1
|
Van der Meijden RHM, Scholten MH, Nijhuis WH, Sakkers RJB, Sommerdijk N, Akiva A. Correlative Raman spectroscopy and electron microscopy identifies glycogen rich deposits correlated with local structural defects in long bones of type IV osteogenesis imperfecta patients. J Struct Biol 2024:108142. [PMID: 39442776 DOI: 10.1016/j.jsb.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone disease occurring in approximately 1 in 10,000 births, usually as a result of genetic mutation. OI patients suffer from increased fracture risk and - depending on the severity of the disease - deformation of the limbs, which can even lead to perinatal death. Despite extensive studies, the way in which the genetic mutation is translated into structural and compositional anomalies of the tissue is still an open question. Different observations have been reported, ranging from no structural (or chemical) differences to completely chaotic bone structure and composition. Here, we investigated bone samples from two adolescent OI-IV patients, focusing on the bone structure and chemistry in naturally occurring fractures. The exposed fracture plane allows the investigation of the structure and composition of the weakest bone plane. We do so by combining scanning electron microscopy (SEM) imaging with chemical information from Raman microscopy. The exposed fracture planes show different regions within the same tissue, displaying normal osteonal structures next to disorganized osteons and totally disordered structures, while the collagen mineralization in all cases is similar to that of a healthy bone. In addition, we also detected significant amounts of depositions of glycogen-rich, organic, globules of 250-1000nm in size. These depositions point to a role of cellular disfunction in the disorganization of the collagen in qualitative OI. Overall, our results unite multiple, sometimes contradicting views from the literature on qualitative OI.
Collapse
Affiliation(s)
- R H M Van der Meijden
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - M H Scholten
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - W H Nijhuis
- Department of Orthopedic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - R J B Sakkers
- Department of Orthopedic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - N Sommerdijk
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| | - A Akiva
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
4
|
Rosmawati, Tawali AB, Said MI, Zzaman W, Kobun R, Huda N. Characteristics of gelatin from skin and bone of snakehead (Channa striata) extracted with different temperature and time. POTRAVINARSTVO 2021. [DOI: 10.5219/1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to determine the physicochemical properties of the skin and bone of snakehead fish as a potential source of gelatin through extraction at different temperatures and times compared to commercial gelatin. Extraction of skin and bones of wild snakehead fish (Channa striata) at different temperatures (50, 60, 70 ºC) and time (12,18, 24 hours). The pre-treatment process used a 0.1 M Ca (OH) 2 (1:6 w/v) immersion solution for 1 h and continued with 0.05 M citric acid (1:6 b/v) for 5 h. Before pre-treatment, the minerals of bones were degreased with 3% HCL solution for 24 hours. The results of the analysis showed that the differences in raw materials, temperature, and extraction time had a significant effect (p <0.05), as well as interactions among treatments (p <0.05) on the yield and gel strength. The yield of skin and bone tended to increase with extending extraction temperature and time, while the highest gelatin strength was found at 60 °C for 12 hours on the skin and 24 hours for the bone. The best gelatin was accomplished based on the highest performance of gel strength on skin and bones and compared to bovine commercial gelatin. The amino acids of the three types of gelatin showed higher levels of glycine and proline than other types of amino acids. Based on the total residues of each amino acid, skin gelatin and bone gelatin showed more dominant hydrophobic properties than hydrophilic properties, in contrast to bovine commercial gelatin. The three types of gelatin showed diverse chemical compositions, emulsion activity index, emulsion stability, water resistance, and fat binding capacity, which was reflected to be closely related to the source of the raw material and its amino acid content. The FTIR results showed that the extracted snakehead fish skin and bones have the potentiality to be used as gelatin equivalent to a commercial one
Collapse
|
5
|
Shapiro F, Maguire K, Swami S, Zhu H, Flynn E, Wang J, Wu JY. Histopathology of osteogenesis imperfecta bone. Supramolecular assessment of cells and matrices in the context of woven and lamellar bone formation using light, polarization and ultrastructural microscopy. Bone Rep 2021; 14:100734. [PMID: 33665234 PMCID: PMC7898004 DOI: 10.1016/j.bonr.2020.100734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Diaphyseal long bone cortical tissue from 30 patients with lethal perinatal Sillence II and progressively deforming Sillence III osteogenesis imperfecta (OI) has been studied at multiple levels of structural resolution. Interpretation in the context of woven to lamellar bone formation by mesenchymal osteoblasts (MOBLs) and surface osteoblasts (SOBLs) respectively demonstrates lamellar on woven bone synthesis as an obligate self-assembly mechanism and bone synthesis following the normal developmental pattern but showing variable delay in maturation caused by structurally abnormal or insufficient amounts of collagen matrix. The more severe the variant of OI is, the greater the persistence of woven bone and the more immature the structural pattern; the pattern shifts to a structurally stronger lamellar arrangement once a threshold accumulation for an adequate scaffold of woven bone has been reached. Woven bone alone characterizes lethal perinatal variants; variable amounts of woven and lamellar bone occur in progressively deforming variants; and lamellar bone increasingly forms rudimentary and then partially compacted osteons not reaching full compaction. At differing levels of microscopic resolution: lamellar bone is characterized by short, obliquely oriented lamellae with a mosaic appearance in progressively deforming forms; polarization defines tissue conformations and localizes initiation of lamellar formation; ultrastructure of bone forming cells shows markedly dilated rough endoplasmic reticulum (RER) and prominent Golgi bodies with disorganized cisternae and swollen dispersed tubules and vesicles, structural indications of storage disorder/stress responses and mitochondrial swelling in cells with massively dilated RER indicating apoptosis; ultrastructural matrix assessments in woven bone show randomly oriented individual fibrils but also short pericellular bundles of parallel oriented fibrils positioned obliquely and oriented randomly to one another and in lamellar bone show unidirectional fibrils that deviate at slight angles to adjacent bundles and obliquely oriented fibril groups consistent with twisted plywood fibril organization. Histomorphometric indices, designed specifically to document woven and lamellar conformations in normal and OI bone, establish ratios for: i) cell area/total area X 100 indicating the percentage of an area occupied by cells (cellularity index) and ii) total area/number of cells (pericellular matrix domains). Woven bone is more cellular than lamellar bone and OI bone is more cellular than normal bone, but these findings occur in a highly specific fashion with values (high to low) encompassing OI woven, normal woven, OI lamellar and normal lamellar conformations. Conversely, for the total area/number of cells ratio, pericellular matrix accumulations in OI woven are smallest and normal lamellar largest. Since genotype-phenotype correlation is not definitive, interposing histologic/structural analysis allowing for a genotype-histopathologic-phenotype correlation will greatly enhance understanding and clinical management of OI.
