1
|
Blain-Hartung M, Johannes von Sass G, Plaickner J, Katz S, Tu Hoang O, Andrea Mroginski M, Esser N, Budisa N, Forest KT, Hildebrandt P. On the Role of a Conserved Tryptophan in the Chromophore Pocket of Cyanobacteriochrome. J Mol Biol 2024; 436:168227. [PMID: 37544357 DOI: 10.1016/j.jmb.2023.168227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O600. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr → Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Georg Johannes von Sass
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany
| | - Julian Plaickner
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sagie Katz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Oanh Tu Hoang
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Esser
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Schwarzschildstraße 8, 12489 Berlin, Germany
| | - Nediljko Budisa
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany; Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, R3T 2N2 Winnipeg, Manitoba, Canada
| | - Katrina T Forest
- University of Wisconsin-Madison, Department of Bacteriology, 1550 Linden Dr., Madison, WI 53706, USA
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
2
|
Guan J, Lu Y, Sen K, Abdul Nasir J, Desmoutier AW, Hou Q, Zhang X, Logsdail AJ, Dutta G, Beale AM, Strange RW, Yong C, Sherwood P, Senn HM, Catlow CRA, Keal TW, Sokol AA. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220234. [PMID: 37211033 PMCID: PMC10200352 DOI: 10.1098/rsta.2022.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 05/23/2023]
Abstract
Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Jingcheng Guan
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Jamal Abdul Nasir
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | | | - Qing Hou
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute of Photonic Chips, University of Shanghai for Science of Technology, Shanghai 201512, People’s Republic of China
| | - Xingfan Zhang
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Andrew J. Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Gargi Dutta
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Department of Physics, Balurghat College, Balurghat 733101, West Bengal, India
| | - Andrew M. Beale
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, UK
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Hans M. Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - C. Richard A. Catlow
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, UK
| | - Thomas W. Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Alexey A. Sokol
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| |
Collapse
|
3
|
Hildebrandt P. Vibrational Spectroscopy of Phytochromes. Biomolecules 2023; 13:1007. [PMID: 37371587 DOI: 10.3390/biom13061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochromes are biological photoswitches that translate light into physiological functions. Spectroscopic techniques are essential tools for molecular research into these photoreceptors. This review is directed at summarizing how resonance Raman and IR spectroscopy contributed to an understanding of the structure, dynamics, and reaction mechanism of phytochromes, outlining the substantial experimental and theoretical challenges and describing the strategies to master them. It is shown that the potential of the various vibrational spectroscopic techniques can be most efficiently exploited using integral approaches via a combination of theoretical methods as well as other experimental techniques.
Collapse
Affiliation(s)
- Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
4
|
Yang Y, Stensitzki T, Lang C, Hughes J, Mroginski MA, Heyne K. Ultrafast protein response in the Pfr state of Cph1 phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:919-930. [PMID: 36653574 DOI: 10.1007/s43630-023-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of 13C/15N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm-1 we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm-1 is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm-1 are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Maria Andrea Mroginski
- Institut Für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Karsten Heyne
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Okuda Y, Miyoshi R, Kamo T, Fujisawa T, Nagae T, Mishima M, Eki T, Hirose Y, Unno M. Raman Spectroscopy of an Atypical C15-E,syn Bilin Chromophore in Cyanobacteriochrome RcaE. J Phys Chem B 2022; 126:813-821. [DOI: 10.1021/acs.jpcb.1c09652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuji Okuda
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
6
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
7
|
Rao AG, Wiebeler C, Sen S, Cerutti DS, Schapiro I. Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2. Phys Chem Chem Phys 2021; 23:7359-7367. [PMID: 33876095 DOI: 10.1039/d0cp05314g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that bind a linear tetrapyrrole as a chromophore. They show photochromicity by having two stable states that can be interconverted by the photoisomerization of the chromophore. These photochemical properties make them an attractive target for biotechnological applications. However, their application is impeded by structural heterogeneity that reduces the yield of the photoconversion. The heterogeneity can originate either from the chromophore structure or the protein environment. Here, we study the origin of the heterogeneity in AnPixJg2, a representative member of the red/green cyanobacteriochrome family, that has a red absorbing parental state and a green absorbing photoproduct state. Using molecular dynamics simulations and umbrella sampling we have identified the protonation state of a conserved histidine residue as a trigger for structural heterogeneity. When the histidine is in a neutral form, the chromophore structure is homogenous, while in a positively charged form, the chromophore is heterogeneous with two different conformations. We have identified a correlation between the protonation of the histidine and the structural heterogeneity of the chromophore by detailed characterization of the interactions in the protein binding site. Our findings reconcile seemingly contradicting spectroscopic studies that attribute the heterogeneity to different sources. Furthermore, we predict that circular dichroism can be used as a diagnostic tool to distinguish different substates.
