1
|
Safieh J, Chazan A, Saleem H, Vyas P, Danin-Poleg Y, Ron D, Haran TE. A molecular mechanism for the "digital" response of p53 to stress. Proc Natl Acad Sci U S A 2023; 120:e2305713120. [PMID: 38015851 PMCID: PMC10710088 DOI: 10.1073/pnas.2305713120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
The tumor suppressor protein p53 accumulates in response to cellular stress and consequently orchestrates the expression of multiple genes in a p53-level and time-dependent manner to overcome stress consequences, for which a molecular mechanism is currently unknown. Previously, we reported that DNA torsional flexibility distinguishes among p53 response elements (REs) and that transactivation at basal p53 levels is correlated with p53 REs flexibility. Here, we calculated the flexibility of ~200 p53 REs. By connecting functional outcomes of p53-target genes' activation to the calculated flexibility of their REs, we show that genes known to belong to pathways that are activated rapidly upon stress contain REs that are significantly more flexible relative to REs of genes known to be involved in pathways that are activated later in the response to stress. The global structural properties of several p53 REs belonging to different pathways were experimentally validated. Additionally, reporter-gene expression driven by flexible p53 REs occurred at lower p53 levels and with faster rates than expression from rigid REs. Furthermore, analysis of published endogenous mRNA levels of p53-target genes as a function of REs' flexibility showed that early versus late genes differ significantly in their flexibility properties of their REs and that highly flexible p53 REs enable high-activation level exclusively to early-response genes. Overall, we demonstrate that DNA flexibility of p53 REs contributes significantly to functional selectivity in the p53 system by facilitating the initial steps of p53-dependent target-genes expression, thereby contributing to survival versus death decisions in the p53 system.
Collapse
Affiliation(s)
- Jessy Safieh
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| | - Ariel Chazan
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| | - Hanna Saleem
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| | - Pratik Vyas
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| | - Yael Danin-Poleg
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| | - Dina Ron
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| | - Tali E. Haran
- Department of Biology, Technion, Technion City, Haifa2300003, Israel
| |
Collapse
|
2
|
Biswas A, Basu A. The impact of the sequence-dependent physical properties of DNA on chromatin dynamics. Curr Opin Struct Biol 2023; 83:102698. [PMID: 37696706 DOI: 10.1016/j.sbi.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
The local mechanical properties of DNA depend on local sequence. Here we review recent genomic, structural, and computational efforts at deciphering the "mechanical code", i.e., the mapping between sequence and mechanics. We then discuss works that suggest how evolution has exploited the mechanical code to control the energetics of DNA-deforming biological processes such as nucleosome organization, transcription factor binding, DNA supercoiling, gene regulation, and 3D chromatin organization. As a whole, these recent works suggest that DNA sequence in diverse organisms can encode regulatory information governing diverse processes via the mechanical code.
Collapse
Affiliation(s)
- Aditi Biswas
- Department of Biosciences, Durham University, Durham, UK
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
3
|
Cirakli E, Basu A. A method for assaying DNA flexibility. Methods 2023; 219:68-72. [PMID: 37769928 DOI: 10.1016/j.ymeth.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
The transcription, replication, packaging, and repair of genetic information ubiquitously involves DNA:protein interactions and other biological processes that require local mechanical distortions of DNA. The energetics of such DNA-deforming processes are thus dependent on the local mechanical properties of DNA such as bendability or torsional rigidity. Such properties, in turn, depend on sequence, making it possible for sequence to regulate diverse biological processes by controlling the local mechanical properties of DNA. A deeper understanding of how such a "mechanical code" can encode broad regulatory information has historically been hampered by the absence of technology to measure in high throughput how local DNA mechanics varies with sequence along large regions of the genome. This was overcome in a recently developed technique called loop-seq. Here we describe a variant of the loop-seq protocol, that permits making rapid flexibility measurements in low-throughput, without the need for next-generation sequencing. We use our method to validate a previous prediction about how the binding site for the bacterial transcription factor Integration Host Factor (IHF) might serve as a rigid roadblock, preventing efficient enhancer-promoter contacts in IHF site containing promoters in E. coli, which can be relieved by IHF binding.
Collapse
Affiliation(s)
- Eliz Cirakli
- Department of Chemistry, Durham University, Durham, UK; Department of Biosciences, Durham University, Durham, UK
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
4
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
5
|
Loop-seq: A high-throughput technique to measure the mesoscale mechanical properties of DNA. Methods Enzymol 2021; 661:305-326. [PMID: 34776217 DOI: 10.1016/bs.mie.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The local mechanical properties of the DNA polymer influence molecular processes in biology that require mechanical deformations of DNA. Lack of suitable high-throughput experimental techniques had precluded measuring how these properties might vary with sequence along the vast lengths of genomes. Here, we present a detailed protocol for a recently developed experimental technique called loop-seq, which measures at least one local mechanical property of DNA-its propensity to cyclize-in genome-scale throughput. Loop-seq has been used to obtain experimentally derived genome-wide maps of a physical property of DNA. Such measurements have revealed that diverse DNA-deforming processes involved in chromatin organization at various genomic loci are regulated by the genetically encoded, sequence-dependent variations in the mechanical properties of DNA.