Collapse
Affiliation(s)
- Frederic Shapiro
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kathleen Maguire
- Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Srilatha Swami
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hui Zhu
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Palo Alto, CA, USA
| | - Evelyn Flynn
- Orthopaedic Research Laboratory, Boston Children's Hospital, Boston, MA, USA
| | - Jamie Wang
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joy Y Wu
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
6
|
Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mech Behav Biomed Mater 2021; 117:104377. [PMID: 33636677 DOI: 10.1016/j.jmbbm.2021.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023]
Abstract
Osteogenesis imperfecta (OI), a brittle bone disease, is known to result in severe bone fragility. However, its ultrastructural origins are still poorly understood. In this study, we hypothesized that deficient intrafibrillar mineralization is a key contributor to the OI induced bone brittleness. To test this hypothesis, we explored the mechanical and ultrastructural changes in OI bone using the osteogenesis imperfecta murine (oim) model. Synchrotron X-ray scattering experiments indicated that oim bone had much less intrafibrillar mineralization than wild type bone, thus verifying that the loss of mineral crystals indeed primarily occurred in the intrafibrillar space of oim bone. It was also found that the mineral crystals were organized from preferentially in longitudinal axis in wild type bone to more randomly in oim bone. Moreover, it revealed that the deformation of mineral crystals was more coordinated with collagen fibrils in wild type than in oim bone, suggesting that the load transfer deteriorated between the two phases in oim bone. The micropillar test revealed that the compression work to fracture of oim bone (8.2 ± 0.9 MJ/m3) was significantly smaller (p < 0.05) than that of wild type bone (13.9 ± 2.7 MJ/m3), while the bone strength was not statistically different (p > 0.05) between the two genotype groups. In contrast, the uniaxial tensile test showed that the ultimate strength of wild type bone (50 ± 4.5 MPa) was significantly greater (p < 0.05) than that of oim bone (38 ± 5.3 MPa). Furthermore, the nanoscratch test showed that the toughness of oim bone was much less than that of wild type bone (6.6 ± 2.2 GJ/m3 vs. 12.6 ± 1.4 GJ/m3). Finally, in silico simulations using a finite element model of sub-lamellar bone confirmed the links between the reduced intrafibrillar mineralization and the observed changes in the mechanical behavior of OI bone. Taken together, these results provide important mechanistic insights into the underlying cause of poor mechanical quality of OI bone, thus pave the way toward future treatments of this brittle bone disease.
Collapse
Affiliation(s)
| | - Jitin Samuel
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abu Saleh Ahsan
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Pragnère S, Auregan JC, Bosser C, Linglart A, Bensidhoum M, Hoc T, Nouguier-Lehon C, Chaussain C. Human dentin characteristics of patients with osteogenesis imperfecta: insights into collagen-based biomaterials. Acta Biomater 2021; 119:259-267. [PMID: 33122145 DOI: 10.1016/j.actbio.2020.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Osteogenesis imperfecta (OI), also known as "brittle bone disease", is a rare genetic disorder of the skeleton, whose most benign form I corresponds to autosomal dominant mutations in the genes encoding type I collagen (COLA1, COLA2). Several associated skeletal manifestations are often observed but, surprisingly, while dentin defects often reflect genetic bone disorders, about half of OI patients have no obvious oral manifestations. Here, we investigated the collagen, mineral and mechanical properties of dentin from deciduous teeth collected from patients with mild form of OI and displaying no obvious clinical signs of dentinogenesis imperfecta. For the first time, an increase in the hardness of OI dentin associated with an increase in mineral content compared to healthy patients was reported. In addition, OI altered the tissue characteristics of the dentin-enamel junction but the interfacial gradient was preserved. The impact of changes in molecular structure due to mutations in OI was assessed by Raman microspectroscopy. Our results highlighted a change in the hydroxyproline-proline ratio in direct association with collagen mineralization. Our findings suggest that the evaluation of teeth could be an important aid for mild types of OI that are often difficult to diagnose clinically and provide experimental evidence that hydroxyproline content should be considered in future studies on collagen-based biomaterials.
Collapse
Affiliation(s)
- S Pragnère
- Equipex IVTV, Centrale Innovation, 64 Chemin des Mouilles, 69130 Ecully, France
| | - J-C Auregan
- Université de Paris, B3OA, UMR CNRS 7052, INSERM U1271, 10 Avenue de Verdun, 75010 Paris, France; AP-HP, Antoine Béclère Université Paris-Saclay hospital, Orthopeadics Department, 157, rue de la Porte de Trivaux, 92140 Clamart, France
| | - C Bosser
- Equipex IVTV, Centrale Innovation, 64 Chemin des Mouilles, 69130 Ecully, France
| | - A Linglart
- Université de Paris Saclay, Le Kremlin-Bicêtre, France; AP-HP, Department of Endocrinology and Diabetology for children, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of expertise for rare diseases Paris-Sud, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| | - M Bensidhoum
- Université de Paris, B3OA, UMR CNRS 7052, INSERM U1271, 10 Avenue de Verdun, 75010 Paris, France
| | - T Hoc
- Université de Paris, B3OA, UMR CNRS 7052, INSERM U1271, 10 Avenue de Verdun, 75010 Paris, France; Mechanical Department, MSGMGC, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France.
| | - C Nouguier-Lehon
- Université de Lyon, LTDS UMR CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
| | - C Chaussain
- Université de Paris, Dental School, UR2496, Montrouge, F-92120, France; AP-HP Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism (OSCAR, ERN Bond), Dental Medicine Department, Bretonneau Hospital, GHN, 75018 Paris, France
| |
Collapse
|
8
|
Intarak N, Budsamongkol T, Theerapanon T, Chanamuangkon T, Srijunbarl A, Boonprakong L, Porntaveetus T, Shotelersuk V. Tooth ultrastructure of a novel COL1A2 mutation expanding its genotypic and phenotypic spectra. Oral Dis 2020; 27:1257-1267. [PMID: 32989910 DOI: 10.1111/odi.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate tooth ultrastructure and mutation of two patients in a family affected with osteogenesis imperfecta (OI) type IV and dentinogenesis imperfecta (DGI). METHODS Mutations were detected by whole exome and Sanger sequencing. The permanent second molar obtained from the proband (DGI1) and the primary first molar from his affected son (DGI2) were studied for their color, roughness, mineral density, hardness, elastic modulus, mineral content, and ultrastructure, compared to the controls. RESULTS Two novel missense COL1A2 variants, c.752C > T (p.Ser251Phe) and c.758G > T (p.Gly253Val), were identified in both patients. The c.758G > T was predicted to be the causative mutation. Pulp cavities of DGI1 (permanent teeth) were obliterated while those of DGI2 (primary teeth) were wide. The patients' teeth had darker and redder colors; reduced dentin hardness; decreased, disorganized, and scattered dentinal tubules and collagen fibers; and irregular dentinoenamel junction (DEJ), compared to controls. Lacunae-like structures were present in DGI2. CONCLUSIONS We reported the novel causative mutation, c.758G > T (p.Gly253Val), in COL1A2 for OI type IV and DGI. The DGI dentin demonstrated inferior mechanical property and ultrastructure, suggesting severe disturbances of dentin formation. These could contribute to fragility and prone to infection of DGI teeth. This study expands phenotypic and genotypic spectra of COL1A2 mutations.
Collapse
Affiliation(s)
- Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thunyaporn Budsamongkol
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Geriatric Dentistry and Special Patients Care Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Excellence Center in Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
9
|
Milazzo M, Jung GS, Danti S, Buehler MJ. Mechanics of Mineralized Collagen Fibrils upon Transient Loads. ACS NANO 2020; 14:8307-8316. [PMID: 32603087 DOI: 10.1021/acsnano.0c02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales, highlighting material features across hierarchical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (i.e., overlap and gap) of the D-period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young's moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger damping effect upon faster inputs compatible to the bone behavior at the macroscale. Our results offer insights into the dissipative behavior of mineralized collagen composites to design and characterize bioinspired composites for replacement devices (e.g., prostheses for sound transmission or conduction) or optimized structures able to bear transient loads, for example, impact, fatigue, in structural applications.
