1
|
Parker AL, Johnstone TC. Carbon monoxide poisoning: A problem uniquely suited to a medicinal inorganic chemistry solution. J Inorg Biochem 2024; 251:112453. [PMID: 38100903 DOI: 10.1016/j.jinorgbio.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.
Collapse
Affiliation(s)
- A Leila Parker
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States..
| |
Collapse
|
2
|
Hammami I, Farjot G, Naveau M, Rousseaud A, Prangé T, Katz I, Colloc'h N. Method for the Identification of Potentially Bioactive Argon Binding Sites in Protein Families. J Chem Inf Model 2022; 62:1318-1327. [PMID: 35179902 DOI: 10.1021/acs.jcim.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Argon belongs to the group of chemically inert noble gases, which display a remarkable spectrum of clinically useful biological properties. In an attempt to better understand noble gases, notably argon's mechanism of action, we mined a massive noble gas modeling database which lists all possible noble gas binding sites in the proteins from the Protein Data Bank. We developed a method of analysis to identify among all predicted noble gas binding sites the potentially relevant ones within protein families which are likely to be modulated by Ar. Our method consists in determining within structurally aligned proteins the conserved binding sites whose shape, localization, hydrophobicity, and binding energies are to be further examined. This method was applied to the analysis of two protein families where crystallographic noble gas binding sites have been experimentally determined. Our findings indicate that among the most conserved binding sites, either the most hydrophobic one and/or the site which has the best binding energy corresponds to the crystallographic noble gas binding sites with the best occupancies, therefore the best affinity for the gas. This method will allow us to predict relevant noble gas binding sites that have potential pharmacological interest and thus potential Ar targets that will be prioritized for further studies including in vitro validation.
Collapse
Affiliation(s)
- Islem Hammami
- ISTCT UMR 6030 CNRS Univ. Caen Normandie, GIP Cyceron, 14074 Caen, France.,Air Liquide Santé International, Innovation Campus Paris, 78354 Les Loges-en-Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Innovation Campus Paris, 78354 Les Loges-en-Josas, France
| | - Mikaël Naveau
- UAR 3408 US 50 CNRS INSERM Université de Caen-Normandie, GIP Cyceron, 14074 Caen, France
| | - Audrey Rousseaud
- Air Liquide Santé International, Innovation Campus Paris, 78354 Les Loges-en-Josas, France
| | - Thierry Prangé
- CiTCoM UMR 8038 CNRS Université de Paris, Faculté de Pharmacie, 75006 Paris, France
| | - Ira Katz
- Air Liquide Santé International, Innovation Campus Paris, 78354 Les Loges-en-Josas, France
| | - Nathalie Colloc'h
- ISTCT UMR 6030 CNRS Univ. Caen Normandie, GIP Cyceron, 14074 Caen, France
| |
Collapse
|
3
|
Exertier C, Montemiglio LC, Freda I, Gugole E, Parisi G, Savino C, Vallone B. Neuroglobin, clues to function and mechanism. Mol Aspects Med 2021; 84:101055. [PMID: 34876274 DOI: 10.1016/j.mam.2021.101055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.
Collapse
Affiliation(s)
- Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy.
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P. Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells 2021; 10:cells10123366. [PMID: 34943874 PMCID: PMC8699588 DOI: 10.3390/cells10123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
| | | | | | - Alessandra Pesce
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16100 Genova, Italy;
| | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy; (D.S.); (F.O.)