Collapse
|
6
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
7
|
Xu W, Dunlap D, Finzi L. Energetics of twisted DNA topologies. Biophys J 2021; 120:3242-3252. [PMID: 33974883 DOI: 10.1016/j.bpj.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
Our goal is to review the main theoretical models used to calculate free energy changes associated with common, torsion-induced conformational changes in DNA and provide the resulting equations hoping to facilitate quantitative analysis of both in vitro and in vivo studies. This review begins with a summary of work regarding the energy change of the negative supercoiling-induced B- to L-DNA transition, followed by a discussion of the energetics associated with the transition to Z-form DNA. Finally, it describes the energy changes associated with the formation of DNA curls and plectonemes, which can regulate DNA-protein interactions and promote cross talk between distant DNA elements, respectively. The salient formulas and parameters for each scenario are summarized in table format to facilitate comparison and provide a concise, user-friendly resource.
Collapse
Affiliation(s)
- Wenxuan Xu
- Emory University, Department of Physics, Atlanta, Georgia
| | - David Dunlap
- Emory University, Department of Physics, Atlanta, Georgia
| | - Laura Finzi
- Emory University, Department of Physics, Atlanta, Georgia.
| |
Collapse
|
8
|
Basu A, Bobrovnikov DG, Ha T. DNA mechanics and its biological impact. J Mol Biol 2021; 433:166861. [PMID: 33539885 DOI: 10.1016/j.jmb.2021.166861] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Almost all nucleoprotein interactions and DNA manipulation events involve mechanical deformations of DNA. Extraordinary progresses in single-molecule, structural, and computational methods have characterized the average mechanical properties of DNA, such as bendability and torsional rigidity, in high resolution. Further, the advent of sequencing technology has permitted measuring, in high-throughput, how such mechanical properties vary with sequence and epigenetic modifications along genomes. We review these recent technological advancements, and discuss how they have contributed to the emerging idea that variations in the mechanical properties of DNA play a fundamental role in regulating, genome-wide, diverse processes involved in chromatin organization.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Dmitriy G Bobrovnikov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Senitzki A, Safieh J, Sharma V, Golovenko D, Danin-Poleg Y, Inga A, Haran TE. The complex architecture of p53 binding sites. Nucleic Acids Res 2021; 49:1364-1382. [PMID: 33444431 PMCID: PMC7897521 DOI: 10.1093/nar/gkaa1283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Sequence-specific protein-DNA interactions are at the heart of the response of the tumor-suppressor p53 to numerous physiological and stress-related signals. Large variability has been previously reported in p53 binding to and transactivating from p53 response elements (REs) due, at least in part, to changes in direct (base) and indirect (shape) readouts of p53 REs. Here, we dissect p53 REs to decipher the mechanism by which p53 optimizes this highly regulated variable level of interaction with its DNA binding sites. We show that hemi-specific binding is more prevalent in p53 REs than previously envisioned. We reveal that sequences flanking the REs modulate p53 binding and activity and show that these effects extend to 4–5 bp from the REs. Moreover, we show here that the arrangement of p53 half-sites within its REs, relative to transcription direction, has been fine-tuned by selection pressure to optimize and regulate the response levels from p53 REs. This directionality in the REs arrangement is at least partly encoded in the structural properties of the REs. Furthermore, we show here that in the p21-5′ RE the orientation of the half-sites is such that the effect of the flanking sequences is minimized and we discuss its advantages.
Collapse
Affiliation(s)
- Alon Senitzki
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Jessy Safieh
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Vasundhara Sharma
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, TN, Italy
| | - Dmitrij Golovenko
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Yael Danin-Poleg
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, TN, Italy
| | - Tali E Haran
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
10
|
Travers A. Michael Waring-A scientific life in DNA. Biopolymers 2020; 112:e23408. [PMID: 33202034 DOI: 10.1002/bip.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Neipel J, Brandani G, Schiessel H. Translational nucleosome positioning: A computational study. Phys Rev E 2020; 101:022405. [PMID: 32168683 DOI: 10.1103/physreve.101.022405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 01/26/2023]
Abstract
About three-quarters of eukaryotic DNA is wrapped into nucleosomes; DNA spools with a protein core. The affinity of a given DNA stretch to be incorporated into a nucleosome is known to depend on the base-pair sequence-dependent geometry and elasticity of the DNA double helix. This causes the rotational and translational positioning of nucleosomes. In this study we ask the question whether the latter can be predicted by a simple coarse-grained DNA model with sequence-dependent elasticity, the rigid base-pair model. Whereas this model is known to be rather robust in predicting rotational nucleosome positioning, we show that the translational positioning is a rather subtle effect that is dominated by the guanine-cytosine content dependence of entropy rather than energy. A correct qualitative prediction within the rigid base-pair framework can only be achieved by assuming that DNA elasticity effectively changes on complexation into the nucleosome complex. With that extra assumption we arrive at a model which gives an excellent quantitative agreement to experimental in vitro nucleosome maps, under the additional assumption that nucleosomes equilibrate their positions only locally.
