schiff base and the bound ion is broken upon formation of the K intermediate and is recovered following translocation of the bound anion toward the protonated Schiff base in the L intermediate. Our results demonstrate that the hydrogen-bonding ability of the bound anion plays an essential role in the ion transport of light-driven anion pumps.
Collapse
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yumi Shimoo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
33
|
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci Rep 2019; 9:11283. [PMID: 31375689 PMCID: PMC6677831 DOI: 10.1038/s41598-019-47445-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR’s hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR’s oligomerization state using double electron–electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
34
|
Iizuka A, Kajimoto K, Fujisawa T, Tsukamoto T, Aizawa T, Kamo N, Jung KH, Unno M, Demura M, Kikukawa T. Functional importance of the oligomer formation of the cyanobacterial H + pump Gloeobacter rhodopsin. Sci Rep 2019; 9:10711. [PMID: 31341208 PMCID: PMC6656774 DOI: 10.1038/s41598-019-47178-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Many microbial rhodopsins self-oligomerize, but the functional consequences of oligomerization have not been well clarified. We examined the effects of oligomerization of a H+ pump, Gloeobacter rhodopsin (GR), by using nanodisc containing trimeric and monomeric GR. The monomerization did not appear to affect the unphotolyzed GR. However, we found a significant impact on the photoreaction: The monomeric GR showed faint M intermediate formation and negligible H+ transfer reactions. These changes reflected the elevated pKa of the Asp121 residue, whose deprotonation is a prerequisite for the functional photoreaction. Here, we focused on His87, which is a neighboring residue of Asp121 and conserved among eubacterial H+ pumps but replaced by Met in an archaeal H+ pump. We found that the H87M mutation removes the “monomerization effects”: Even in the monomeric state, H87M contained the deprotonated Asp121 and showed both M formation and distinct H+ transfer reactions. Thus, for wild-type GR, monomerization probably strengthens the Asp121-His87 interaction and thereby elevates the pKa of Asp121 residue. This strong interaction might occur due to the loosened protein structure and/or the disruption of the interprotomer interaction of His87. Thus, the trimeric assembly of GR enables light-induced H+ transfer reactions through adjusting the positions of key residues.
Collapse
Affiliation(s)
- Azusa Iizuka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kousuke Kajimoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
35
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, Branco Dos Santos F, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Front Bioeng Biotechnol 2019; 7:67. [PMID: 30984754 PMCID: PMC6450040 DOI: 10.3389/fbioe.2019.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
The approach of providing an oxygenic photosynthetic organism with a cyclic electron transfer system, i.e., a far-red light-driven proton pump, is widely proposed to maximize photosynthetic efficiency via expanding the absorption spectrum of photosynthetically active radiation. As a first step in this approach, Gloeobacter rhodopsin was expressed in a PSI-deletion strain of Synechocystis sp. PCC6803. Functional expression of Gloeobacter rhodopsin, in contrast to Proteorhodopsin, did not stimulate the rate of photoheterotrophic growth of this Synechocystis strain, analyzed with growth rate measurements and competition experiments. Nevertheless, analysis of oxygen uptake and—production rates of the Gloeobacter rhodopsin-expressing strains, relative to the ΔPSI control strain, confirm that the proton-pumping Gloeobacter rhodopsin provides the cells with additional capacity to generate proton motive force. Significantly, expression of the Gloeobacter rhodopsin did modulate levels of pigment formation in the transgenic strain.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Center of Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jos Arents
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - J Merijn Schuurmans
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | | | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Nishimura N, Mizuno M, Kandori H, Mizutani Y. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2. J Phys Chem B 2019; 123:3430-3440. [DOI: 10.1021/acs.jpcb.9b00928] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nao Nishimura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
37
|