- Dipartmento di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
- Unità di Neuroendocrinologia, Metabolismo e Neurofarmacologia, IRCSS Fondazione Santa Lucia, 00179 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| |
Collapse
|
5
|
Milazzo L, Exertier C, Becucci M, Freda I, Montemiglio LC, Savino C, Vallone B, Smulevich G. Lack of orientation selectivity of the heme insertion in murine neuroglobin revealed by resonance Raman spectroscopy. FEBS J 2020; 287:4082-4097. [PMID: 32034988 DOI: 10.1111/febs.15241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023]
Abstract
Different murine neuroglobin variants showing structural and dynamic alterations that are associated with perturbation of ligand binding have been studied: the CD loop mutants characterized by an enhanced flexibility (Gly-loop40-48 and Gly-loop44-47 ), the F106A mutant, and the double Gly-loop44-47 /F106A mutant. Their ferric resonance Raman spectra in solution and in crystals are almost identical. In the high-frequency region, the identification of a double set of core size marker bands indicates the presence of two 6-coordinate low spin species. The resonance Raman data, together with the corresponding crystal structures, indicate the presence of two neuroglobin conformers with a reversed (A conformer) or a canonical (B conformer) heme insertion orientation. With the identification of the marker bands corresponding to each conformer, the data indicate that the B conformer increases at the expense of the A form, predominantly in the Gly-loop44-47 /F106A double mutant, as confirmed by X-ray crystallography. This is the first time that a reversed heme insertion has been identified by resonance Raman in a native 6-coordinate low-spin heme protein. This diagnostic tool could be extended to other heme proteins in order to detect heme orientational disorder, which are likely to be correlated to functionally relevant heme dynamics. DATABASE: Crystallographic structure: structural data are deposited in the Protein Data Bank under the 6RA6 PDB entry.
Collapse
Affiliation(s)
- Lisa Milazzo
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Florence, Italy
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, Università di Roma, Italy
| | - Maurizio Becucci
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy - LENS, Florence, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, Università di Roma, Italy
| | - Linda Celeste Montemiglio
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, Università di Roma, Italy.,CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | | | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, Università di Roma, Italy.,CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Florence, Italy
| |
Collapse
|
6
|
Ardiccioni C, Arcovito A, Della Longa S, van der Linden P, Bourgeois D, Weik M, Montemiglio LC, Savino C, Avella G, Exertier C, Carpentier P, Prangé T, Brunori M, Colloc’h N, Vallone B. Ligand pathways in neuroglobin revealed by low-temperature photodissociation and docking experiments. IUCRJ 2019; 6:832-842. [PMID: 31576217 PMCID: PMC6760443 DOI: 10.1107/s2052252519008157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
A combined biophysical approach was applied to map gas-docking sites within murine neuroglobin (Ngb), revealing snapshots of events that might govern activity and dynamics in this unique hexacoordinate globin, which is most likely to be involved in gas-sensing in the central nervous system and for which a precise mechanism of action remains to be elucidated. The application of UV-visible microspectroscopy in crystallo, solution X-ray absorption near-edge spectroscopy and X-ray diffraction experiments at 15-40 K provided the structural characterization of an Ngb photolytic intermediate by cryo-trapping and allowed direct observation of the relocation of carbon monoxide within the distal heme pocket after photodissociation. Moreover, X-ray diffraction at 100 K under a high pressure of dioxygen, a physiological ligand of Ngb, unravelled the existence of a storage site for O2 in Ngb which coincides with Xe-III, a previously described docking site for xenon or krypton. Notably, no other secondary sites were observed under our experimental conditions.
Collapse
Affiliation(s)
- Chiara Ardiccioni
- Department of Life and Environmental Sciences, New York–Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Arcovito
- Istituto di Biochimica e Biochimica Clinica, Universitá Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli–IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Peter van der Linden
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
- Partnership for Soft Condensed Matter (PSCM), 38043 Grenoble, France
| | | | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Linda Celeste Montemiglio
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur–Fondazione Cenci Bolognetti, Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Avella
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Chemistry Department, Merck Serono S.p.A., Via Casilina 125, 00176 Rome, Italy
| | - Cécile Exertier
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Philippe Carpentier
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
- CEA/DRF/BIG/CBM/BioCat LCBM CNRS UMR 5249, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thierry Prangé
- CiTeCoM UMR 8038 CNRS, Université Paris Descartes, Paris, France
| | - Maurizio Brunori
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Nathalie Colloc’h
- ISTCT UMR 6030 CNRS Université de Caen Normandie CEA, CERVOxy Team, Centre Cyceron, Caen, France
| | - Beatrice Vallone
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur–Fondazione Cenci Bolognetti, Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating. Sci Rep 2019; 9:5326. [PMID: 30926858 PMCID: PMC6441039 DOI: 10.1038/s41598-019-41780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant “Gly-loop”, the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs.