Collapse
Affiliation(s)
- Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
van Huizen NA, Ijzermans JNM, Burgers PC, Luider TM. Collagen analysis with mass spectrometry. MASS SPECTROMETRY REVIEWS 2020; 39:309-335. [PMID: 31498911 DOI: 10.1002/mas.21600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry-based techniques can be applied to investigate collagen with respect to identification, quantification, supramolecular organization, and various post-translational modifications. The continuous interest in collagen research has led to a shift from techniques to analyze the physical characteristics of collagen to methods to study collagen abundance and modifications. In this review, we illustrate the potential of mass spectrometry for in-depth analyses of collagen.
Collapse
Affiliation(s)
- Nick A van Huizen
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Mechanobiologically induced bone-like nodules: Matrix characterization from micro to nanoscale. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102256. [PMID: 32615337 DOI: 10.1016/j.nano.2020.102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
In bone tissue engineering, stem cells are known to form inhomogeneous bone-like nodules on a micrometric scale. Herein, micro- and nano-infrared (IR) micro-spectroscopies were used to decipher the chemical composition of the bone-like nodule. Histological and immunohistochemical analyses revealed a cohesive tissue with bone-markers positive cells surrounded by dense mineralized type-I collagen. Micro-IR gathered complementary information indicating a non-mature collagen at the top and periphery and a mature collagen within the nodule. Atomic force microscopy combined to IR (AFM-IR) analyses showed distinct spectra of "cell" and "collagen" rich areas. In contrast to the "cell" area, spectra of "collagen" area revealed the presence of carbohydrate moieties of collagen and/or the presence of glycoproteins. However, it was not possible to determine the collagen maturity, due to strong bands overlapping and/or possible protein orientation effects. Such findings could help developing protocols to allow a reliable characterization of in vitro generated complex bone tissues.
Collapse
|
12
|
Kirkness MWH, Lehmann K, Forde NR. Mechanics and structural stability of the collagen triple helix. Curr Opin Chem Biol 2019; 53:98-105. [DOI: 10.1016/j.cbpa.2019.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
|
13
|
Mansoor N, Wahid F, Azam M, Shah K, den Hollander AI, Qamar R, Ayub H. Molecular Mechanisms of Complement System Proteins and Matrix Metalloproteinases in the Pathogenesis of Age-Related Macular Degeneration. Curr Mol Med 2019; 19:705-718. [PMID: 31456517 DOI: 10.2174/1566524019666190828150625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Age-related macular degeneration (AMD) is an eye disorder affecting predominantly the older people above the age of 50 years in which the macular region of the retina deteriorates, resulting in the loss of central vision. The key factors associated with the pathogenesis of AMD are age, smoking, dietary, and genetic risk factors. There are few associated and plausible genes involved in AMD pathogenesis. Common genetic variants (with a minor allele frequency of >5% in the population) near the complement genes explain 40-60% of the heritability of AMD. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. Genetic changes in and around several complement system genes, including the CFH, contribute to the formation of drusen and progression of AMD. Similarly, Matrix metalloproteinases (MMPs) that are normally involved in tissue remodeling also play a critical role in the pathogenesis of AMD. MMPs are involved in the degradation of cell debris and lipid deposits beneath retina but with age their functions get affected and result in the drusen formation, succeeding to macular degeneration. In this review, AMD pathology, existing knowledge about the normal and pathological role of complement system proteins and MMPs in the eye is reviewed. The scattered data of complement system proteins, MMPs, drusenogenesis, and lipofusogenesis have been gathered and discussed in detail. This might add new dimensions to the understanding of molecular mechanisms of AMD pathophysiology and might help in finding new therapeutic options for AMD.
Collapse
Affiliation(s)
- Naima Mansoor
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Maleeha Azam
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Raheel Qamar
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
14
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Ghanaeian A, Soheilifard R. Mechanical elasticity of proline-rich and hydroxyproline-rich collagen-like triple-helices studied using steered molecular dynamics. J Mech Behav Biomed Mater 2018; 86:105-112. [DOI: 10.1016/j.jmbbm.2018.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 02/03/2023]
|
16
|
Eng CM, Roberts TJ. Aponeurosis influences the relationship between muscle gearing and force. J Appl Physiol (1985) 2018; 125:513-519. [PMID: 29792551 PMCID: PMC6139511 DOI: 10.1152/japplphysiol.00151.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 11/22/2022] Open
Abstract
Aponeuroses are connective tissues found on the surface of pennate muscles and are in close association with muscle fascicles. In addition to transmitting muscle forces to the external tendon, aponeurosis has been hypothesized to influence the direction of muscle shape change during a contraction. Muscle shape changes affect muscle contractile force and velocity because they influence the gear ratio with which muscle fascicles transmit force and velocity to the tendon. If aponeurosis modulates muscle shape changes, altering the aponeurosis' radial integrity with incisions should alter gearing. We tested the hypothesis that incising the aponeurosis would lead to decreased gearing across force conditions with an in situ preparation of the turkey lateral gastrocnemius muscle. We found that multiple full-length incisions in the aponeurosis altered the relationship between gearing and force relative to the intact aponeurosis condition. Specifically, after multiple aponeurosis incisions, gear ratio decreased by 19% in the high-force contractions compared with the intact condition. These results suggest that aponeuroses influence muscle shape change and can alter muscle contractile force and speed through their effect on muscle gearing. NEW & NOTEWORTHY Muscle gearing is determined by muscle shape change during a contraction and varies with the force of contraction. Variable gearing influences muscle force and speed, but how gearing is modulated is not well understood. Incising the aponeurosis before and after contractions demonstrates that aponeurosis plays a role in modulating gearing.
Collapse
Affiliation(s)
- Carolyn M Eng
- Department of Ecology and Evolutionary Biology, Brown University , Providence, Rhode Island
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University , Providence, Rhode Island
| |
Collapse
|
17
|
Yeo J, Jung G, Tarakanova A, Martín-Martínez FJ, Qin Z, Cheng Y, Zhang YW, Buehler MJ. Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations. EXTREME MECHANICS LETTERS 2018; 20:112-124. [PMID: 33344740 PMCID: PMC7745951 DOI: 10.1016/j.eml.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Scleroproteins are an important category of proteins within the human body that adopt filamentous, elongated conformations in contrast with typical globular proteins. These include keratin, collagen, and elastin, which often serve a common mechanical function in structural support of cells and tissues. Genetic mutations alter these proteins, disrupting their functions and causing diseases. Computational characterization of these mutations has proven to be extremely valuable in identifying the intricate structure-function relationships of scleroproteins from the molecular scale up, especially if combined with multiscale experimental analysis and the synthesis of model proteins to test specific structure-function relationships. In this work, we review numerous critical diseases that are related to keratin, collagen, and elastin, and through several case studies, we propose ways of extensively utilizing multiscale modeling, from atomistic to coarse-grained molecular dynamics simulations, to uncover the molecular origins for some of these diseases and to aid in the development of novel cures and therapies. As case studies, we examine the effects of the genetic disease Epidermolytic Hyperkeratosis (EHK) on the structure and aggregation of keratins 1 and 10; we propose models to understand the diseases of Osteogenesis Imperfecta (OI) and Alport syndrome (AS) that affect the mechanical and aggregation properties of collagen; and we develop atomistic molecular dynamics and elastic network models of elastin to determine the role of mutations in diseases such as Cutis Laxa and Supravalvular Aortic Stenosis on elastin's structure and molecular conformational motions and implications for assembly.