Collapse
Affiliation(s)
- J Neipel
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Faculty of Physics, Ludwig-Maximilians-Universität München, 80333 München, Germany.,Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
| | - G Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - H Schiessel
- Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Perepelytsya S, Uličný J, Laaksonen A, Mocci F. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4. Nucleic Acids Res 2020; 47:6084-6097. [PMID: 31114917 PMCID: PMC6614828 DOI: 10.1093/nar/gkz434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
The interactions of natural polyamines (putrescine2+, spermidine3+ and spermine4+) with DNA double helix are studied to characterize their nucleotide sequence pattern preference. Atomistic Molecular Dynamics simulations have been carried out for three systems consisting of the same DNA fragment d(CGCGAATTCGCGAATTCGCG) with different polyamines. The results show that polyamine molecules are localized with well-recognized patterns along the double helix with different residence times. We observed a clear hierarchy in the residence times of the polyamines, with the longest residence time (ca 100ns) in the minor groove. The analysis of the sequence dependence shows that polyamine molecules prefer the A-tract regions of the minor groove - in its narrowest part. The preferable localization of putrescine2+, spermidine3+ and spermine4+ in the minor groove with A-tract motifs is correlated with modulation of the groove width by a specific nucleotide sequences. We did develop a theoretical model pointing to the electrostatic interactions as the main driving force in this phenomenon, making it even more prominent for polyamines with higher charges. The results of the study explain the specificity of polyamine interactions with A-tract region of the DNA double helix which is also observed in experiments.
Collapse
Affiliation(s)
- Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine.,Department of Theoretical and Mathematical Physics, Kyiv Academic University, 03142 Kyiv, Ukraine
| | - Jozef Uličný
- Department of Biophysics, Institute of Physics, P. J. Šafárik University, 041 54 Košice, Slovakia
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China.,Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, 700487, Romania
| | - Francesca Mocci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, 700487, Romania.,Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| |
Collapse
|
13
|
Olson WK. Biophysical Reviews' "Meet the Editors Series"-a profile of Wilma K. Olson. Biophys Rev 2020; 12:9-12. [PMID: 31956968 PMCID: PMC7040138 DOI: 10.1007/s12551-020-00611-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the five Executive Editors of Biophysical Reviews I have been asked to provide this short biographical sketch for the readers of the journal. I have been a member of the Editorial Board since the inception of the journal in 2008 and an Executive Editor since 2014. I hold a B.S. degree in Chemistry from the University of Delaware and a Ph.D. in Physical Chemistry from Stanford University. Except for a year as a Damon Runyon Postdoctoral Fellow at Columbia University, I have spent my entire professional career at Rutgers, the State University of New Jersey, where I am currently the Mary I. Bunting Professor of Chemistry and Chemical Biology. I served for many years as Founding Director of the Rutgers University Center for Molecular Biophysics and Biophysical Chemistry, and have trained undergraduate, graduate, and postdoctoral students from a variety of academic disciplines.
Collapse
Affiliation(s)
- Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
- Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
14
|
Velasco-Berrelleza V, Burman M, Shepherd JW, Leake MC, Golestanian R, Noy A. SerraNA: a program to determine nucleic acids elasticity from simulation data. Phys Chem Chem Phys 2020; 22:19254-19266. [DOI: 10.1039/d0cp02713h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AT-rich motifs can generate extreme mechanical properties, which are critical for creating strong global bends when phased properly.
Collapse
Affiliation(s)
| | | | | | - Mark C. Leake
- Department of Physics
- University of York
- York
- UK
- Department of Biology
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS)
- Göttingen
- Germany
- Rudolf Peierls Center for Theoretical Physics
- University of Oxford
| | - Agnes Noy
- Department of Physics
- University of York
- York
- UK
| |
Collapse
|
15
|
Kim SH, Ganji M, Kim E, van der Torre J, Abbondanzieri E, Dekker C. DNA sequence encodes the position of DNA supercoils. eLife 2018; 7:e36557. [PMID: 30523779 PMCID: PMC6301789 DOI: 10.7554/elife.36557] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of DNA is increasingly understood to play a decisive role in vital cellular processes. Many studies focus on the role of DNA-packaging proteins, crowding, and confinement in arranging chromatin, but structural information might also be directly encoded in bare DNA itself. Here, we visualize plectonemes (extended intertwined DNA structures formed upon supercoiling) on individual DNA molecules. Remarkably, our experiments show that the DNA sequence directly encodes the structure of supercoiled DNA by pinning plectonemes at specific sequences. We develop a physical model that predicts that sequence-dependent intrinsic curvature is the key determinant of pinning strength and demonstrate this simple model provides very good agreement with the data. Analysis of several prokaryotic genomes indicates that plectonemes localize directly upstream of promoters, which we experimentally confirm for selected promotor sequences. Our findings reveal a hidden code in the genome that helps to spatially organize the chromosomal DNA.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Mahipal Ganji
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Eugene Kim
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Jaco van der Torre
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Elio Abbondanzieri
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Cees Dekker
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| |
Collapse
|
16
|
Zuiddam M, Everaers R, Schiessel H. Physics behind the mechanical nucleosome positioning code. Phys Rev E 2017; 96:052412. [PMID: 29347769 DOI: 10.1103/physreve.96.052412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
Collapse
Affiliation(s)
- Martijn Zuiddam
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Ralf Everaers
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique and Centre Blaise Pascal, F-69342 Lyon, France
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
17
|
Xu F, Zheng H, Clauvelin N, Lu XJ, Olson WK, Nanda V. Parallels between DNA and collagen - comparing elastic models of the double and triple helix. Sci Rep 2017; 7:12802. [PMID: 29038480 PMCID: PMC5643560 DOI: 10.1038/s41598-017-12878-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Multi-stranded helices are widespread in nature. The interplay of polymeric properties with biological function is seldom discussed. This study probes analogies between structural and mechanical properties of collagen and DNA. We modeled collagen with Eulerian rotational and translational parameters of adjacent rungs in the triple-helix ladder and developed statistical potentials by extracting the dispersion of the parameters from a database of atomic-resolution structures. The resulting elastic model provides a common quantitative way to describe collagen deformations upon interacting with integrins or matrix metalloproteinase and DNA deformations upon protein binding. On a larger scale, deformations in Type I collagen vary with a periodicity consistent with the D-periodic banding of higher-order fibers assemblies. This indicates that morphologies of natural higher-order collagen packing might be rooted in the characteristic deformation patterns.