Collapse
|
8
|
Colloc'h N, Carpentier P, Montemiglio LC, Vallone B, Prangé T. Mapping Hydrophobic Tunnels and Cavities in Neuroglobin with Noble Gas under Pressure. Biophys J 2017; 113:2199-2206. [PMID: 29108649 DOI: 10.1016/j.bpj.2017.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/06/2017] [Indexed: 01/27/2023] Open
Abstract
Internal cavities are crucial for conformational flexibility of proteins and can be mapped through noble gas diffusion and docking. Here we investigate the hydrophobic cavities and tunnel network in neuroglobin (Ngb), a hexacoordinated heme protein likely to be involved in neuroprotection, using crystallography under noble gas pressure, mostly at room temperature. In murine Ngb, a large internal cavity is involved in the heme sliding mechanism to achieve binding of gaseous ligands through coordination to the heme iron. In this study, we report that noble gases are hosted by two major sites within the internal cavity. We propose that these cavities could store oxygen and allow its relay in the heme proximity, which could correspond to NO location in the nitrite-reductase function of Ngb. Thanks to a recently designed pressurization cell using krypton at high pressure, a new gas binding site has been characterized that reveals an alternate pathway for gaseous ligands. A new gas binding site on the proximal side of the heme has also been characterized, using xenon pressure on a Ngb mutant (V140W) that binds CO with a similar rate and affinity to the wild-type, despite a reshaping of the internal cavity. Moreover, this study, to our knowledge, provides new insights into the determinants of the heme sliding mechanism, suggesting that the shift at the beginning of helix G precedes and drives this process.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie University, CERVOxy Team, Centre Cyceron, Caen, France.
| | - Philippe Carpentier
- CEA/DRF/BIG/CBM/BioCat LCBM CNRS UMR 5249, Université Grenoble Alpes, Grenoble, France; European Synchrotron Radiation Facility, Grenoble, France
| | - Laura C Montemiglio
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, Paris, France
| |
Collapse
|
9
|
Colloc'h N, Sacquin-Mora S, Avella G, Dhaussy AC, Prangé T, Vallone B, Girard E. Determinants of neuroglobin plasticity highlighted by joint coarse-grained simulations and high pressure crystallography. Sci Rep 2017; 7:1858. [PMID: 28500341 PMCID: PMC5431840 DOI: 10.1038/s41598-017-02097-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigating the effect of pressure sheds light on the dynamics and plasticity of proteins, intrinsically correlated to functional efficiency. Here we detail the structural response to pressure of neuroglobin (Ngb), a hexacoordinate globin likely to be involved in neuroprotection. In murine Ngb, reversible coordination is achieved by repositioning the heme more deeply into a large internal cavity, the “heme sliding mechanism”. Combining high pressure crystallography and coarse-grain simulations on wild type Ngb as well as two mutants, one (V101F) with unaffected and another (F106W) with decreased affinity for CO, we show that Ngb hinges around a rigid mechanical nucleus of five hydrophobic residues (V68, I72, V109, L113, Y137) during its conformational transition induced by gaseous ligand, that the intrinsic flexibility of the F-G loop appears essential to drive the heme sliding mechanism, and that residue Val 101 may act as a sensor of the interaction disruption between the heme and the distal histidine.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie Univ., CERVOxy team, centre Cyceron, 14000, Caen, France.
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Giovanna Avella
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy.,BIOGEM Research Institute, Ariano Irpino, Italy
| | - Anne-Claire Dhaussy
- CRISTMAT UMR 6508 CNRS ENSICAEN UNICAEN Normandie Univ., 6 bd du Maréchal Juin, 14050, Caen, France
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, 4 avenue de l'Observatoire, 75270, Paris, France
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy
| | - Eric Girard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France.
| |
Collapse
|
10
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
12
|
Zhao C, Du W. Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations. J Biol Inorg Chem 2016; 21:251-61. [DOI: 10.1007/s00775-016-1334-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023]
|
13
|
Crystallographic Studies with Xenon and Nitrous Oxide Provide Evidence for Protein-dependent Processes in the Mechanisms of General Anesthesia. Anesthesiology 2014; 121:1018-27. [DOI: 10.1097/aln.0000000000000435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein–gas interactions.