Collapse
Affiliation(s)
- Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, USA
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JTM. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Commun Chem 2021; 4:3. [PMID: 34746444 PMCID: PMC8570541 DOI: 10.1038/s42004-020-00437-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- Present Address: School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Mikhail Baloban
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Swetta A. Jansen
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Daria M. Shcherbakova
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Vladislav V. Verkhusha
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
| | - John T. M. Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| |
Collapse
|
10
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
11
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
12
|
Kraskov A, Nguyen AD, Goerling J, Buhrke D, Velazquez Escobar F, Fernandez Lopez M, Michael N, Sauthof L, Schmidt A, Piwowarski P, Yang Y, Stensitzki T, Adam S, Bartl F, Schapiro I, Heyne K, Siebert F, Scheerer P, Mroginski MA, Hildebrandt P. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Biochemistry 2020; 59:1023-1037. [DOI: 10.1021/acs.biochem.0c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan Goerling
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Luisa Sauthof
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Yang Yang
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Suliman Adam
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franz Bartl
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Igor Schapiro
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Karsten Heyne
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstraße 9, D-79104 Freiburg, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
13
|
Buhrke D, Battocchio G, Wilkening S, Blain-Hartung M, Baumann T, Schmitt FJ, Friedrich T, Mroginski MA, Hildebrandt P. Red, Orange, Green: Light- and Temperature-Dependent Color Tuning in a Cyanobacteriochrome. Biochemistry 2019; 59:509-519. [PMID: 31840994 DOI: 10.1021/acs.biochem.9b00931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptor proteins that photoconvert between two parent states and thereby regulate various biological processes. An intriguing property is their variable ultraviolet-visible (UV-vis) absorption that covers the entire spectral range from the far-red to the near-UV region and thus makes CBCRs promising candidates for optogenetic applications. Here, we have studied Slr1393, a CBCR that photoswitches between red- and green-absorbing states (Pr and Pg, respectively). Using UV-vis absorption, fluorescence, and resonance Raman (RR) spectroscopy, a further orange-absorbing state O600 that is in thermal equilibrium with Pr was identified. The different absorption properties of the three states were attributed to the different lengths of the conjugated π-electron system of the phycocyanobilin chromophore. In agreement with available crystal structures and supported by quantum mechanics/molecular mechanics (QM/MM) calculations, the most extended conjugation holds for Pr whereas it is substantially reduced in Pg. Here, the two outer pyrrole rings D and A are twisted out of the plane defined by inner pyrrole rings B and C. For the O600 state, the comparison of the experimental RR spectra with QM/MM-calculated spectra indicates a partially distorted ZZZssa geometry in which ring A is twisted while ring D and the adjacent methine bridge display essentially the same geometry as Pr. The quantitative analysis of temperature-dependent spectra yields an enthalpy barrier of ∼30 kJ/mol for the transition from Pr to O600. This reaction is associated with the movement of a conserved tryptophan residue from the chromophore binding pocket to a solvent-exposed position.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Giovanni Battocchio
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Svea Wilkening
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Matthew Blain-Hartung
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Tobias Baumann
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thomas Friedrich
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Peter Hildebrandt
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| |
Collapse
|
14
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
15
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Osoegawa S, Miyoshi R, Watanabe K, Hirose Y, Fujisawa T, Ikeuchi M, Unno M. Identification of the Deprotonated Pyrrole Nitrogen of the Bilin-Based Photoreceptor by Raman Spectroscopy with an Advanced Computational Analysis. J Phys Chem B 2019; 123:3242-3247. [PMID: 30913882 DOI: 10.1021/acs.jpcb.9b00965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytochrome and cyanobacteriochrome utilize a linear methine-bridged tetrapyrrole (bilin) to control numerous biological processes. They show a reversible photoconversion between two spectrally distinct states. This photocycle is initiated by a C═C double-bond photoisomerization of the bilin followed by its thermal relaxations with transient and/or stationary changes in the protonation state of the pyrrole moiety. However, it has never been identified which of the four pyrrole nitrogen atoms is deprotonated. Here, we report a resonance Raman spectroscopic study on cyanobacteriochrome RcaE, which has been proposed to contain a deprotonated bilin for its green-absorbing 15 Z state. The observed Raman spectra were well reproduced by a simulated structure whose bilin B ring is deprotonated, with the aid of molecular dynamics and quantum mechanics/molecular mechanics calculations. The results revealed that the deprotonation of B and C rings has the distinct effect on the overall bilin structure, which will be relevant to the color tuning and photoconversion mechanisms of the phytochrome superfamily. Furthermore, this study documents the ability of vibrational spectroscopy combined with the advanced spectral analysis to visualize a proton of a cofactor molecule embedded in a protein moiety.
Collapse
Affiliation(s)
- Shinsuke Osoegawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Kouhei Watanabe
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Yuu Hirose
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology) , The University of Tokyo , Meguro, Tokyo 153-8902 , Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| |
Collapse
|
17
|
Buhrke D, Tavraz NN, Shcherbakova DM, Sauthof L, Moldenhauer M, Vélazquez Escobar F, Verkhusha VV, Hildebrandt P, Friedrich T. Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins. Sci Rep 2019; 9:1866. [PMID: 30755663 PMCID: PMC6372600 DOI: 10.1038/s41598-018-38433-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Phytochromes are red/far-red light sensing photoreceptors employing linear tetrapyrroles as chromophores, which are covalently bound to a cysteine (Cys) residue in the chromophore-binding domain (CBD, composed of a PAS and a GAF domain). Recently, near-infrared (NIR) fluorescent proteins (FPs) engineered from bacterial phytochromes binding biliverdin IXα (BV), such as the iRFP series, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIR FPs suffer from relatively low brightness. Here, by combining biochemical, spectroscopic and resonance Raman (RR) assays, we purified and characterized an iRFP variant that contains a BV chromophore simultaneously bound to two cysteines. This protein with the unusual double-Cys attached BV showed the highest fluorescence quantum yield (FQY) of 16.6% reported for NIR FPs, whereas the initial iRFP appeared to be a mixture of species with a mean FQY of 11.1%. The purified protein was also characterized with 1.3-fold higher extinction coefficient that together with FQY resulted in almost two-fold brighter fluorescence than the original iRFP as isolated. This work shows that the high FQY of iRFPs with two cysteines is a direct consequence of the double attachment. The PAS-Cys, GAF-Cys and double-Cys attachment each entails distinct configurational constraints of the BV adduct, which can be identified by distinct RR spectroscopic features, i.e. the marker band including the C=C stretching coordinate of the ring A-B methine bridge, which was previously identified as being characteristic for rigid chromophore embedment and high FQY. Our findings can be used to rationally engineer iRFP variants with enhanced FQYs.