Collapse
Affiliation(s)
- Fei Xu
- School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu, 214122, China.
| | - Hongning Zheng
- School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu, 214122, China
| | - Nicolas Clauvelin
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
18
|
Zgarbová M, Jurečka P, Lankaš F, Cheatham TE, Šponer J, Otyepka M. Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences. J Chem Inf Model 2017; 57:275-287. [PMID: 28059516 DOI: 10.1021/acs.jcim.6b00621] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence-averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 μs of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0εζOL1χOL4, parmbsc1, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BII substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic
| | - Filip Lankaš
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology Prague , Technická 5, 16628 Prague, Czech Republic
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, University of Utah , 30 South 2000 East, Skaggs 105, Salt Lake City, Utah 84112, United States
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 61265 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17 listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
19
|
Salari H, Eslami-Mossallam B, Ranjbar HF, Ejtehadi MR. Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy. Phys Rev E 2017; 94:062407. [PMID: 28085439 DOI: 10.1103/physreve.94.062407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Indexed: 11/07/2022]
Abstract
Using analytical approach and Monte Carlo (MC) simulations, we study the elastic behavior of the intrinsically twisted elastic ribbons with bending anisotropy, such as double-stranded DNA (dsDNA), in two-dimensional (2D) confinement. We show that, due to the bending anisotropy, the persistence length of dsDNA in 2D conformations is always greater than three-dimensional (3D) conformations. This result is in consistence with the measured values for DNA persistence length in 2D and 3D in equal biological conditions. We also show that in two dimensions, an anisotropic, intrinsically twisted polymer exhibits an implicit twist-bend coupling, which leads to the transient curvature increasing with a half helical turn periodicity along the bent polymer.
Collapse
Affiliation(s)
- H Salari
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - B Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - H F Ranjbar
- Institute of Complex Systems (ICS-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - M R Ejtehadi
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran and School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
20
|
Todolli S, Perez PJ, Clauvelin N, Olson WK. Contributions of Sequence to the Higher-Order Structures of DNA. Biophys J 2016; 112:416-426. [PMID: 27955889 DOI: 10.1016/j.bpj.2016.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
One of the critical unanswered questions in genome biophysics is how the primary sequence of DNA bases influences the global properties of very-long-chain molecules. The local sequence-dependent features of DNA found in high-resolution structures introduce irregularities in the disposition of adjacent residues that facilitate the specific binding of proteins and modulate the global folding and interactions of double helices with hundreds of basepairs. These features also determine the positions of nucleosomes on DNA and the lengths of the interspersed DNA linkers. Like the patterns of basepair association within DNA, the arrangements of nucleosomes in chromatin modulate the properties of longer polymers. The intrachromosomal loops detected in genomic studies contain hundreds of nucleosomes, and given that the simulated configurations of chromatin depend on the lengths of linker DNA, the formation of these loops may reflect sequence-dependent information encoded within the positioning of the nucleosomes. With knowledge of the positions of nucleosomes on a given genome, methods are now at hand to estimate the looping propensities of chromatin in terms of the spacing of nucleosomes and to make a direct connection between the DNA base sequence and larger-scale chromatin folding.
Collapse
Affiliation(s)
- Stefjord Todolli
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pamela J Perez
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Nicolas Clauvelin
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, New Jersey; Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
21
|
Jakubec D, Laskowski RA, Vondrasek J. Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis. PLoS One 2016; 11:e0158704. [PMID: 27384774 PMCID: PMC4934765 DOI: 10.1371/journal.pone.0158704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/21/2016] [Indexed: 12/24/2022] Open
Abstract
Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue—amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein—DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties.
Collapse
Affiliation(s)
- David Jakubec
- Institute of Organic Chemistry and Biochemistry, Prague 6, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Roman A. Laskowski
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Prague 6, Czech Republic
- * E-mail:
| |
Collapse
|
22
|
High-resolution biophysical analysis of the dynamics of nucleosome formation. Sci Rep 2016; 6:27337. [PMID: 27263658 PMCID: PMC4897087 DOI: 10.1038/srep27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization.
Collapse
|
23
|
Abstract
The conformation of DNA bound in nucleosomes depends on the DNA sequence. Questions such as how nucleosomes are positioned and how they potentially bind sequence-dependent nuclear factors require near-atomic resolution structures of the nucleosome core containing different DNA sequences; despite this, only the DNA for two similar α-satellite sequences and a sequence (601) selected in vitro have been visualized bound in the nucleosome core. Here we report the 2.6-Å resolution X-ray structure of a nucleosome core particle containing the DNA sequence of nucleosome A of the 3'-LTR of the mouse mammary tumor virus (147 bp MMTV-A). To our knowledge, this is the first nucleosome core particle structure containing a promoter sequence and crystallized from Mg(2+) ions. It reveals sequence-dependent DNA conformations not seen previously, including kinking into the DNA major groove.