Methods:
To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins.
Results:
Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other’s effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites.
Conclusions:
These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer–Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.
Collapse
|
14
|
Morozov AN, Roach JP, Kotzer M, Chatfield DC. A possible mechanism for redox control of human neuroglobin activity. J Chem Inf Model 2014; 54:1997-2003. [PMID: 24855999 PMCID: PMC4114473 DOI: 10.1021/ci5002108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroglobin (Ngb) promotes neuron survival under hypoxic/ischemic conditions. In vivo and in vitro assays provide evidence for redox-regulated functioning of Ngb. On the basis of X-ray crystal structures and our MD simulations, a mechanism for redox control of human Ngb (hNgb) activity via the influence of the CD loop on the active site is proposed. We provide evidence that the CD loop undergoes a strand-to-helix transition when the external environment becomes sufficiently oxidizing, and that this CD loop conformational transition causes critical restructuring of the active site. We postulate that the strand-to-helix mechanics of the CD loop allows hNgb to utilize the lability of Cys46/Cys55 disulfide bonding and of the Tyr44/His64/heme propionate interaction network for redox-controlled functioning of hNgb.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
15
|
Avella G, Ardiccioni C, Scaglione A, Moschetti T, Rondinelli C, Montemiglio LC, Savino C, Giuffrè A, Brunori M, Vallone B. Engineering the internal cavity of neuroglobin demonstrates the role of the haem-sliding mechanism. ACTA ACUST UNITED AC 2014; 70:1640-8. [DOI: 10.1107/s1399004714007032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/29/2014] [Indexed: 11/10/2022]
Abstract
Neuroglobin is a member of the globin family involved in neuroprotection; it is primarily expressed in the brain and retina of vertebrates. Neuroglobin belongs to the heterogeneous group of hexacoordinate globins that have evolved in animals, plants and bacteria, endowed with the capability of reversible intramolecular coordination, allowing the binding of small gaseous ligands (O2, NO and CO). In a unique fashion among haemoproteins, ligand-binding events in neuroglobin are dependent on the sliding of the haem itself within a preformed internal cavity, as revealed by the crystal structure of its CO-bound derivative. Point mutants of the neuroglobin internal cavity have been engineered and their functional and structural characterization shows that hindering the haem displacement leads to a decrease in CO affinity, whereas reducing the cavity volume without interfering with haem sliding has negligible functional effects.
Collapse
|
16
|
Jennaro TS, Beaty MR, Kurt-Yilmaz N, Luskin BL, Cavagnero S. Burial of nonpolar surface area and thermodynamic stabilization of globins as a function of chain elongation. Proteins 2014; 82:2318-31. [DOI: 10.1002/prot.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Theodore S. Jennaro
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Matthew R. Beaty
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Neşe Kurt-Yilmaz
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Benjamin L. Luskin
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Silvia Cavagnero
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
17
|
Colloc'h N, Prangé T. Functional relevance of the internal hydrophobic cavity of urate oxidase. FEBS Lett 2014; 588:1715-9. [PMID: 24657440 DOI: 10.1016/j.febslet.2014.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Urate oxidase from Aspergillus flavus is a 135 kDa homo-tetramer which has a hydrophobic cavity buried within each monomer and located close to its active site. Crystallographic studies under moderate gas pressure and high hydrostatic pressure have shown that both gas presence and high pressure would rigidify the cavity leading to an inhibition of the catalytic activity. Analysis of the cavity volume variations and functional modifications suggest that the flexibility of the cavity would be an essential parameter for the active site efficiency. This cavity would act as a connecting vessel to give flexibility to the neighboring active site, and its expansion under pure oxygen pressure reveals that it might serve as a transient reservoir on its pathway to the active site.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- CERVoxy Team, ISTCT UMR 6301, CNRS, Centre Cyceron, Caen, France; ISTCT UMR 6301, CEA, DSV/I2BM, Caen, France; ISTCT UMR 6301, Université de Caen Basse-Normandie, Normandie Université, Caen, France.