Collapse
Affiliation(s)
- David Buhrke
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Neslihan N Tavraz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Luisa Sauthof
- Charité - Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Moldenhauer
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Francisco Vélazquez Escobar
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Friedrich
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
18
|
Kirpich JS, Mix LT, Martin SS, Rockwell NC, Lagarias JC, Larsen DS. Protonation Heterogeneity Modulates the Ultrafast Photocycle Initiation Dynamics of Phytochrome Cph1. J Phys Chem Lett 2018; 9:3454-3462. [PMID: 29874080 PMCID: PMC6247788 DOI: 10.1021/acs.jpclett.8b01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome proteins utilize ultrafast photoisomerization of a linear tetrapyrrole chromophore to detect the ratio of red to far-red light. Femtosecond photodynamics in the PAS-GAF-PHY photosensory core of the Cph1 phytochrome from Synechocystis sp. PCC6803 (Cph1Δ) were resolved with a dual-excitation-wavelength-interleaved pump-probe (DEWI) approach with two excitation wavelengths (600 and 660 nm) at three pH values (6.5, 8.0, and 9.0). Observed spectral and kinetic heterogeneity in the excited-state dynamics were described with a self-consistent model comprised of three spectrally distinct populations with different protonation states (Pr-I, Pr-II, and Pr-III), each composed of multiple kinetically distinct subpopulations. Apparent partitioning among these populations is dictated by pH, temperature, and excitation wavelength. Our studies provide insight into photocycle initiation dynamics at physiological temperatures, implicate the low-pH/low-temperature Pr-I state as the photoactive state in vitro, and implicate an internal hydrogen-bonding network in regulating the photochemical quantum yield.
Collapse
Affiliation(s)
- Julia S. Kirpich
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, 95616
| | - L. Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, 95616
| | - Shelley S. Martin
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616
| | - Nathan C. Rockwell
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616
| | - Delmar S. Larsen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, 95616
| |
Collapse
|
19
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
20
|
Scarbath-Evers LK, Jähnigen S, Elgabarty H, Song C, Narikawa R, Matysik J, Sebastiani D. Structural heterogeneity in a parent ground-state structure of AnPixJg2 revealed by theory and spectroscopy. Phys Chem Chem Phys 2018; 19:13882-13894. [PMID: 28513754 DOI: 10.1039/c7cp01218g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the red absorbing, dark stable state (Pr state) of the second GAF domain of the cyanobacteriochrome AnPixJ (AnPixJg2) by a molecular dynamics simulation of 1 μs duration. Our results reveal two distinct conformational isoforms of the chromophore, from which only one was known from crystallographic experiments. The interconversion between both isoforms is accompanied by alterations in the hydrogen bond pattern between the chromophore and the protein and the solvation structure of the chromophore binding pocket. The existence of sub-states in the Pr form of AnPixJg2 is supported by the results from experimental 13C MAS NMR spectroscopy. Our finding is consistent with the observation of structural heterogeneity in other cyanobacteriochromes and phytochromes.
Collapse
Affiliation(s)
- Laura Katharina Scarbath-Evers
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee MK, Bravaya KB, Coker DF. First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae. J Am Chem Soc 2017; 139:7803-7814. [DOI: 10.1021/jacs.7b01780] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mi Kyung Lee
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
22
|
Takiden A, Velazquez-Escobar F, Dragelj J, Woelke AL, Knapp EW, Piwowarski P, Bart F, Hildebrandt P, Mroginski MA. Structural and Vibrational Characterization of the Chromophore Binding Site of Bacterial Phytochrome Agp1. Photochem Photobiol 2017; 93:713-723. [DOI: 10.1111/php.12737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Aref Takiden
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | | | - Jovan Dragelj
- Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - Anna Lena Woelke
- Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - Ernst-Walter Knapp
- Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - Patrick Piwowarski
- Institute of Medical Physics and Biophysics; Charité-Medical University Berlin; Berlin Germany
| | - Franz Bart
- Institute of Medical Physics and Biophysics; Charité-Medical University Berlin; Berlin Germany
| | | | | |
Collapse
|
23
|
Velázquez Escobar F, Buhrke D, Fernandez Lopez M, Shenkutie SM, von Horsten S, Essen LO, Hughes J, Hildebrandt P. Structural communication between the chromophore-binding pocket and the N-terminal extension in plant phytochrome phyB. FEBS Lett 2017; 591:1258-1265. [DOI: 10.1002/1873-3468.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - David Buhrke
- Institut für Chemie; Technische Universität Berlin; Germany
| | | | | | - Silke von Horsten
- Fachbereich Chemie, Strukturbiochemie; Philipps-Universität Marburg; Marburg Germany
| | - Lars-Oliver Essen
- Fachbereich Chemie, Strukturbiochemie; Philipps-Universität Marburg; Marburg Germany
- LOEWE Center for Synthetic Microbiology; Philipps-Universität; Marburg Germany
| | - Jon Hughes
- Plant Physiology; Justus-Liebig University Gießen; Giessen Germany
| | | |
Collapse
|
24
|
Bizimana LA, Epstein J, Brazard J, Turner DB. Conformational Homogeneity in the P r Isomer of Phytochrome Cph1. J Phys Chem B 2017; 121:2622-2630. [PMID: 28282147 DOI: 10.1021/acs.jpcb.7b02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous time-resolved studies of the Pr to Pfr photoisomerization in phytochrome Cph1 have revealed multiphasic excited-state decay kinetics. It remains unclear whether these kinetics arise from multiple ground-state conformational subpopulations or from a single ground-state conformation that undergoes an excited-state photoisomerization process-either branching on the excited state or relaxing through multiple sequential intermediates. Many studies have attempted to resolve this debate by fitting the measured dynamics to proposed kinetic models, arriving at different conclusions. Here we probe spectral signatures of ground-state heterogeneity of Pr. Two-dimensional electronic spectra display negligible inhomogeneous line broadening, and vibrational coherence spectra extracted from transient absorption measurements do not contain nodes and phase shifts at the fluorescence maximum. These spectroscopic results support the homogeneous model, in which the primary photochemical transformation of Pr to Lumi-R occurs adiabatically on the excited-state potential energy surface.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Jordan Epstein