Collapse
Affiliation(s)
- Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - GangSeob Jung
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francisco J. Martín-Martínez
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuan Cheng
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta. J Biomech 2017; 64:103-111. [DOI: 10.1016/j.jbiomech.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/12/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023]
|
19
|
An B, Chang SW, Hoop C, Baum J, Buehler MJ, Kaplan DL. Structural Insights into the Glycine Pair Motifs in Type III Collagen. ACS Biomater Sci Eng 2017; 3:269-278. [PMID: 33465926 DOI: 10.1021/acsbiomaterials.6b00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human type III collagen has been suggested to play vital roles in a series of pathophysiological conditions. Sequence analysis among major fibril-forming collagens (types I, II, and III) revealed that Gly-Gly pairs are a distinct sequence feature in type III collagen. This motif occurs more than five times as often in type III compared to type I and II collagens. We used an integrated computational modeling and biophysical approach to analyze the glycine pair motifs to understand how they govern the structure of type III collagen at the molecular level. Triple helical peptides to model the regions of type III collagen containing GG motifs were used to analyze structural and thermodynamic effects of GG incorporation into the collagen sequence. We found that when amino acids adjacent to a GG motif are charged, the collagen adopts a more flexible, random conformation. The GG motif led to altered hydrogen bond patterns and decreased global melting temperatures of the triple helical peptides. The local entropic destabilization effect of the glycine pair helps explain the difference in the flexibility between types I and III collagen fibrils. This finding reveals potential physiological roles of type III collagen in regulating the mechanical properties of collagen fibrils and may enable the design of future collagen-like materials with tunable mechanical properties.
Collapse
Affiliation(s)
- Bo An
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cody Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. BONEKEY REPORTS 2016; 5:829. [PMID: 27579166 DOI: 10.1038/bonekey.2016.60] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022]
Abstract
Ageing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological loading is carried by the cortical shell. Its role in the fracture resistance and strength of whole bones in the ageing skeleton is of utmost importance. Even though a large body of knowledge has been accumulated on this topic on the macroscale, the underlying micromechanical material behaviour and the scale transition of bone's mechanical properties are yet to be uncovered. Therefore, this review aims at providing an overview of the state-of-the-art of the post-yield and failure properties of cortical bone at the extracellular matrix and the tissue level.
Collapse
Affiliation(s)
- Uwe Wolfram
- School of Engineering and Physical Science, Institute for Mechanical, Process and Energy Engineering, Heriot-Watt University , Edinburgh, UK
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures , Thun, Switzerland
| |
Collapse
|
21
|
Li T, Chang SW, Rodriguez-Florez N, Buehler MJ, Shefelbine S, Dao M, Zeng K. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. Biomaterials 2016; 107:15-22. [PMID: 27589372 DOI: 10.1016/j.biomaterials.2016.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022]
Abstract
Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease.
Collapse
Affiliation(s)
- Tao Li
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Jee SE, Zhou J, Tan J, Breschi L, Tay FR, Grégoire G, Pashley DH, Jang SS. Investigation of ethanol infiltration into demineralized dentin collagen fibrils using molecular dynamics simulations. Acta Biomater 2016; 36:175-85. [PMID: 26969524 DOI: 10.1016/j.actbio.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/18/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study is to investigate the interaction of neat ethanol with bound and non-bound water in completely demineralized dentin that is fully hydrated, using molecular dynamics (MD) simulation method. The key to creating ideal resin-dentin bonds is the removal of residual free water layers and its replacement by ethanol solvent in which resin monomers are soluble, using the ethanol wet-bonding technique. The test null hypotheses were that ethanol cannot remove any collagen-bound water, and that ethanol cannot infiltrate into the spacing between collagen triple helix due to narrow interlayer spacing. Collagen fibrillar structures of overlap and gap regions were constructed by aligning the collagen triple helix of infinite length in hexagonal packing. Three layers of the water molecules were specified as the layers of 0.15-0.22nm, 0.22-0.43nm and 0.43-0.63nm from collagen atoms by investigating the water distribution surrounding collagen molecules. Our simulation results show that ethanol molecules infiltrated into the intermolecular spacing in the gap region, which increased due to the lateral shrinkage of the collagen structures in contact with ethanol solution, while there was no ethanol infiltration observed in the overlap region. Infiltrated ethanol molecules in the gap region removed residual water molecules via modifying mostly the third water layer (50% decrease), which would be considered as a loosely-bound water layer. The first and second hydration layers, which would be considered as tightly bound water layers, were not removed by the ethanol molecules, thus maintaining the helical structures of the collagen molecules.
Collapse
|
23
|
Sabet FA, Raeisi Najafi A, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus 2016; 6:20150055. [PMID: 26855749 PMCID: PMC4686238 DOI: 10.1098/rsfs.2015.0055] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this paper, we review analytical and computational models of bone fracture and strength. Bone fracture is a complex phenomenon due to the composite, inhomogeneous and hierarchical structure of bone. First, we briefly summarize the hierarchical structure of bone, spanning from the nanoscale, sub-microscale, microscale, mesoscale to the macroscale, and discuss experimental observations on failure mechanisms in bone at these scales. Then, we highlight representative analytical and computational models of bone fracture and strength at different length scales and discuss the main findings in the context of experiments. We conclude by summarizing the challenges in modelling of bone fracture and strength and list open topics for scientific exploration. Modelling of bone, accounting for different scales, provides new and needed insights into the fracture and strength of bone, which, in turn, can lead to improved diagnostic tools and treatments of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
25
|
Duan X, Liu Z, Gan Y, Xia D, Li Q, Li Y, Yang J, Gao S, Dong M. Mutations in COL1A1 Gene Change Dentin Nanostructure. Anat Rec (Hoboken) 2015; 299:511-9. [PMID: 26694865 DOI: 10.1002/ar.23308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022]
Abstract
Although many studies have attempted to associate specific gene mutations with dentin phenotypic severity, it remains unknown how the mutations in COL1A1 gene influence the mechanical behavior of dentin collagen and matrix. Here, we reported one osteogenesis imperfecta (OI) pedigree caused by two new inserting mutations in exon 5 of COL1A1 (NM_000088.3:c.440_441insT;c.441_442insA), which resulted in the unstable expression of COL1A1 mRNA and half quantity of procollagen production. We investigated the morphological and mechanical features of proband's dentin using atomic force microscope (AFM), scanning electron microscope, and transmission electron microscope. Increased D-periodic spacing, variably enlarged collagen fibrils coating with fewer minerals were found in the mutated collagen. AFM analysis demonstrated rougher dentin surface and sparsely decreased Young's modulus in proband's dentin. We believe that our findings provide new insights into the genetic-/nano- mechanisms of dentin diseases, and may well explain OI dentin features with reduced mechanical strength and a lower crosslinked density.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenxia Liu
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunna Gan
- Department of Prosthodontics School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Dan Xia
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark
| | - Qiang Li
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark
| | - Yanling Li
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jiaji Yang
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shan Gao
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Central South University, Changsha, Hunan, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark
| |
Collapse
|
26
|
Andriotis OG, Chang SW, Vanleene M, Howarth PH, Davies DE, Shefelbine SJ, Buehler MJ, Thurner PJ. Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model. J R Soc Interface 2015; 12:20150701. [PMID: 26468064 PMCID: PMC4614505 DOI: 10.1098/rsif.2015.0701] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry.