| | - Thierry Prangé
- LCRB UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006 Paris, France
| |
Collapse
|
18
|
Zhao C, Zhang B, Du W. Effects of distal mutation on the dynamic properties of carboxycytoglobin: a molecular dynamics simulation study. J Biol Inorg Chem 2013; 18:947-55. [DOI: 10.1007/s00775-013-1041-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022]
|
19
|
Newhouse EI, Newhouse JS, Alam M. Molecular dynamics study of hell's gate globin I (HGbI) from a methanotrophic extremophile: oxygen migration through a large cavity. J Mol Model 2013; 19:2265-71. [PMID: 23377896 DOI: 10.1007/s00894-012-1739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
Abstract
Hell's gate globin I (HGbI), a heme-containing protein from the extremophile Methylacidiphilum infernorum, has fast oxygen-binding/slow release characteristics due to its distal residues Gln and Tyr. The combination of Gln/Tyr distal iron coordination, adaptation to extreme environmental conditions, and lack of a D helix suggests that ligand migration in HGbI differs from other previously studied globins. Locally enhanced molecular dynamics trajectories of oxygen migration indicate a large internal cavity. This may increase the tendency of oxygen to exit from portals other than the most direct exit from the space near the heme. Oxygen may reside transiently in shallow surface depressions around the exits. Such surface trapping may enhance both oxygen uptake by increasing contact time between molecules, and decrease release by increasing the probability of oxygen reentry from the vicinity of the portal.
Collapse
|
20
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Conformational dynamics in human neuroglobin: effect of His64, Val68, and Cys120 on ligand migration. Biochemistry 2012; 51:9984-94. [PMID: 23176629 DOI: 10.1021/bi301016u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroglobin belongs to the family of hexacoordinate hemoglobins and has been implicated in the protection of neuronal tissue under hypoxic and ischemic conditions. Here we present transient absorption and photoacoustic calorimetry studies of CO photodissociation and bimolecular rebinding to neuroglobin focusing on the ligand migration process and the role of distal pocket residues (His64 and Val68) and two Cys residues (Cys55 and Cys120). Our results indicate that His64 has a minor impact on the migration of CO between the distal heme pocket and protein exterior, whereas the Val68 side chain regulates the transition of the photodissociated ligand between the distal pocket and internal hydrophobic cavities, which is evident from the increased geminate quantum yield in this mutated protein (Φ(gem) = 0.32 for WT and His64Gln, and Φ(gem) = 0.85 for Val68Phe). The interface between helix G and the A-B loop provides an escape pathway for the photodissociated ligand, which is evident from a decrease in the reaction enthalpy for the transition between the CO-bound hNgb and five-coordinate hNgb in the Cys120Ser mutant (ΔH = -3 ± 4 kcal mol(-1)) compared to that of the WT protein (ΔH = 20 ± 4 kcal mol(-1)). The extensive electrostatic/hydrogen binding network that includes heme propionate groups, Lys67, His64, and Tyr44 not only restricts the heme binding but also modulates the energetics of binding of CO to the five-coordinate hNgb as substitution of His64 with Gln leads to an endothermic association of CO with the five-coordinate hNgb (ΔH = 6 ± 3 kcal mol(-1)).
Collapse
Affiliation(s)
- Luisana Astudillo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
21
|
Giordano D, Boron I, Abbruzzetti S, Van Leuven W, Nicoletti FP, Forti F, Bruno S, Cheng CHC, Moens L, di Prisco G, Nadra AD, Estrin D, Smulevich G, Dewilde S, Viappiani C, Verde C. Biophysical characterisation of neuroglobin of the icefish, a natural knockout for hemoglobin and myoglobin. Comparison with human neuroglobin. PLoS One 2012; 7:e44508. [PMID: 23226490 PMCID: PMC3513292 DOI: 10.1371/journal.pone.0044508] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022] Open
Abstract
The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe(2+) form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins.Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms.