Misra R, Eliash T, Sudo Y, Sheves M. Retinal-Salinixanthin Interactions in a Thermophilic Rhodopsin. J Phys Chem B 2018; 123:10-20. [PMID: 30525616 DOI: 10.1021/acs.jpcb.8b06795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In microbial rhodopsins (also called retinal proteins), the retinal chromophore is used for harvesting light. A carotenoid molecule has been reported to complement the retinal as light harvesting antenna in bacterial retinal proteins, although examples are scarce. In this paper, we present the formation of a novel antenna complex between thermophilic rhodopsin (TR) and the carotenoid salinixanthin (Sal). The complex formation and its structure were studied using UV-visible absorption as well as circular dichroism (CD) spectroscopies. Our studies indicate that the complex is formed in both the trimeric and monomeric forms of TR. CD spectroscopy suggests that excitonic coupling takes place between retinal and Sal. The binding of Sal with artificial TR pigments derived from synthetic retinal analogues further supports the contribution of the retinal chromophore to the CD spectrum. These studies further support the possibility of interaction between the 4-keto ring of the Sal and the retinal in TR-Sal complexes. Temperature-dependent CD spectra indicate that the positive band (ca. 482 nm) of the bisignate CD spectra of the studied complexes originates from the contribution of excitonic coupling and induced chirality of Sal in the protein binding site. The presence of a relatively smaller glycine residue in the vicinity of the retinal chromophore in TR is proposed to be crucial for binding with Sal. The results are expected to shed light on the mechanism of retinal-carotenoid interactions in other biological systems.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Tamar Eliash
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical sciences , Okayama University , Kita-Ku, Okayama 700-8530 , Japan
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
38
|
Maresca JA, Miller KJ, Keffer JL, Sabanayagam CR, Campbell BJ. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay. Appl Environ Microbiol 2018; 84:e00137-18. [PMID: 29703736 PMCID: PMC6007120 DOI: 10.1128/aem.00137-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes, while those in the high-salinity samples are associated with SAR-11 type AlphaproteobacteriaIMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy-dependent membrane-associated processes, such as active transport of organic carbon and cofactors, enabling these organisms to more efficiently utilize exudates from primary producers.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
39
|
Inoue K, Tahara S, Kato Y, Takeuchi S, Tahara T, Kandori H. Spectroscopic Study of Proton-Transfer Mechanism of Inward Proton-Pump Rhodopsin, Parvularcula oceani Xenorhodopsin. J Phys Chem B 2018; 122:6453-6461. [DOI: 10.1021/acs.jpcb.8b01279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | | |
Collapse
|
40
|
Mizuno M, Nakajima A, Kandori H, Mizutani Y. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. J Phys Chem A 2018; 122:2411-2423. [DOI: 10.1021/acs.jpca.7b12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| | - Ayumi Nakajima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| |
Collapse
|
41
|
Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 2017; 9:861-876. [PMID: 29178082 DOI: 10.1007/s12551-017-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.
Collapse
Affiliation(s)
- Akimasa Kaneko
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
42
|
Jana S, Eliash T, Jung KH, Sheves M. Retinal Binding to Apo-Gloeobacter Rhodopsin: The Role of pH and Retinal-Carotenoid Interaction. J Phys Chem B 2017; 121:10759-10769. [PMID: 29111729 DOI: 10.1021/acs.jpcb.7b07523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past few decades, the structure, functions, properties, and molecular mechanisms of retinal proteins have been studied extensively. The newly studied retinal protein Gloeobacter rhodopsin (gR) acts as a light-driven proton pump, transferring a proton from the cytoplasmic region to the extracellular region of a cell following light absorption. It was previously shown that gR can bind the carotenoid salinixanthin (sal). In the present study, we report the effect of pH on the binding of retinal to the apo-protein of gR, in the presence and absence of sal, to form the gR pigment. We found that binding at different pH levels reflects the titration of two different protein residues, one at the lower pKa 3.5 and another at the higher pKa 8.4, that affect the pigment's formation. The maximum amount of pigment was formed at pH 5, both with and without the presence of sal. The introduction of sal accelerates the rate of pigment formation by a factor of 190. Furthermore, it is suggested that occupation of the binding site by the retinal chromophore induces protein conformational alterations which in turn affect the carotenoid conformation, which precedes the formation of the retinal-protein covalent bond. Our examination of synthetic retinal analogues in which the ring structure was modified revealed that, in the absence of sal, the retinal ring structure affects the rate of pigment formation and that the intact structure is needed for efficient pigment formation. However, the presence of sal abolishes this effect, and all-trans retinal and its modified ring analogues bind at a similar rate.