Collapse
Affiliation(s)
- O G Andriotis
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, Vienna 1060, Austria Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| | - S W Chang
- Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Vanleene
- Department of Bioengineering, Imperial College London, London, UK
| | - P H Howarth
- The Brooke Laboratories, Division of Infection, Inflammation and Immunity, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - D E Davies
- The Brooke Laboratories, Division of Infection, Inflammation and Immunity, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - S J Shefelbine
- Department of Bioengineering, Imperial College London, London, UK Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - M J Buehler
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P J Thurner
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, Vienna 1060, Austria Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
27
|
Radunovic Z, Steine K. Prevalence of Cardiovascular Disease and Cardiac Symptoms: Left and Right Ventricular Function in Adults With Osteogenesis Imperfecta. Can J Cardiol 2015; 31:1386-92. [PMID: 26416541 DOI: 10.1016/j.cjca.2015.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/11/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI), also known as brittle bone disease or Lobstein syndrome, is a congenital bone disorder characterized by brittle bones that are prone to fracture. People with OI are born with defective connective tissue in most cases secondary to a deficiency of type-I collagen, which represents approximately 75% of total collagen in the adult myocardium. The purpose of our study was to assess the prevalence of cardiomyopathy, electrocardiogram (ECG) abnormalities, and cardiovascular symptoms among patients with OI. METHODS We studied 99 adults with OI from the national OI registry in Norway. Patients were divided into type I, III, and IV, and 52 control subjects. History and physical examination, ECG, and echocardiographic parameters of left ventricular (LV) and right ventricular (RV) systolic and diastolic function were obtained. RESULTS ECG abnormalities and cardiac symptoms were more common among patients with OI. RV and LV systolic peak velocity were significantly lower and diastolic mitral tricuspid valve wave and early diastolic tissue Doppler velocity ratio increased in the OI group compared with the control subjects; 5.7 ± 1.2 vs 6.3 ± 1.2 cm/s (P < 0.05) and 8 ± 1.8 vs 9.5 ± 1.4 cm/s (P < 0.05) and 9.8 ± 2.6 vs 7.4 ± 2.0 (P < 0.05) and 8.6 ± 3.3 vs 6.1 ± 1.4, respectively. In multivariate analysis OI was found to be an independent risk factor for RV systolic and diastolic dysfunction. CONCLUSIONS Cardiac symptoms and ECG changes are common among patients with OI. Our study findings suggest RV and LV systolic and diastolic function to be impaired in patients with OI compared with normal individuals. In multivariate analysis, however, OI was an independent predictor only of reduced RV systolic and diastolic function.
Collapse
Affiliation(s)
- Zoran Radunovic
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Steine
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Akershus University Hospital, Oslo, Norway.
| |
Collapse
|
28
|
Shi X, Lu Y, Wang Y, Zhang YA, Teng Y, Han W, Han Z, Li T, Chen M, Liu J, Fang F, Dou C, Ren X, Han J. Heterozygous mutation of c.3521C>T in COL1A1 may cause mild osteogenesis imperfecta/Ehlers-Danlos syndrome in a Chinese family. Intractable Rare Dis Res 2015; 4:49-53. [PMID: 25674388 PMCID: PMC4322595 DOI: 10.5582/irdr.2014.01039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 11/05/2022] Open
Abstract
Osteogenesis imperfecta (OI) is an inheritable connective tissue disorder with a broad clinical heterozygosis, which can be complicated by other connective tissue disorders like Ehlers-Danlos syndrome (EDS). OI/EDS are rarely documented. Most OI/EDS mutations are located in the N-anchor region of type I procollagen and predominated by glycine substitution. We identified a c.3521C>T (p.A1174V) heterozygous mutation in COL1A1 gene in a four-generation pedigree with proposed mild OI/EDS phenotype. The affected individuals had blue sclera and dentinogenesis imperfecta (DI) was uniformly absent. The OI phenotype varied from mild to moderate, with the absence of scoliosis and increased skin extensibility. Easy bruising, joint dislocations and high Beighton score were present in some affected individuals. EDS phenotype is either mild or unremarkable in some individuals. The mutation is poorly conserved and in silico prediction support the relatively mild phenotype. The molecular mechanisms of the mutation that leads to the possible OI/EDS phenotype should be further identified by biochemical analysis of N-propeptide processing and steady state collagen analysis.
Collapse
Affiliation(s)
- Xianlong Shi
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanzhou Wang
- Department of Paediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, China
| | - Yu-ang Zhang
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yuanwei Teng
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wanshui Han
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Zhenzhong Han
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Tianyou Li
- Department of Paediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, China
| | - Mei Chen
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Junlong Liu
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Fengling Fang
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Conghui Dou
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
- Address correspondence to: Dr. Jinxiang Han, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062 China. E-mail: Dr. Xiuzhi Ren, The People's Hospital of Wuqing District, 100 Yongyang West Road, Tianjin 301700, China. E-mail:
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to: Dr. Jinxiang Han, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062 China. E-mail: Dr. Xiuzhi Ren, The People's Hospital of Wuqing District, 100 Yongyang West Road, Tianjin 301700, China. E-mail:
| |
Collapse
|
29
|
Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response. Top Curr Chem (Cham) 2015; 369:317-43. [PMID: 26108895 DOI: 10.1007/128_2015_643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales.
Collapse
|
30
|
Genin GM. Nanoscopic injury with macroscopic consequences: tau proteins as mediators of diffuse axonal injury. Biophys J 2014; 106:1551-2. [PMID: 24739151 DOI: 10.1016/j.bpj.2014.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Affiliation(s)
- Guy M Genin
- Department of Mechanical Engineering and Materials Science, and Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
31
|
Zhou Z, Minary-Jolandan M, Qian D. A simulation study on the significant nanomechanical heterogeneous properties of collagen. Biomech Model Mechanobiol 2014; 14:445-57. [DOI: 10.1007/s10237-014-0615-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
32
|
Imbert L, Aurégan JC, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 2014; 65:18-24. [PMID: 24803077 DOI: 10.1016/j.bone.2014.04.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/18/2014] [Accepted: 04/25/2014] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength.