Collapse
|
24
|
DNA methylation effects on tetra-nucleosome compaction and aggregation. Biophys J 2015; 107:1629-36. [PMID: 25296315 DOI: 10.1016/j.bpj.2014.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
DNA CpG methylation has been associated with chromatin compaction and gene silencing. Whether DNA methylation directly contributes to chromatin compaction remains an open question. In this study, we used fluorescence fluctuation spectroscopy (FFS) to evaluate the compaction and aggregation of tetra-nucleosomes containing specific CpG patterns and methylation levels. The compactness of both unmethylated and methylated tetra-nucleosomes is dependent on DNA sequences. Specifically, methylation of the CpG sites located in the central dyad and the major grooves of DNA seem to have opposite effects on modulating the compactness of tetra-nucleosomes. The interactions among tetra-nucleosomes, however, seem to be enhanced because of DNA methylation independent of sequence contexts. Our finding can shed light on understanding the role of DNA methylation in determining nucleosome positioning pattern and chromatin compactness.
Collapse
|
25
|
DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity. PLoS One 2015; 10:e0129427. [PMID: 26075397 PMCID: PMC4468133 DOI: 10.1371/journal.pone.0129427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/09/2015] [Indexed: 02/06/2023] Open
Abstract
Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein.
Collapse
|
26
|
Iacovelli F, Falconi M. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools. FEBS J 2015; 282:3298-310. [DOI: 10.1111/febs.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Affiliation(s)
| | - Mattia Falconi
- Department of Biology; University of Rome “Tor Vergata”; Italy
| |
Collapse
|
27
|
Cui F, Chen L, LoVerso PR, Zhurkin VB. Prediction of nucleosome rotational positioning in yeast and human genomes based on sequence-dependent DNA anisotropy. BMC Bioinformatics 2014; 15:313. [PMID: 25244936 PMCID: PMC4261538 DOI: 10.1186/1471-2105-15-313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND An organism's DNA sequence is one of the key factors guiding the positioning of nucleosomes within a cell's nucleus. Sequence-dependent bending anisotropy dictates how DNA is wrapped around a histone octamer. One of the best established sequence patterns consistent with this anisotropy is the periodic occurrence of AT-containing dinucleotides (WW) and GC-containing dinucleotides (SS) in the nucleosomal locations where DNA is bent in the minor and major grooves, respectively. Although this simple pattern has been observed in nucleosomes across eukaryotic genomes, its use for prediction of nucleosome positioning was not systematically tested. RESULTS We present a simple computational model, termed the W/S scheme, implementing this pattern, without using any training data. This model accurately predicts the rotational positioning of nucleosomes both in vitro and in vivo, in yeast and human genomes. About 65 - 75% of the experimentally observed nucleosome positions are predicted with the precision of one to two base pairs. The program is freely available at http://people.rit.edu/fxcsbi/WS_scheme/. We also introduce a simple and efficient way to compare the performance of different models predicting the rotational positioning of nucleosomes. CONCLUSIONS This paper presents the W/S scheme to achieve accurate prediction of rotational positioning of nucleosomes, solely based on the sequence-dependent anisotropic bending of nucleosomal DNA. This method successfully captures DNA features critical for the rotational positioning of nucleosomes, and can be further improved by incorporating additional terms related to the translational positioning of nucleosomes in a species-specific manner.
Collapse
Affiliation(s)
- Feng Cui
- Thomas H, Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | | | | | | |
Collapse
|
28
|
Esguerra M, Nilsson L, Villa A. Triple helical DNA in a duplex context and base pair opening. Nucleic Acids Res 2014; 42:11329-38. [PMID: 25228466 PMCID: PMC4191418 DOI: 10.1093/nar/gku848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.
Collapse
Affiliation(s)
- Mauricio Esguerra
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, SE-141 83 Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, SE-141 83 Huddinge, Sweden
| |
Collapse
|
29
|
Xu X, Ben Imeddourene A, Zargarian L, Foloppe N, Mauffret O, Hartmann B. NMR studies of DNA support the role of pre-existing minor groove variations in nucleosome indirect readout. Biochemistry 2014; 53:5601-12. [PMID: 25102280 DOI: 10.1021/bi500504y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.
Collapse
Affiliation(s)
- Xiaoqian Xu
- LBPA, UMR 8113, ENS de Cachan CNRS , 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Dršata T, Špačková N, Jurečka P, Zgarbová M, Šponer J, Lankaš F. Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res 2014; 42:7383-94. [PMID: 24829460 PMCID: PMC4066768 DOI: 10.1093/nar/gku338] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts.