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Johanna Brazard
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
25
|
Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, Hughes J, Alexiev U, Hildebrandt P, Mroginski MA. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J Phys Chem B 2016; 121:47-57. [DOI: 10.1021/acs.jpcb.6b09600] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco Velazquez Escobar
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christina Lang
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Aref Takiden
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Constantin Schneider
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Balke
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jon Hughes
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
26
|
Buhrke D, Velazquez Escobar F, Sauthof L, Wilkening S, Herder N, Tavraz NN, Willoweit M, Keidel A, Utesch T, Mroginski MA, Schmitt FJ, Hildebrandt P, Friedrich T. The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: A case study on iRFP. Sci Rep 2016; 6:28444. [PMID: 27329837 PMCID: PMC4916461 DOI: 10.1038/srep28444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Bacteriophytochromes are promising tools for tissue microscopy and imaging due to their fluorescence in the near-infrared region. These applications require optimization of the originally low fluorescence quantum yields via genetic engineering. Factors that favour fluorescence over other non-radiative excited state decay channels are yet poorly understood. In this work we employed resonance Raman and fluorescence spectroscopy to analyse the consequences of multiple amino acid substitutions on fluorescence of the iRFP713 benchmark protein. Two groups of mutations distinguishing iRFP from its precursor, the PAS-GAF domain of the bacteriophytochrome P2 from Rhodopseudomonas palustris, have qualitatively different effects on the biliverdin cofactor, which exists in a fluorescent (state II) and a non-fluorescent conformer (state I). Substitution of three critical amino acids in the chromophore binding pocket increases the intrinsic fluorescence quantum yield of state II from 1.7 to 5.0% due to slight structural changes of the tetrapyrrole chromophore. Whereas these changes are accompanied by an enrichment of state II from ~40 to ~50%, a major shift to ~88% is achieved by remote amino acid substitutions. Additionally, an increase of the intrinsic fluorescence quantum yield of this conformer by ~34% is achieved. The present results have important implications for future design strategies of biofluorophores.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Luisa Sauthof
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Svea Wilkening
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Nico Herder
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Mario Willoweit
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Anke Keidel
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Tillmann Utesch
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
27
|
Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR. Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. J Mol Biol 2016; 428:3702-20. [PMID: 27107635 DOI: 10.1016/j.jmb.2016.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.
Collapse
Affiliation(s)
- Lisandro Horacio Otero
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Francisco Velázquez-Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Fernández López
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Florencia Malamud
- UNSAM Campus Miguelete IIB-Instituto de Investigaciones Biotecnológicas, Av. 25 de Mayo y Francia (B1650KNA), Buenos Aires, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán Ruy Bonomi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Song C, Velazquez Escobar F, Xu XL, Narikawa R, Ikeuchi M, Siebert F, Gärtner W, Matysik J, Hildebrandt P. A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore’s Protonation State. Biochemistry 2015; 54:5839-48. [DOI: 10.1021/acs.biochem.5b00735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, 2300 RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Xiu-Ling Xu
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Rei Narikawa
- Department
of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department
of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Meguro, Tokyo 153-8902, Japan
| | - Masahiko Ikeuchi
- Department
of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Japan
Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Meguro, Tokyo 153-8902, Japan
| | - Friedrich Siebert
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
29
|
Song C, Lang C, Kopycki J, Hughes J, Matysik J. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1. Front Mol Biosci 2015; 2:42. [PMID: 26284254 PMCID: PMC4516977 DOI: 10.3389/fmolb.2015.00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022] Open
Abstract
Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in previous MAS NMR and crystallographic studies. AmS precipitation might nevertheless provide useful protein structure/functional information for full-length Cph1 in cases where neither X-ray crystallography nor conventional NMR methods are available.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| |
Collapse
|
30
|
Velazquez Escobar F, von Stetten D, Günther-Lütkens M, Keidel A, Michael N, Lamparter T, Essen LO, Hughes J, Gärtner W, Yang Y, Heyne K, Mroginski MA, Hildebrandt P. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes. Front Mol Biosci 2015. [PMID: 26217669 PMCID: PMC4498102 DOI: 10.3389/fmolb.2015.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states—found in all phytochromes studied, albeit with different relative contributions—differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.
Collapse
Affiliation(s)
| | | | | | - Anke Keidel
- Institut für Chemie, Technische Universität Berlin Berlin, Germany
| | - Norbert Michael
- Institut für Chemie, Technische Universität Berlin Berlin, Germany
| | - Tilman Lamparter
- Botanisches Institut, Karlsruher Institut für Technologie Karlsruhe, Germany
| | | | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus Liebig University Gießen, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion Mülheim, Germany
| | - Yang Yang
- Institut für Experimentalphysik, Freie Universität Berlin Berlin, Germany
| | - Karsten Heyne
- Institut für Experimentalphysik, Freie Universität Berlin Berlin, Germany
| | | | | |
Collapse
|
31
|
Li F, Burgie ES, Yu T, Héroux A, Schatz GC, Vierstra RD, Orville AM. X-ray radiation induces deprotonation of the bilin chromophore in crystalline D. radiodurans phytochrome. J Am Chem Soc 2015; 137:2792-5. [PMID: 25650486 DOI: 10.1021/ja510923m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. These results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins.