Collapse
Affiliation(s)
- Laurianne Imbert
- LTDS UMR CNRS 5513, Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Jean-Charles Aurégan
- Department of Pediatric Orthopedics, Necker - Enfants Malades Hospital, AP-HP, Paris Descartes University, 145 rue de Sèvres, 75014 Paris, France; B2OA UMR CNRS 7052, University Paris-Diderot, 10 avenue de Verdun, 75010 Paris, France
| | - Kélig Pernelle
- LTDS UMR CNRS 5513, Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Thierry Hoc
- LTDS UMR CNRS 5513, Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
33
|
Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014; 20:1003-16. [PMID: 24938626 PMCID: PMC4072585 DOI: 10.12659/msm.889887] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of permanent, irreversible, central blindness (scotoma in the central visual field that makes reading and writing impossible, stereoscopic vision, recognition of colors and details) in patients over the age of 50 years in European and North America countries, and an important role is attributed to disorders in the regulation of the extracellular matrix (ECM). The main aim of this article is to present the crucial processes that occur on the level of Bruch’s membrane, with special consideration of the metalloproteinase substrates, metalloproteinase, and tissue inhibitor of metalloproteinase (TIMP). A comprehensive review of the literature was performed through MEDLINE and PubMed searches, covering the years 2005–2012, using the following keywords: AMD, extracellular matrix, metalloproteinases, tissue inhibitors of metalloproteinases, Bruch’s membrane, collagen, elastin. In the pathogenesis of AMD, a significant role is played by collagen type I and type IV; elastin; fibulin-3, -5, and -6; matrix metalloproteinase (MMP)-2, MMP-9, MMP-14, and MMP-1; and TIMP-3. Other important mechanisms include: ARMS2 and HTR1 proteins, the complement system, the urokinase plasminogen activator system, and pro-renin receptor activation. Continuous rebuilding of the extracellular matrix occurs in both early and advanced AMD, simultaneously with the dysfunction of retinal pigment epithelium (RPE) cells and endothelial cells. The pathological degradation or accumulation of ECM structural components are caused by impairment or hyperactivity of specific MMPs/TIMPs complexes, and is also endangered by the influence of other mechanisms connected with both genetic and environmental factors.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", Katowice, Poland
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| | - Wanda Romaniuk
- Department of Ophthalmology, Medical University of Silesia, Independent Public Clinical Hospital, Katowice, Poland
| |
Collapse
|
34
|
Das RK, Zouani OF. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials 2014; 35:5278-5293. [PMID: 24720880 DOI: 10.1016/j.biomaterials.2014.03.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 12/14/2022]
Abstract
Physicochemical features of a cell nanoenvironment exert important influence on stem cell behavior and include the influence of matrix elasticity and topography on differentiation processes. The presence of growth factors such as TGF-β and BMPs on these matrices provides chemical cues and thus plays vital role in directing eventual stem cell fate. Engineering of functional biomimetic scaffolds that present programmed spatio-temporal physical and chemical signals to stem cells holds great promise in stem cell therapy. Progress in this field requires tacit understanding of the mechanistic aspects of cell-environment nanointeractions, so that they can be manipulated and exploited for the design of sophisticated next generation biomaterials. In this review, we report and discuss the evolution of these processes and pathways in the context of matrix adhesion as they might relate to stemness and stem cell differentiation. Super-resolution microscopy and single-molecule methods for in vitro nano-manipulation are helping to identify and characterize the molecules and mechanics of structural transitions within stem cells and matrices. All these advances facilitate research toward understanding of stem cell niche and consequently to developing new class of biomaterials helping the "used biomaterials" for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Rajat K Das
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Omar F Zouani
- AVEGEM, Parc Unitec 1, 2 Allée du Doyen Georges Brus, 33600 Pessac, France.
| |
Collapse
|
35
|
Hardisty MR, Zauel R, Stover SM, Fyhrie DP. The importance of intrinsic damage properties to bone fragility: a finite element study. J Biomech Eng 2014; 135:011004. [PMID: 23363215 DOI: 10.1115/1.4023090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As the average age of the population has increased, the incidence of age-related bone fracture has also increased. While some of the increase of fracture incidence with age is related to loss of bone mass, a significant part of the risk is unexplained and may be caused by changes in intrinsic material properties of the hard tissue. This investigation focused on understanding how changes to the intrinsic damage properties affect bone fragility. We hypothesized that the intrinsic (μm) damage properties of bone tissue strongly and nonlinearly affect mechanical behavior at the apparent (whole tissue, cm) level. The importance of intrinsic properties on the apparent level behavior of trabecular bone tissue was investigated using voxel based finite element analysis. Trabecular bone cores from human T12 vertebrae were scanned using microcomputed tomography (μCT) and the images used to build nonlinear finite element models. Isotropic and initially homogenous material properties were used for all elements. The elastic modulus (E(i)) of individual elements was reduced with a secant damage rule relating only principal tensile tissue strain to modulus damage. Apparent level resistance to fracture as a function of changes in the intrinsic damage properties was measured using the mechanical energy to failure per unit volume (apparent toughness modulus, W(a)) and the apparent yield strength (σ(ay), calculated using the 0.2% offset). Intrinsic damage properties had a profound nonlinear effect on the apparent tissue level mechanical response. Intrinsic level failure occurs prior to apparent yield strength (σ(ay)). Apparent yield strength (σ(ay)) and toughness vary strongly (1200% and 400%, respectively) with relatively small changes in the intrinsic damage behavior. The range of apparent maximum stresses predicted by the models was consistent with those measured experimentally for these trabecular bone cores from the experimental axial compressive loading (experimental: σ(max) = 3.0-4.3 MPa; modeling: σ(max) = 2-16 MPa). This finding differs significantly from previous studies based on nondamaging intrinsic material models. Further observations were that this intrinsic damage model reproduced important experimental apparent level behaviors including softening after peak load, microdamage accumulation before apparent yield (0.2% offset), unload softening, and sensitivity of the apparent level mechanical properties to variability of the intrinsic properties.
Collapse
Affiliation(s)
- M R Hardisty
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
36
|
Computational Study of a Heterostructural Model of Type I Collagen and Implementation of an Amino Acid Potential Method Applicable to Large Proteins. Polymers (Basel) 2014. [DOI: 10.3390/polym6020491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Etemadi M, Chung P, Heller JA, Liu JA, Rand L, Roy S. Towards BirthAlert--A Clinical Device Intended for Early Preterm Birth Detection. IEEE Trans Biomed Eng 2013; 60:3484-93. [PMID: 23893706 PMCID: PMC4605421 DOI: 10.1109/tbme.2013.2272601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Preterm birth causes 1 million infant deaths worldwide every year, making it the leading cause of infant mortality. Existing diagnostic tests such as transvaginal ultrasound or fetal fibronectin either cannot determine if preterm birth will occur in the future or can only predict the occurrence once cervical shortening has begun, at which point it is too late to reverse the accelerated parturition process. Using iterative and rapid prototyping techniques, we have developed an intravaginal proof-of-concept device that measures both cervical bioimpedance and cervical fluorescence to characterize microstructural changes in a pregnant woman's cervix in hopes of detecting preterm birth before macroscopic changes manifest in the tissue. If successful, such an early alert during this "silent phase" of the preterm birth syndrome may open a new window of opportunity for interventions that may reverse and avoid preterm birth altogether.