Collapse
Affiliation(s)
- Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Nada Špačková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 62500 Brno, Czech Republic
| | - Filip Lankaš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic
| |
Collapse
|
31
|
Johnson S, Chen YJ, Phillips R. Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. PLoS One 2013; 8:e75799. [PMID: 24146776 PMCID: PMC3795714 DOI: 10.1371/journal.pone.0075799] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/19/2013] [Indexed: 01/31/2023] Open
Abstract
Large-scale DNA deformation is ubiquitous in transcriptional regulation in prokaryotes and eukaryotes alike. Though much is known about how transcription factors and constellations of binding sites dictate where and how gene regulation will occur, less is known about the role played by the intervening DNA. In this work we explore the effect of sequence flexibility on transcription factor-mediated DNA looping, by drawing on sequences identified in nucleosome formation and ligase-mediated cyclization assays as being especially favorable for or resistant to large deformations. We examine a poly(dA:dT)-rich, nucleosome-repelling sequence that is often thought to belong to a class of highly inflexible DNAs; two strong nucleosome positioning sequences that share a set of particular sequence features common to nucleosome-preferring DNAs; and a CG-rich sequence representative of high G+C-content genomic regions that correlate with high nucleosome occupancy in vivo. To measure the flexibility of these sequences in the context of DNA looping, we combine the in vitro single-molecule tethered particle motion assay, a canonical looping protein, and a statistical mechanical model that allows us to quantitatively relate the looping probability to the looping free energy. We show that, in contrast to the case of nucleosome occupancy, G+C content does not positively correlate with looping probability, and that despite sharing sequence features that are thought to determine nucleosome affinity, the two strong nucleosome positioning sequences behave markedly dissimilarly in the context of looping. Most surprisingly, the poly(dA:dT)-rich DNA that is often characterized as highly inflexible in fact exhibits one of the highest propensities for looping that we have measured. These results argue for a need to revisit our understanding of the mechanical properties of DNA in a way that will provide a basis for understanding DNA deformation over the entire range of biologically relevant scenarios that are impacted by DNA deformability.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Yi-Ju Chen
- Department of Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Dršata T, Lankaš F. Theoretical models of DNA flexibility. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Zhurkin VB, Olson WK. Can nucleosomal DNA be described by an elastic model?: comment on "Sequence-dependent collective properties of DNAs and their role in biological systems" by Pasquale De Santis and Anita Scipioni. Phys Life Rev 2013; 10:70-2; discussion 82-4. [PMID: 23587120 DOI: 10.1016/j.plrev.2013.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Victor B Zhurkin
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Impact of methylation on the physical properties of DNA. Biophys J 2012; 102:2140-8. [PMID: 22824278 DOI: 10.1016/j.bpj.2012.03.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
There is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms.
Collapse
|
35
|
Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy. Proc Natl Acad Sci U S A 2012; 109:E2514-22. [PMID: 22908247 DOI: 10.1073/pnas.1205659109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 k(B)T, for all the known nucleosome positioning sequences. By applying Percus's equation to the derived energy landscape, we isolate sequence effects on genome-wide nucleosome occupancy from other factors that may influence nucleosome positioning. For both in vitro and in vivo systems, three parameters suffice to predict nucleosome occupancy with correlation coefficients of respectively 0.74 and 0.66. As predicted, we find the largest deviations in vivo around transcription start sites. This relatively simple algorithm can be used to guide future studies on the influence of DNA sequence on chromatin organization.
Collapse
|
36
|
Low-level p53 expression changes transactivation rules and reveals superactivating sequences. Proc Natl Acad Sci U S A 2012; 109:14387-92. [PMID: 22908277 DOI: 10.1073/pnas.1205971109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transcriptional activation by the tumor suppressor p53 is considered to depend on cellular level, although there are few systems where this dependence on cellular level of p53 has been directly addressed. Previously, we reported that transactivation from p53 targets was sensitive to both p53 amount and DNA sequence, with some sequences being responsive to much lower p53 levels than others when examined in yeast model systems or human cells. Because p53 is normally present at low levels and perturbations might lead to small increases, we examined transactivation under limiting p53. Unlike the positive relationship between transactivation and binding affinity from target sequences at high cellular levels of human p53 in yeast, no such relationship was found at low levels. However, transactivation in the yeast system and the torsional flexibility of target sequences were highly correlated, revealing a unique structural relationship between transcriptional function and sequence. Surprisingly, a few sequences supported high transactivation at low p53 levels in yeast or when transfected into human cells. On the basis of kinetic and flexibility analyses the "supertransactivation" property was due to low binding off rates of flexible target sites. Interestingly, a supertransactivation response element can differentiate transcriptional capacities of many breast cancer-associated p53 mutants. Overall, these studies, which are relevant to other transcription factors, address the extent to which transactivation properties of p53 target sequences are determined by their intrinsic physical properties and reveal unique rules of engagement of target sequences at low p53 levels.
Collapse
|
37
|
|
38
|
Abstract
The predominant protein-centric perspective in protein-DNA-binding studies assumes that the protein drives the interaction. Research focuses on protein structural motifs, electrostatic surfaces and contact potentials, while DNA is often ignored as a passive polymer to be manipulated. Recent studies of DNA topology, the supercoiling, knotting, and linking of the helices, have shown that DNA has the capability to be an active participant in its transactions. DNA topology-induced structural and geometric changes can drive, or at least strongly influence, the interactions between protein and DNA. Deformations of the B-form structure arise from both the considerable elastic energy arising from supercoiling and from the electrostatic energy. Here, we discuss how these energies are harnessed for topology-driven, sequence-specific deformations that can allow DNA to direct its own metabolism.