Collapse
Affiliation(s)
- Feifei Li
- Photon Sciences Directorate and ∥Biosciences Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Peng PP, Dong LL, Sun YF, Zeng XL, Ding WL, Scheer H, Yang X, Zhao KH. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2558-69. [PMID: 25286841 PMCID: PMC8494197 DOI: 10.1107/s1399004714015776] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/06/2014] [Indexed: 11/10/2022]
Abstract
Allophycocyanin B (AP-B) is one of the two terminal emitters in phycobilisomes, the unique light-harvesting complexes of cyanobacteria and red algae. Its low excitation-energy level and the correspondingly redshifted absorption and fluorescence emission play an important role in funnelling excitation energy from the hundreds of chromophores of the extramembraneous phycobilisome to the reaction centres within the photosynthetic membrane. In the absence of crystal structures of these low-abundance terminal emitters, the molecular basis for the extreme redshift and directional energy transfer is largely unknown. Here, the crystal structure of trimeric AP-B [(ApcD/ApcB)3] from Synechocystis sp. PCC 6803 at 1.75 Å resolution is reported. In the crystal lattice, eight trimers of AP-B form a porous, spherical, 48-subunit assembly of 193 Å in diameter with an internal cavity of 1.1 × 10(6) Å(3). While the overall structure of trimeric AP-B is similar to those reported for many other phycobiliprotein trimers, the chromophore pocket of the α-subunit, ApcD, has more bulky residues that tightly pack the phycocyanobilin (PCB). Ring D of the chromophores is further stabilized by close interactions with ApcB from the adjacent monomer. The combined contributions from both subunits render the conjugated rings B, C and D of the PCB in ApcD almost perfectly coplanar. Together with mutagenesis data, it is proposed that the enhanced planarity effectively extends the conjugation system of PCB and leads to the redshifted absorption (λmax = 669 nm) and fluorescence emission (679 nm) of the ApcD chromophore in AP-B, thereby enabling highly efficient energy transfer from the phycobilisome core to the reaction centres.
Collapse
Affiliation(s)
- Pan-Pan Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Ya-Fang Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
33
|
Chizhov I, Zorn B, Manstein DJ, Gärtner W. Kinetic and thermodynamic analysis of the light-induced processes in plant and cyanobacterial phytochromes. Biophys J 2014; 105:2210-20. [PMID: 24209867 DOI: 10.1016/j.bpj.2013.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/06/2013] [Accepted: 09/04/2013] [Indexed: 02/08/2023] Open
Abstract
The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ~18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined.
Collapse
Affiliation(s)
- Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
34
|
Xu XL, Gutt A, Mechelke J, Raffelberg S, Tang K, Miao D, Valle L, Borsarelli CD, Zhao KH, Gärtner W. Combined mutagenesis and kinetics characterization of the bilin-binding GAF domain of the protein Slr1393 from the Cyanobacterium Synechocystis PCC6803. Chembiochem 2014; 15:1190-9. [PMID: 24764310 DOI: 10.1002/cbic.201400053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 01/11/2023]
Abstract
The gene slr1393 from Synechocystis sp. PCC6803 encodes a protein composed of three GAF domains, a PAS domain, and a histidine kinase domain. GAF3 is the sole domain able to bind phycocyanobilin (PCB) as chromophore and to accomplish photochemistry: switching between a red-absorbing parental and a green-absorbing photoproduct state (λmax =649 and 536 nm, respectively). Conversions in both directions were followed by time-resolved absorption spectroscopy with the separately expressed GAF3 domain of Slr1393. Global fit analysis of the recorded absorbance changes yielded three lifetimes (3.2 μs, 390 μs, and 1.5 ms) for the red-to-green conversion, and 1.2 μs, 340 μs, and 1 ms for the green-to-red conversion. In addition to the wild-type (WT) protein, 24 mutated proteins were studied spectroscopically. The design of these site-directed mutations was based on sequence alignments with related proteins and by employing the crystal structure of AnPixJg2 (PDB ID: 3W2Z), a Slr1393 orthologous from Anabaena sp. PCC7120. The structure of AnPixJg2 was also used as template for model building, thus confirming the strong structural similarity between the proteins, and for identifying amino acids to target for mutagenesis. Only amino acids in close proximity to the chromophore were exchanged, as these were considered likely to have an impact on the spectral and dynamic properties. Three groups of mutants were found: some showed absorption features similar to the WT protein, a second group showed modified absorbance properties, and the third group had lost the ability to bind the chromophore. The most unexpected result was obtained for the exchange at residue 532 (N532Y). In vivo assembly yielded a red-absorbing, WT-like protein. Irradiation, however, not only converted it into the green-absorbing form, but also produced a 660 nm, further-red-shifted absorbance band. This photoproduct was fully reversible to the parental form upon green light irradiation.
Collapse
Affiliation(s)
- Xiu-Ling Xu
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
![]()
Phytochromes
are widespread red/far-red photosensory proteins well
known as critical regulators of photomorphogenesis in plants. It is
often assumed that natural selection would have optimized the light
sensing efficiency of phytochromes to minimize nonproductive photochemical
deexcitation pathways. Surprisingly, the quantum efficiency for the
forward Pr-to-Pfr photoconversion of phytochromes
seldom exceeds 15%, a value very much lower than that of animal rhodopsins.
Exploiting ultrafast excitation wavelength- and temperature-dependent
transient absorption spectroscopy, we resolve multiple pathways within
the ultrafast photodynamics of the N-terminal PAS-GAF-PHY photosensory
core module of cyanobacterial phytochrome Cph1 (termed Cph1Δ)
that are primarily responsible for the overall low quantum efficiency.