Collapse
Affiliation(s)
| | - Ignacio Boron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | - Stefania Abbruzzetti
- Department of Physics, University of Parma, NEST Istituto Nanoscienze-CNR, Parma, Italy
| | - Wendy Van Leuven
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Francesco P. Nicoletti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Flavio Forti
- Facultat de Farmacia, Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Stefano Bruno
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | - C-H. Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Luc Moens
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | | | - Alejandro D. Nadra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Sesto Fiorentino (FI), Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Bari, Italy
| | - Sylvia Dewilde
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Cristiano Viappiani
- Department of Physics, University of Parma, NEST Istituto Nanoscienze-CNR, Parma, Italy
| | - Cinzia Verde
- Institute of Protein Biochemistry, CNR, Naples, Italy
| |
Collapse
|
22
|
Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G, Weiss MS. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:442-9. [PMID: 22514183 PMCID: PMC3408958 DOI: 10.1107/s0909049512006395] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/13/2012] [Indexed: 05/23/2023]
Abstract
Three macromolecular crystallography (MX) beamlines at the Helmholtz-Zentrum Berlin (HZB) are available for the regional, national and international structural biology user community. The state-of-the-art synchrotron beamlines for MX BL14.1, BL14.2 and BL14.3 are located within the low-β section of the BESSY II electron storage ring. All beamlines are fed from a superconducting 7 T wavelength-shifter insertion device. BL14.1 and BL14.2 are energy tunable in the range 5-16 keV, while BL14.3 is a fixed-energy side station operated at 13.8 keV. All three beamlines are equipped with CCD detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days per year and about 600 user shifts to approximately 50 research groups across Europe. BL14.3 has initially been used as a test facility and was brought into regular user mode operation during the year 2010. BL14.1 has recently been upgraded with a microdiffractometer including a mini-κ goniometer and an automated sample changer. Additional user facilities include office space adjacent to the beamlines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. In this article the instrumentation of the beamlines is described, and a summary of the experimental possibilities of the beamlines and the provided ancillary equipment for the user community is given.
Collapse
Affiliation(s)
- Uwe Mueller
- Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Soft Matter and Functional Materials, Macromolecular Crystallography, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang B, Xu J, Li Y, Du W, Fang W. Molecular dynamics simulation of carboxy and deoxy human cytoglobin in solution. J Inorg Biochem 2011; 105:949-56. [DOI: 10.1016/j.jinorgbio.2011.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
24
|
Spyrakis F, Luque FJ, Viappiani C. Structural analysis in nonsymbiotic hemoglobins: what can we learn from inner cavities? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:8-13. [PMID: 21600392 DOI: 10.1016/j.plantsci.2011.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 05/09/2023]
Abstract
Plants contain three classes of hemoglobins which are not associated with nitrogen fixing bacteria, and have been accordingly termed nonsymbiotic hemoglobins. The function of nonsymbiotic hemoglobins is as yet mostly unknown. A NO dioxygenase activity has been proposed and demonstrated for some of them in vitro. In this context, a sound molecular mechanism that relates the structure with the biological activity is crucial to suggest a given physiological role. Insight into such a mechanism is now facilitated by recent progress made in both experimental and computational techniques. These studies have highlighted a number of key structural features implicated in the function of nonsymbiotic hemoglobins. The bis-histidyl hexacoordination of the heme in both its ferric and ferrous states provides a powerful and general tool to modulate reactivity, protein dynamics, and shape of the cavities. In addition, the specific arrangement of distal cavity residues provides effective protection against autoxidation. Inspection of the static crystal structures available for both liganded and unliganded states seems unsufficient to explain the function of these proteins. Function appears to be intimately linked with protein flexibility, which influences the dynamical behavior of inner cavities, capable of delivering apolar reactants to the reaction site, and removing charged reaction products. In this mini review, we demonstrate how the integration of information derived from experimental assays and computational studies is valuable and can shed light into the linkage between structural plasticity of nonsymbiotic hemoglobins and their biological role.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