Collapse
|
39
|
Meysman P, Marchal K, Engelen K. DNA structural properties in the classification of genomic transcription regulation elements. Bioinform Biol Insights 2012; 6:155-68. [PMID: 22837642 PMCID: PMC3399529 DOI: 10.4137/bbi.s9426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been long known that DNA molecules encode information at various levels. The most basic level comprises the base sequence itself and is primarily important for the encoding of proteins and direct base recognition by DNA-binding proteins. A more elusive level consists of the local structural properties of the DNA molecule wherein the DNA sequence only plays an indirect supportive role. These properties are nevertheless an important factor in a large number of biomolecular processes and can be considered as informative signals for the presence of a variety of genomic features. Several recent studies have unequivocally shown the benefit of relying on such DNA properties for modeling and predicting genomic features as diverse as transcription start sites, transcription factor binding sites, or nucleosome occupancy. This review is meant to provide an overview of the key aspects of these DNA conformational and physicochemical properties. To illustrate their potential added value compared to relying solely on the nucleotide sequence in genomics studies, we discuss their application in research on transcription regulation mechanisms as representative cases.
Collapse
Affiliation(s)
- Pieter Meysman
- Department of Molecular and Microbial Systems, KULeuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | |
Collapse
|
40
|
Battistini F, Hunter CA, Moore IK, Widom J. Structure-based identification of new high-affinity nucleosome binding sequences. J Mol Biol 2012; 420:8-16. [PMID: 22472421 DOI: 10.1016/j.jmb.2012.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The substrate for the proteins that express genetic information in the cell is not naked DNA but an assembly of nucleosomes, where the DNA is wrapped around histone proteins. The organization of these nucleosomes on genomic DNA is influenced by the DNA sequence. Here, we present a structure-based computational approach that translates sequence information into the energy required to bend DNA into a nucleosome-bound conformation. The calculations establish the relationship between DNA sequence and histone octamer binding affinity. In silico selection using this model identified several new DNA sequences, which were experimentally found to have histone octamer affinities comparable to the highest-affinity sequences known. The results provide insights into the molecular mechanism through which DNA sequence information encodes its organization. A quantitative appreciation of the thermodynamics of nucleosome positioning and rearrangement will be one of the key factors in understanding the regulation of transcription and in the design of new promoter architectures for the purposes of tuning gene expression dynamics.
Collapse
|
41
|
Chua EYD, Vasudevan D, Davey GE, Wu B, Davey CA. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 2012; 40:6338-52. [PMID: 22453276 PMCID: PMC3401446 DOI: 10.1093/nar/gks261] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3–H4 relative to H2A–H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.
Collapse
Affiliation(s)
- Eugene Y D Chua
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
42
|
Abstract
It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.
Collapse
Affiliation(s)
- Alberto Pérez
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| | - F. Javier Luque
- Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal 643, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain, and Instituto Nacional de Bioinformàtica, Parc Científic de Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| |
Collapse
|
43
|
Liu Y, Reeves D, Kropachev K, Cai Y, Ding S, Kolbanovskiy M, Kolbanovskiy A, Bolton JL, Broyde S, Van Houten B, Geacintov NE. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair (Amst) 2011; 10:684-96. [PMID: 21741328 DOI: 10.1016/j.dnarep.2011.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry Department, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Olson WK, Zhurkin VB. Working the kinks out of nucleosomal DNA. Curr Opin Struct Biol 2011; 21:348-57. [PMID: 21482100 DOI: 10.1016/j.sbi.2011.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 11/17/2022]
Abstract
Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B DNA to kink-and-slide states. The pathway to these states shows nonharmonic behavior consistent with bending profiles inferred from AFM measurements.
Collapse
Affiliation(s)
- Wilma K Olson
- Rutgers- The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, NJ 08854-8087, USA.
| | | |
Collapse
|
45
|
Marathe A, Bansal M. An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC STRUCTURAL BIOLOGY 2011; 11:1. [PMID: 21208404 PMCID: PMC3031206 DOI: 10.1186/1472-6807-11-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/05/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. RESULTS In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. CONCLUSIONS Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique 'template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.
Collapse
Affiliation(s)
- Arvind Marathe
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| |
Collapse
|
46
|
Nucleosome structural studies. Curr Opin Struct Biol 2010; 21:128-36. [PMID: 21176878 DOI: 10.1016/j.sbi.2010.11.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
Chromatin plays a fundamental role in eukaryotic genomic regulation, and the increasing awareness of the importance of epigenetic processes in human health and disease emphasizes the need for understanding the structure and function of the nucleosome. Recent advances in chromatin structural studies, including the first structures of nucleosomes containing the Widom 601 sequence and the structure of a chromatin protein-nucleosome assembly, have provided new insight into stretching of nucleosomal DNA, nucleosome positioning, binding of metal ions, drugs and therapeutic candidates to nucleosomes, and nucleosome recognition by nuclear proteins. These discoveries ensure promising future prospects for unravelling structural attributes of chromatin.