This inhomogeneity primarily reflects a long-lived fluorescent subpopulation
that exists in equilibrium with a spectrally distinct, photoactive
subpopulation. The fluorescent subpopulation is favored at elevated
temperatures, resulting in anomalous excited-state dynamics (slower
kinetics at higher temperatures). The spectral and kinetic behavior
of the fluorescent subpopulation strongly resembles that of the photochemically
compromised and highly fluorescent Y176H variant of Cph1Δ.
We present an integrated, heterogeneous model for Cph1Δ that
is based on the observed transient and static spectroscopic signals.
Understanding the molecular basis for this dynamic inhomogeneity holds
potential for rational design of efficient phytochrome-based fluorescent
and photoswitchable probes.
Collapse
|
36
|
Velazquez Escobar F, Hildebrandt T, Utesch T, Schmitt FJ, Seuffert I, Michael N, Schulz C, Mroginski MA, Friedrich T, Hildebrandt P. Structural parameters controlling the fluorescence properties of phytochromes. Biochemistry 2013; 53:20-9. [PMID: 24328165 DOI: 10.1021/bi401287u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phytochromes constitute a class of photoreceptors that can be photoconverted between two stable states. The tetrapyrrole chromophore absorbs in the red spectral region and displays fluorescence maxima above 700 nm, albeit with low quantum yields. Because this wavelength region is particularly advantageous for fluorescence-based deep tissue imaging, there is a strong interest to engineer phytochrome variants with increased fluorescence yields. Such targeted design efforts would substantially benefit from a deeper understanding of those structural parameters that control the photophysical properties of the protein-bound chromophore. Here we have employed resonance Raman (RR) spectroscopy and molecular dynamics simulations for elucidating the chromophore structural changes in a fluorescence-optimized mutant (iRFP) derived from the PAS-GAF domain of the bacteriophytochrome RpBphP2 from Rhodopseudomas palustris . Both methods consistently reveal the structural consequences of the amino acid substitutions in the vicinity of the biliverdin chromophore that may account for lowering the propability of nonradiative excited state decays. First, compared to the wild-type protein, the tilt angle of the terminal ring D with respect to ring C is increased in iRFP, accompanied by the loss of hydrogen bond interactions of the ring D carbonyl function and the reduction of the number of water molecules in that part of the chromophore pocket. Second, the overall flexibility of the chromophore is significantly reduced, particularly in the region of rings D and A, thereby reducing the conformational heterogeneity of the methine bridge between rings A and B and the ring A carbonyl group, as concluded from the RR spectra of the wild-type proteins.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Velazquez Escobar F, Utesch T, Narikawa R, Ikeuchi M, Mroginski MA, Gärtner W, Hildebrandt P. Photoconversion mechanism of the second GAF domain of cyanobacteriochrome AnPixJ and the cofactor structure of its green-absorbing state. Biochemistry 2013; 52:4871-80. [PMID: 23808413 DOI: 10.1021/bi400506a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriochromes are members of the phytochrome superfamily. In contrast to classical phytochromes, these small photosensors display a considerable variability of electronic absorption maxima. We have studied the light-induced conversions of the second GAF domain of AnPixJ, AnPixJg2, a phycocyanobilin-binding protein from the cyanobacterium Anabaena PCC 7120, using low-temperature resonance Raman spectroscopy combined with molecular dynamics simulations. AnPixJg2 is formed biosynthetically as a red-absorbing form (Pr) and can be photoconverted into a green-absorbing form (Pg). Forward and backward phototransformations involve the same reaction sequences and intermediates of similar cofactor structures as the corresponding processes in canonical phytochromes, including a transient cofactor deprotonation. Whereas the cofactor of the Pr state shows far-reaching similarities to the Pr states of classical phytochromes, the Pg form displays significant upshifts of the methine bridge stretching frequencies concomitant to the hypsochromically shifted absorption maximum. However, the cofactor in Pg is protonated and adopts a conformation very similar to the Pfr state of classical phytochromes. The spectral differences are probably related to an increased solvent accessibility of the chromophore which may reduce the π-electron delocalization in the phycocyanobilin and thus raise the energies of the first electronic transition and the methine bridge stretching modes. Molecular dynamics simulations suggest that the Z → E photoisomerization of the chromophore at the C-D methine bridge alters the interactions with the nearby Trp90 which in turn may act as a gate, allowing the influx of water molecules into the chromophore pocket. Such a mechanism of color tuning AnPixJg2 is unique among the cyanobacteriochromes studied so far.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin , Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Salewski J, Escobar FV, Kaminski S, von Stetten D, Keidel A, Rippers Y, Michael N, Scheerer P, Piwowarski P, Bartl F, Frankenberg-Dinkel N, Ringsdorf S, Gärtner W, Lamparter T, Mroginski MA, Hildebrandt P. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes. J Biol Chem 2013; 288:16800-16814. [PMID: 23603902 DOI: 10.1074/jbc.m113.457531] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion.
Collapse
Affiliation(s)
- Johannes Salewski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Steve Kaminski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - David von Stetten
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany; Structural Biology Group, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Anke Keidel
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Yvonne Rippers
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Protein X-ray Crystallography, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Spectroscopy, Charité-University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franz Bartl
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Spectroscopy, Charité-University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Nicole Frankenberg-Dinkel
- AG Physiologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Simone Ringsdorf
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Tilman Lamparter
- Institut für Allgemeine Botanik, Karlsruher Institut für Technologie, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
39
|
Abstract
Molecular dynamics simulations of biomolecules have matured into powerful tools of structural biology. In addition to the commonly used empirical force field potentials, quantum mechanical descriptions are gaining popularity for structure optimization and dynamic simulations of peptides and proteins. In this chapter, we introduce methodological developments such as the QM/MM framework and linear-scaling QM that make efficient calculations on large biomolecules possible. We identify the most common scenarios in which quantum descriptions of peptides and proteins are employed, such as structural refinement, force field development, treatment of unusual residues, and predicting spectroscopic and exited state properties. The benefits and shortcomings of QM potentials, in comparison to classical force fields, are discussed, with special emphasis on the sampling problems of protein conformational space. Finally, recent examples of QM/MM calculations in light-sensitive membrane proteins illustrate typical applications of the reviewed methods.