Collapse
Affiliation(s)
- Mozziyar Etemadi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA
| | - Philip Chung
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA ()
| | - J. Alex Heller
- University of California, San Francisco, CA 94158 USA, and also with the University of California, Berkeley, CA 94720 USA ()
| | - Jonathan A. Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA ()
| | - Larry Rand
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143 USA ()
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA ()
| |
Collapse
|
38
|
Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 2013; 4:1724. [PMID: 23591891 PMCID: PMC3644085 DOI: 10.1038/ncomms2720] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/08/2013] [Indexed: 01/09/2023] Open
Abstract
Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. Bone is a natural composite of collagen and hydroxyapatite but, surprising, little is known about its characteristics at the molecular scale. Nair et al. conduct molecular-scale simulations of mineralized collagen networks to better understand how bone achieves superior mechanical properties to its constituents.
Collapse
|
39
|
Cardiovascular involvement in children with osteogenesis imperfecta. IRANIAN JOURNAL OF PEDIATRICS 2013; 23:513-8. [PMID: 24800009 PMCID: PMC4006498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/04/2013] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Osteogenesis imperfecta is a hereditary disease resulting from mutation in type I procollagen genes. One of the extra skeletal manifestations of this disease is cardiac involvement. The prevalence of cardiac involvement is still unknown in the children with osteogenesis imperfecta. The present study aimed to investigate the prevalence of cardiovascular abnormalities in these patients. METHODS 24 children with osteogenesis imperfecta and 24 normal children who were matched with the patients regarding sex and age were studied. In both groups, standard echocardiography was performed, and heart valves were investigated. Dimensions of left ventricle, aorta annulus, sinotubular junction, ascending and descending aorta were measured and compared between the two groups. FINDINGS The results revealed no significant difference between the two groups regarding age, sex, ejection fraction, shortening fraction, mean of aorta annulus, sinotubular junction, ascending and descending aorta, but after correction based on the body surface area, dimensions of aorta annulus, sinotubular junction, ascending and descending aorta in the patients were significantly higher than those in the control group (P<0.05). Two (8.3%) patients had aortic insufficiency and five (20%) patients had tricuspid regurgitation, three of whom had gradient >25 mmHg and one patient had pulmonary insufficiency with indirect evidence of pulmonary hypertension. According to Z scores of aorta annulus, sinotubular junction and ascending aorta, 5, 3, and 1 out of 24 patients had Z scores >2 respectively. CONCLUSION The prevalence of valvular heart diseases and aortic root dilation was higher in children with osteogenesis imperfecta. In conclusion, cardiovascular investigation is recommended in these children.
Collapse
|
40
|
Fang M, Holl MMB. Variation in type I collagen fibril nanomorphology: the significance and origin. BONEKEY REPORTS 2013; 2:394. [PMID: 24422113 DOI: 10.1038/bonekey.2013.128] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
Although the axial D-periodic spacing is a well-recognized nanomorphological feature of type I collagen fibrils, the existence of a distribution of values has been largely overlooked since its discovery seven decades ago. Studies based on single fibril measurements occasionally noted variation in D-spacing values, but accredited it with no biological significance. Recent quantitative characterizations supported that a 10-nm collagen D-spacing distribution is intrinsic to collagen fibrils in various tissues as well as in vitro self-assembly of reconstituted collagen. In addition, the distribution is altered in Osteogenesis Imperfecta and long-term estrogen deprivation. Bone collagen is organized into lamellar sheets of bundles at the micro-scale, and D-spacings within a bundle of a lamella are mostly identical, whereas variations among different bundles contribute to the full-scale distribution. This seems to be a very general phenomenon for the protein as the same type of D-spacing/bundle organization is observed for dermal and tendon collagen. More research investigation of collagen nanomorphology in connection to bone biology is required to fully understand these new observations. Here we review the data demonstrating the existence of a D-spacing distribution, the impact of disease on the distribution and possible explanations for the origin of D-spacing variations based on various collagen fibrillogenesis models.
Collapse
Affiliation(s)
- Ming Fang
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| | | |
Collapse
|
41
|
Abstract
Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases.
Collapse
Affiliation(s)
- Simone Vesentini
- Biomechanics Group, Department of Electronics, Information and Bioengineering, Politecnico of Milan, Milan, Italy
| | | | | |
Collapse
|
42
|
Das RK, Zouani OF, Labrugère C, Oda R, Durrieu MC. Influence of nanohelical shape and periodicity on stem cell fate. ACS NANO 2013; 7:3351-3361. [PMID: 23451935 DOI: 10.1021/nn4001325] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microenvironments such as protein composition, physical features, geometry, and elasticity play important roles in stem cell lineage specification. The components of the extracellular matrix are known to subsequently assemble into fibrillar networks in vivo with defined periodicity. However, the effect of the most critical parameter, which involves the periodicity of these fibrillar networks, on the stem cell fate is not yet investigated. Here, we show the effect of synthetic fibrillar networks patterned with nanometric periodicities, using bottom-up approaches, on the response of stem cells. We have used helical organic nanoribbons based on self-assemblies of Gemini-type amphiphiles to access chiral silica nanoribbons with two different shapes and periodicities (twisted ribbons and helical ribbons) from the same native self-assembled organic nanostructure. We demonstrate the covalent grafting of these silica nanoribbons onto activated glass substrates and the influence of this programmed isotropically oriented matrix to direct the commitment of human mesenchymal stem cells (hMSCs) into osteoblast lineage in vitro, free of osteogenic-inducing media. The specific periodicity of 63 nm (±5 nm) with helical ribbon shape induces specific cell adhesion through the fibrillar focal adhesion formation and leads to stem cell commitment into osteoblast lineage. In contrast, the matrix of periodicity 100 nm (±15 nm) with twisted ribbon shape does not lead to osteoblast commitment. The inhibition of non-muscle myosin II with blebbistatin is sufficient to block this osteoblast commitment on helical nanoribbon matrix, demonstrating that stem cells interpret the nanohelical shape and periodicity environment physically. These results indicate that hMSCs could interpret nanohelical shape and periodicity in the same way they sense microenvironment elasticity. This provides a promising tool to promote hMSC osteogenic capacity, which can be exploited in a 3D scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Rajat K Das
- UMR 5248 CBMN, CNRS-Université de Bordeaux-ENITAB, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | | | | | | | | |
Collapse
|
43
|
Cranford SW, de Boer J, van Blitterswijk C, Buehler MJ. Materiomics: an -omics approach to biomaterials research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:802-24. [PMID: 23297023 DOI: 10.1002/adma.201202553] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/13/2012] [Indexed: 05/20/2023]
Abstract
The past fifty years have seen a surge in the use of materials for clinical application, but in order to understand and exploit their full potential, the scientific complexity at both sides of the interface--the material on the one hand and the living organism on the other hand--needs to be considered. Technologies such as combinatorial chemistry, recombinant DNA as well as computational multi-scale methods can generate libraries with a very large number of material properties whereas on the other side, the body will respond to them depending on the biological context. Typically, biological systems are investigated using both holistic and reductionist approaches such as whole genome expression profiling, systems biology and high throughput genetic or compound screening, as already seen, for example, in pharmacology and genetics. The field of biomaterials research is only beginning to develop and adopt these approaches, an effort which we refer to as "materiomics". In this review, we describe the current status of the field, and its past and future impact on the biomedical sciences. We outline how materiomics sets the stage for a transformative change in the approach to biomaterials research to enable the design of tailored and functional materials for a variety of properties in fields as diverse as tissue engineering, disease diagnosis and de novo materials design, by combining powerful computational modelling and screening with advanced experimental techniques.