Collapse
|
47
|
Peckham HE, Olson WK. Nucleic-acid structural deformability deduced from anisotropic displacement parameters. Biopolymers 2010; 95:254-69. [PMID: 21280021 DOI: 10.1002/bip.21570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/11/2010] [Accepted: 11/10/2010] [Indexed: 11/09/2022]
Abstract
The growing numbers of very well resolved nucleic-acid crystal structures with anisotropic displacement parameters provide an unprecedented opportunity to learn about the natural motions of DNA and RNA. Here we report a new Monte-Carlo approach that takes direct account of this information to extract the distortions of covalent structure, base pairing, and dinucleotide geometry intrinsic to regularly organized double-helical molecules. We present new methods to test the validity of the anisotropic parameters and examine the apparent deformability of a variety of structures, including several A, B, and Z DNA duplexes, an AB helical intermediate, an RNA, a ligand-DNA complex, and an enzyme-bound DNA. The rigid-body parameters characterizing the positions of the bases in the structures mirror the mean parameters found when atomic motion is taken into account. The base-pair fluctuations intrinsic to a single structure, however, differ from those extracted from collections of nucleic-acid structures, although selected base-pair steps undergo conformational excursions along routes suggested by the ensembles. The computations reveal surprising new molecular insights, such as the stiffening of DNA and concomitant separation of motions of contacted nucleotides on opposite strands by the binding of Escherichia coli endonuclease VIII, which suggest how the protein may direct enzymatic action.
Collapse
Affiliation(s)
- Heather E Peckham
- Wright-Riemann Laboratories, Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
48
|
Xu F, Colasanti AV, Li Y, Olson WK. Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures. Nucleic Acids Res 2010; 38:6872-82. [PMID: 20647418 PMCID: PMC2978337 DOI: 10.1093/nar/gkq506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 05/15/2010] [Accepted: 05/18/2010] [Indexed: 12/23/2022] Open
Abstract
The packaging of DNA into nucleosomes impedes the binding and access of molecules involved in its processing. The SWI/SNF multi-protein assembly, found in yeast, is one of many regulatory factors that stimulate the remodeling of DNA required for its transcription. Amino-acid point mutations in histones H3 or H4 partially bypass the requirement of the SWI/SNF complex in this system. The mechanisms underlying the observed remodeling, however, are difficult to discern from the crystal structures of nucleosomes bearing these so-called SIN (SWI/SNF INdependent) mutations. Here, we report detailed analyses of the conformations and interactions of the histones and DNA in these assemblies. We find that the loss of direct protein-DNA contacts near point-mutation sites, reported previously, is coupled to unexpected additional long-range effects, i.e. loss of intermolecular contacts and accompanying DNA conformational changes at sequentially and spatially distant sites. The SIN mutations seemingly transmit information relevant to DNA binding across the nucleosome. The energetic cost of deforming the DNA to the states found in the SIN-mutant structures helps to distinguish the mutants that show phenotypes in yeast from those that do not. Models incorporating these deformed dimer steps suggest ways that nucleosomal DNA may be remodeled during its biological processing.
Collapse
Affiliation(s)
| | | | | | - Wilma K. Olson
- Rutgers, the State University of New Jersey, Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
Sereda YV, Bishop TC. Evaluation of elastic rod models with long range interactions for predicting nucleosome stability. J Biomol Struct Dyn 2010; 27:867-87. [PMID: 20232939 DOI: 10.1080/073911010010524948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The ability of a dinucleotide-step based elastic-rod model of DNA to predict nucleosome binding free energies is investigated using four available sets of elastic parameters. We compare the predicted free energies to experimental values derived from nucleosome reconstitution experiments for 84 DNA sequences. Elastic parameters (conformation and stiffnessess) obtained from MD simulations are shown to be the most reliable predictors, as compared to those obtained from analysis of base-pair step melting temperatures, or from analysis of x-ray structures. We have also studied the effect of varying the folded conformation of nucleosomal DNA by means of our Fourier - filtering knock-out and knock-in procedure. This study confirmed the above ranking of elastic parameters, and helped to reveal problems inherent in models using only a local elastic energy function. Long-range interactions were added to the elastic-rod model in an effort to improve its predictive ability. For this purpose a Debye-Huckel energy term with a single, homogenous point charge per base-pair was introduced. This term contains only three parameters, - its weight relative to the elastic energy, the Debye screening length, and a minimum sequence distance for including pairwise interactions between charges. After optimization of these parameters, our Debye-Huckel term is attractive, and yields the same level of correlation with experiment (R=0.75) as was achieved merely by varying the nucleosomal shape in the elastic-rod model. We suggest this result indicates a linker DNA - histone attraction or, possibly, entropic effects, that lead to a stabilization of a nucleosome away from the ends of DNA segments longer than 147 bp. Such effects are not accounted for by a localized elastic energy model.
Collapse
Affiliation(s)
- Yuriy V Sereda
- Center for Computational Science, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|
50
|
Abstract
The positioning of DNA on nucleosomes is critical to both the organization and expression of the genetic message. Here we focus on DNA conformational signals found in the growing library of known high-resolution core-particle structures and the ways in which these features may contribute to the positioning of nucleosomes on specific DNA sequences. We survey the chemical composition of the protein-DNA assemblies and extract features along the DNA superhelical pathway - the minor-groove width and the deformations of successive base pairs - determined with reasonable accuracy in the structures. We also examine the extent to which the various nucleosome core-particle structures accommodate the observed settings of the crystallized sequences and the known positioning of the high-affinity synthetic '601' sequence on DNA. We 'thread' these sequences on the different structural templates and estimate the cost of each setting with knowledge-based potentials that reflect the conformational properties of the DNA base-pair steps in other high-resolution protein-bound complexes.
Collapse
Affiliation(s)
- Fei Xu
- Rutgers, State University of New Jersey, Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|