Collapse
Affiliation(s)
- Thomas Steinbrecher
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
40
|
Song C, Essen LO, Gärtner W, Hughes J, Matysik J. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A. MOLECULAR PLANT 2012; 5:698-715. [PMID: 22419823 DOI: 10.1093/mp/sss017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite extensive study, the molecular structure of the chromophore-binding pocket of phytochrome A (phyA), the principal photoreceptor controlling photomorphogenesis in plants, has not yet been successfully resolved. Here, we report a series of two-dimensional (2-D) magic-angle spinning solid-state NMR experiments on the recombinant N-terminal, 65-kDa PAS-GAF-PHY light-sensing module of phytochrome A3 from oat (Avena sativa), assembled with uniformly 13C- and 15N-labeled phycocyanobilin (u-[13C,15N]-PCB-As.phyA3). The Pr state of this protein was studied regarding the electronic structure of the chromophore and its interactions with the proximal amino acids. Using 2-D 13C-13C and 1H-15N experiments, a complete set of 13C and 15N assignments for the chromophore were obtained. Also, a large number of 1H-13C distance restraints between the chromophore and its binding pocket were revealed by interfacial heteronuclear correlation spectroscopy. 13C doublings of the chromophore A-ring region and the C-ring carboxylate moiety, together with the observation of two Pr isoforms, Pr-I and Pr-II, demonstrate the local mobility of the chromophore and the plasticity of its protein environment. It appears that the interactions and dynamics in the binding pocket of phyA in the Pr state are remarkably similar to those of cyanobacterial phytochrome (Cph1). The N-terminus of the region modeled (residues 56-66 of phyA) is highly mobile. Differences in the regulatory processes involved in plant and Cph1 phytochromes are discussed.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 2. reverse dynamics. Biochemistry 2012; 51:619-30. [PMID: 22148731 DOI: 10.1021/bi2017365] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phytochromes are red/far-red photosensory proteins that utilize photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert reversibly between red- and far-red-absorbing forms (P(r) and P(fr), respectively). Cyanobacteriochromes (CBCRs) are related photosensory proteins with more diverse spectral sensitivity. The mechanisms that underlie this spectral diversity have not yet been fully elucidated. One of the main CBCR subfamilies photoconverts between a red-absorbing 15Z ground state, like the familiar P(r) state of phytochromes, and a green-absorbing photoproduct ((15E)P(g)). We have previously used the red/green CBCR NpR6012g4 from the cyanobacterium Nostoc punctiforme to examine ultrafast photodynamics of the forward photoreaction. Here, we examine the reverse reaction. Using excitation-interleaved transient absorption spectroscopy with broadband detection and multicomponent global analysis, we observed multiphasic excited-state dynamics. Interleaved excitation allowed us to identify wavelength-dependent shifts in the ground-state bleach that equilibrated on a 200 ps time scale, indicating ground-state heterogeneity. Compared to the previously studied forward reaction, the reverse reaction has much faster excited-state decay time constants and significantly higher photoproduct yield. This work thus demonstrates striking differences between the forward and reverse reactions of NpR6012g4 and provides clear evidence of ground-state heterogeneity in the phytochrome superfamily.
Collapse
Affiliation(s)
- Peter W Kim
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
42
|
Gärtner W. Kurt Schaffner: from organic photochemistry to photobiology. Photochem Photobiol Sci 2012; 11:872-80. [DOI: 10.1039/c2pp05405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Elucidating photoinduced structural changes in phytochromes by the combined application of resonance Raman spectroscopy and theoretical methods. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
45
|
Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc Natl Acad Sci U S A 2011; 108:3842-7. [PMID: 21325055 DOI: 10.1073/pnas.1013377108] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phytochrome photoreceptors mediate light responses in plants and in many microorganisms. Here we report studies using (1)H-(13)C magic-angle spinning NMR spectroscopy of the sensor module of cyanobacterial phytochrome Cph1. Two isoforms of the red-light absorbing Pr ground state are identified. Conclusive evidence that photoisomerization occurs at the C15-methine bridge leading to a β-facial disposition of the ring D is presented. In the far-red-light absorbing Pfr state, strong hydrogen-bonding interactions of the D-ring carbonyl group to Tyr-263 and of N24 to Asp-207 hold the chromophore in a tensed conformation. Signaling is triggered when Asp-207 is released from its salt bridge to Arg-472, probably inducing conformational changes in the tongue region. A second signal route is initiated by partner swapping of the B-ring propionate between Arg-254 and Arg-222.
Collapse
|
46
|
Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA, Hildebrandt P, Hughes J, Essen L. Spectroscopic and Photochemical Characterization of the Red‐Light Sensitive Photosensory Module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 2011; 87:160-173. [DOI: https:/doi.org/10.1111/j.1751-1097.2010.00845.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
AbstractCyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant‐like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore‐binding GAF domains. Whereas the C‐terminal GAF domain is most likely involved in blue‐light perception, the first two domains correspond to a Cph1‐like photosensory module lacking the PAS domain. Biochemical and spectroscopic studies show that this region switches between red (Pr) and far‐red (Pfr) absorbing states. Unlike Cph1, the Pfr state of Cph2 decays rapidly in darkness. Mutations close to the PCB chromophore further destabilize the Pfr state without drastically affecting the spectroscopic features such as the quantum efficiency of Pr→Pfr conversion, fluorescence, or the Resonance‐Raman signature of the chromophore. Overall, the PAS‐less photosensory module of Cph2 resembles Cph1 including its mode of isomerisation, but the Pfr state is unstable.