Collapse
Affiliation(s)
- Steven W Cranford
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
44
|
Albert C, Jameson J, Toth JM, Smith P, Harris G. Bone properties by nanoindentation in mild and severe osteogenesis imperfecta. Clin Biomech (Bristol, Avon) 2013; 28:110-6. [PMID: 23141422 DOI: 10.1016/j.clinbiomech.2012.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/26/2012] [Accepted: 10/11/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility. Previous research suggests that impaired collagen network and abnormal mineralization affect bone tissue properties, however, little data is yet available to describe bone material properties in individuals with this disorder. Bone material properties have not been characterized in individuals with the most common form of osteogenesis imperfecta, type I. METHODS Bone tissue elastic modulus and hardness were measured by nanoindentation in eleven osteotomy specimens that were harvested from children with osteogenesis imperfecta during routine surgeries. These properties were compared between osteogenesis imperfecta types I (mild, n=6) and III (severe, n=5), as well as between interstitial and osteonal microstructural regions using linear mixed model analysis. FINDINGS Disease severity type had a small but statistically significant effect on modulus (7%, P=0.02) and hardness (8%, P<0.01). Individuals with osteogenesis imperfecta type I had higher modulus and hardness than did those with type III. Overall, mean modulus and hardness values were 13% greater in interstitial lamellar bone regions than in osteonal regions (P<0.001). INTERPRETATION The current study presents the first dataset describing bone material properties in individuals with the most common form of osteogenesis imperfecta, i.e., type I. Results indicate that intrinsic bone tissue properties are affected by phenotype. Knowledge of the material properties of bones in osteogenesis imperfecta will contribute to the ability to develop models to assist in predicting fracture risk.
Collapse
Affiliation(s)
- Carolyne Albert
- Department of Biomedical Engineering, Marquette University, USA.
| | | | | | | | | |
Collapse
|
45
|
Monti S, Bramanti E, Porta VD, Onor M, D'Ulivo A, Barone V. Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:14736-47. [DOI: 10.1039/c3cp52404c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 2012; 180:428-38. [PMID: 23041293 PMCID: PMC3685442 DOI: 10.1016/j.jsb.2012.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/10/2012] [Accepted: 09/25/2012] [Indexed: 11/25/2022]
Abstract
Type I collagen is the most abundant protein in mammals, and is a vital part of the extracellular matrix for numerous tissues. Despite collagen's importance, little is known about its nanoscale morphology in tissues and how morphology relates to mechanical function. This study probes nanoscale structure and mechanical properties of collagen as a function of disease in native hydrated tendons. Wild type tendon and tendon from the Brtl/+ mouse model of Osteogenesis Imperfecta were investigated. An atomic force microscope (AFM) was used to image and indent minimally-processed collagen fibrils in hydrated and dehydrated conditions. AFM was used because of the ability to keep biological tissues as close to their native in situ conditions as possible. The study demonstrated phenotypic difference in Brtl/+ fibril morphology and mechanics in hydrated tendon which became more compelling upon dehydration. Dried tendons had a significant downward shift in fibril D-periodic spacing versus a shift up in wet tendons. Nanoscale changes in morphology in dry samples were accompanied by significant increases in modulus and adhesion force and decreased indentation depth. A minimal mechanical phenotype existed in hydrated samples, possibly due to water masking structural defects within the diseased fibrils. This study demonstrates that collagen nanoscale morphology and mechanics are impacted in Brtl/+ tendons, and that the phenotype can be modulated by the presence or absence of water. Dehydration causes artifacts in biological samples which require water and this factor must be considered for studies at any length scale in collagen-based tissues, especially when characterizing disease-induced differences.
Collapse
Affiliation(s)
- Arika D. Kemp
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Chad C. Harding
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Wayne A. Cabral
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
47
|
Marlowe AE, Singh A, Yingling YG. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Erickson B, Fang M, Wallace JM, Orr BG, Les CM, Banaszak Holl MM. Nanoscale structure of type I collagen fibrils: quantitative measurement of D-spacing. Biotechnol J 2012; 8:117-26. [PMID: 23027700 DOI: 10.1002/biot.201200174] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 12/16/2022]
Abstract
This article details a quantitative method to measure the D-periodic spacing of type I collagen fibrils using atomic force microscopy coupled with analysis using a two-dimensional fast fourier transform approach. Instrument calibration, data sampling and data analysis are discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of type I collagen morphology in disease models of estrogen depletion and osteogenesis imperfecta (OI) are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage osteoporosis and OI. The ability to quantitatively characterize nanoscale morphological features of type I collagen fibrils will provide important structural information regarding type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knockout studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments.
Collapse
Affiliation(s)
- Blake Erickson
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
49
|
Gronau G, Krishnaji ST, Kinahan ME, Giesa T, Wong JY, Kaplan DL, Buehler MJ. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials 2012; 33:8240-55. [PMID: 22938765 DOI: 10.1016/j.biomaterials.2012.06.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/22/2012] [Indexed: 02/08/2023]
Abstract
Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.
Collapse
Affiliation(s)
- Greta Gronau
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Radunovic Z, Wekre LL, Steine K. Right ventricular and pulmonary arterial dimensions in adults with osteogenesis imperfecta. Am J Cardiol 2012; 109:1807-13. [PMID: 22459302 DOI: 10.1016/j.amjcard.2012.01.402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
We examined right ventricular (RV) and ascending pulmonary artery (PA1) dimensions in adults with osteogenesis imperfecta (OI). The survey included 99 adults with OI divided in 3 clinical types (I, III, and IV) and 52 controls. RV and PA1 dimensions were measured by echocardiography and indexed for body surface area. Scoliosis was registered, and spirometry was performed in 75 patients with OI. All RV dimensions indexed by body surface area were significantly larger in the OI group compared to controls (RV basal dimension 1.9 ± 0.5 vs 1.7 ± 0.3 cm/m(2), p <0.05; RV midcavity dimension 1.7 ± 0.5 vs 1.5 ± 0.3 cm/m(2), p <0.05; RV longitudinal dimension 4.3 ± 1.1 vs 4.0 ± 0.9 cm/m(2), p <0.05). RV outflow tract (RVOT) proximal diameter (1.8 ± 0.4 vs 1.5 ± 0.2 cm/m(2), p <0.05), RVOT distal diameter (1.2 ± 0.2 vs 1.0 ± 0.1 cm/m(2), p <0.05), and PA1 (1.2 ± 0.3 vs 1.0 ± 0.2 cm/m(2), p <0.05) were also significantly larger in the OI group. Furthermore, all RV dimensions and PA1 were significantly larger in patients with OI type III compared to patients with OI types I and IV and controls. There were no differences in RV, RVOT, or PA1 dimensions between patients presenting a restrictive ventilatory pattern (n = 11) and patients a normal ventilatory pattern. Scoliosis was registered in 42 patients. Patients with OI type III had greater RV and PA1 dimensions compared to controls and patients with OI types I and IV. Impaired ventilatory patterns and scoliosis did not have any impact on RV dimensions in these patients. In conclusion, patients with OI had increased RV and PA1 dimensions compared to the control group.
Collapse
|