Collapse
Affiliation(s)
- Sankar Jana
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University , Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
43
|
Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. J Am Chem Soc 2017; 139:16143-16153. [PMID: 29027800 DOI: 10.1021/jacs.7b05061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteorhodopsin (PR) is the most abundant retinal protein on earth and functions as a light-driven proton pump. Despite extensive efforts, structural data for PR photointermediate states have not been obtained. On the basis of dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyze the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the ground state in comparison to light-induced, cryotrapped K- and M-states. A high M-state population could be achieved by preventing reprotonation of the Schiff base through a mutation of the primary proton donor (E108Q). Our data reveal unexpected large and alternating 13C chemical shift changes in the K-state propagating away from the Schiff base along the polyene chain. Furthermore, two different M-states have been observed reflecting the Schiff base reorientation after the deprotonation step. Our study provides novel insight into the photocycle of PR and also demonstrates the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models.
Collapse
Affiliation(s)
- Michaela Mehler
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Carl Elias Eckert
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Alexander J Leeder
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Tobias Fischer
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Nina Kubatova
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Lynda J Brown
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Richard C D Brown
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| |
Collapse
|
44
|
Kaufmann JCD, Krause BS, Grimm C, Ritter E, Hegemann P, Bartl FJ. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function. J Biol Chem 2017; 292:14205-14216. [PMID: 28659342 PMCID: PMC5572910 DOI: 10.1074/jbc.m117.779629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.
Collapse
Affiliation(s)
- Joel C D Kaufmann
- From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,.
| | | | | | | | | | - Franz J Bartl
- From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,; Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
| |
Collapse
|
45
|
Chen Q, Arents J, Ganapathy S, de Grip WJ, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin inSynechocystissp. PCC6803. Photochem Photobiol 2017; 93:772-781. [DOI: 10.1111/php.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Jos Arents
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Willem J. de Grip
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
46
|
Kajimoto K, Kikukawa T, Nakashima H, Yamaryo H, Saito Y, Fujisawa T, Demura M, Unno M. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus. J Phys Chem B 2017; 121:4431-4437. [DOI: 10.1021/acs.jpcb.7b02421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kousuke Kajimoto
- Department
of Chemistry and Applied Chemistry, Graduate School of Science and
Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Nakashima
- Department
of Chemistry and Applied Chemistry, Graduate School of Science and
Engineering, Saga University, Saga 840-8502, Japan
| | - Haruki Yamaryo
- Department
of Chemistry and Applied Chemistry, Graduate School of Science and
Engineering, Saga University, Saga 840-8502, Japan
| | - Yuta Saito
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomotsumi Fujisawa
- Department
of Chemistry and Applied Chemistry, Graduate School of Science and
Engineering, Saga University, Saga 840-8502, Japan
| | - Makoto Demura
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department
of Chemistry and Applied Chemistry, Graduate School of Science and
Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
47
|
Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y. Demonstration of a Light-Driven SO42– Transporter and Its Spectroscopic Characteristics. J Am Chem Soc 2017; 139:4376-4389. [DOI: 10.1021/jacs.6b12139] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akiko Niho
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Takashi Tsukamoto
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Marie Kurihara
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shinya Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yu Nakajima
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
48
|
Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, Ihara K, Kamo N, Demura M. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1900-1908. [PMID: 27659506 DOI: 10.1016/j.bbabio.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/29/2022]
Abstract
Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.
Collapse
Affiliation(s)
- Shintaro Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
Inoue K, Nomura Y, Kandori H. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps. J Biol Chem 2016; 291:9883-93. [PMID: 26929409 DOI: 10.1074/jbc.m116.716498] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro.
Collapse
Affiliation(s)
- Keiichi Inoue
- From the Department of Frontier Materials and OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Hideki Kandori
- From the Department of Frontier Materials and OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan and
| |
Collapse
|
50
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|