Collapse
|
47
|
Mroginski MA, Kaminski S, von Stetten D, Ringsdorf S, Gärtner W, Essen LO, Hildebrandt P. Structure of the chromophore binding pocket in the Pr state of plant phytochrome phyA. J Phys Chem B 2010; 115:1220-31. [PMID: 21192668 DOI: 10.1021/jp108265h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A homology structural model was generated for plant phytochrome phyA utilizing the crystal structure of the sensory module of cyanobacterial phytochrome Cph1 (Cph1Δ2). As chromophores, either the native phytochromobilin cofactor (PΦB) or phycocyanobilin (PCB), the natural cofactor in Cph1, was incorporated. These homology models were further optimized by molecular dynamics (MD) simulations revealing a satisfying overall agreement with the crystal structure of Cph1Δ2. Notable differences in the PΦB adduct of phyA result from a restructuring of the small helical segment α(7) that leads to displacements of a few amino acids away from the cofactor. This repositioning of residues also include aspartate 218 such that, instead of its carbonyl function as in Cph1Δ2, an additional water molecule forms hydrogen bonds with the ring B and C NH groups. To validate the phyA structural model in the chromophore binding pocket, Raman spectra of the cofactor were calculated by means of the quantum mechanics/molecular mechanics (QM/MM) hybrid methodology and compared with the experimental resonance Raman (RR) spectra. The satisfactory overall agreement between calculated and experimental spectra is taken as an indication for the good quality of the structural model. Moreover, the methine bridge stretching modes and the effects of isotopic labeling at selected positions of the chromophore are very well reproduced to allow confirming even details of the methine bridge geometry as predicted by the homology model. Specifically, it is demonstrated that the experimental RR spectra are consistent with a torsional angle of ring D with respect to ring C that is distinctly higher for phyA-PCB (45°) and phyA-PΦB (42°) than for Cph1Δ2 (30°). Raman spectra calculated from different points of the MD trajectory display variations of the mode frequencies and intensities reflecting the structural fluctuations from snapshot to snapshot. The snapshot spectrum of the lowest energy structure and the sum of all snapshot spectra afford an equally good description of the experimental data. Particularly large variations between the snapshots are noted for the N-H in-plane bending mode of the pyrrole rings B and C, which reflect alterations of the hydrogen bond interactions brought about by fluctuations of water molecules in the cofactor cavity. This overestimation of the water molecule mobility is a consequence of the deficiency of the current QM/MM methodology that, due to the lack of appropriate protein force fields, cannot adequately account for the electrostatics in the cofactor pocket.
Collapse
|
48
|
Kaminski S, Mroginski MA. Molecular Dynamics of Phycocyanobilin Binding Bacteriophytochromes: A Detailed Study of Structural and Dynamic Properties. J Phys Chem B 2010; 114:16677-86. [DOI: 10.1021/jp104903u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Steve Kaminski
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
49
|
Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA, Hildebrandt P, Hughes J, Essen LO. Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 2010; 87:160-73. [PMID: 21091956 DOI: 10.1111/j.1751-1097.2010.00845.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant-like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore-binding GAF domains. Whereas the C-terminal GAF domain is most likely involved in blue-light perception, the first two domains correspond to a Cph1-like photosensory module lacking the PAS domain. Biochemical and spectroscopic studies show that this region switches between red (P(r) ) and far-red (P(fr) ) absorbing states. Unlike Cph1, the P(fr) state of Cph2 decays rapidly in darkness. Mutations close to the PCB chromophore further destabilize the P(fr) state without drastically affecting the spectroscopic features such as the quantum efficiency of P(r) →P(fr) conversion, fluorescence, or the Resonance-Raman signature of the chromophore. Overall, the PAS-less photosensory module of Cph2 resembles Cph1 including its mode of isomerisation, but the P(fr) state is unstable.
Collapse
Affiliation(s)
- Katrin Anders
- Department of Chemistry, Philipps University, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shang L, Rockwell NC, Martin SS, Lagarias JC. Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion. Biochemistry 2010; 49:6070-82. [PMID: 20565135 DOI: 10.1021/bi100756x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear tetrapyrroles (bilins) perform important antioxidant and light-harvesting functions in cells from bacteria to humans. To explore the role of the propionate moieties in bilin metabolism, we report the semisynthesis of mono- and diamides of biliverdin IXalpha and those of its non-natural XIIIalpha isomer. Initially, these were examined as substrates of two types of NADPH-dependent biliverdin reductase, BVR and BvdR, and of the representative ferredoxin-dependent bilin reductase, phycocyanobilin:ferredoxin oxidoreductase (PcyA). Our studies indicate that the NADPH-dependent biliverdin reductases are less accommodating to amidation of the propionic acid side chains of biliverdin IXalpha than PcyA, which does not require free carboxylic acid side chains to yield its phytobilin product, phycocyanobilin. Bilin amides were also assembled with BV-type and phytobilin-type apophytochromes, demonstrating a role for the 8-propionate in the formation of the spectroscopically native P(r) dark states of these biliprotein photosensors. Neither ionizable propionate side chain proved to be essential to primary photoisomerization for both classes of phytochromes, but an unsubstituted 12-propionate was required for full photointerconversion of phytobilin-type phytochrome Cph1. Taken together, these studies provide insight into the roles of the ionizable propionate side chains in substrate discrimination by two bilin reductase families while further underscoring the mechanistic differences between the photoconversions of BV-type and phytobilin-type phytochromes.
Collapse
Affiliation(s)
- Lixia Shang
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|