| | | | | |
Collapse
|
25
|
Marassio G, Prangé T, David HN, Santos JSDO, Gabison L, Delcroix N, Abraini JH, Colloc'h N. Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study. FASEB J 2011; 25:2266-75. [PMID: 21421845 DOI: 10.1096/fj.11-183046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The remarkably safe anesthetics xenon (Xe) and, to lesser extent, nitrous oxide (N(2)O) possess neuroprotective properties in preclinical studies. To investigate the mechanisms of pharmacological action of these gases, which are still poorly known, we performed both crystallography under a large range of gas pressure and biochemical studies on urate oxidase, a prototype of globular gas-binding proteins whose activity is modulated by inert gases. We show that Xe and N(2)O bind to, compete for, and expand the volume of a hydrophobic cavity located just behind the active site of urate oxidase and further inhibit urate oxidase enzymatic activity. By demonstrating a significant relationship between the binding and biochemical effects of Xe and N(2)O, given alone or in combination, these data from structure to function highlight the mechanisms by which chemically and metabolically inert gases can alter protein function and produce their pharmacological effects. Interestingly, the effects of a Xe:N(2)O equimolar mixture were found to be equivalent to those of Xe alone, thereby suggesting that gas mixtures containing Xe and N(2)O could be an alternative and efficient neuroprotective strategy to Xe alone, whose widespread clinical use is limited due to the cost of production and availability of this gas.
Collapse
Affiliation(s)
- Guillaume Marassio
- Equipe de Recherche Technologique Interne (ERTi) 1083, Centre National de la Recherche Scientifique (CNRS), Centre Cyceron, Caen, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Anselmi M, Di Nola A, Amadei A. Kinetics of carbon monoxide migration and binding in solvated neuroglobin as revealed by molecular dynamics simulations and quantum mechanical calculations. J Phys Chem B 2011; 115:2436-46. [PMID: 21332165 DOI: 10.1021/jp110833v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroglobin (Ngb) is a globular protein that reversibly binds small ligands at the six coordination position of the heme. With respect to other globins similar to myoglobin, Ngb displays some peculiarities as the topological reorganization of the internal cavities coupled to the sliding of the heme, or the binding of the endogenous distal histidine to the heme in the absence of an exogenous ligand. In this Article, by using multiple (independent) molecular dynamics trajectories (about 500 ns in total), the migration pathways of photolized carbon monoxide (CO) within solvated Ngb were analyzed, and a quantitative description of CO migration and corresponding kinetics was obtained. MD results, combined with quantum mechanical calculations on the CO-heme binding-unbinding reaction step in Ngb, allowed construction of a quantitative model representing the relevant steps of CO migration and rebinding.
Collapse
|
27
|
Pesce A, Nardini M, Dewilde S, Capece L, Martí MA, Congia S, Salter MD, Blouin GC, Estrin DA, Ascenzi P, Moens L, Bolognesi M, Olson JS. Ligand migration in the apolar tunnel of Cerebratulus lacteus mini-hemoglobin. J Biol Chem 2010; 286:5347-58. [PMID: 21147768 DOI: 10.1074/jbc.m110.169045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO(2) crystals, but Leu-86(G12)Ala CerHbO(2), which has an increased tunnel volume, stably accommodates two discrete xenon atoms: one adjacent to Leu-86(G12) and another near Ala-55(E18). Molecular dynamics simulations of ligand migration in wt CerHb show a low energy pathway through the apolar tunnel when Leu or Ala, but not Phe or Trp, is present at the 86(G12) position. The addition of 10-15 atm of xenon to solutions of wt CerHbCO and L86A CerHbCO causes 2-3-fold increases in the fraction of geminate ligand recombination, indicating that the bound xenon blocks CO escape. This idea was confirmed by L86F and L86W mutations, which cause even larger increases in the fraction of geminate CO rebinding, 2-5-fold decreases in the bimolecular rate constants for ligand entry, and large increases in the computed energy barriers for ligand movement through the apolar tunnel. Both the addition of xenon to the L86A mutant and oxidation of wt CerHb heme iron cause the appearance of an out Gln-44(E7) conformer, in which the amide side chain points out toward the solvent and appears to lower the barrier for ligand escape through the E7 gate. However, the observed kinetics suggest little entry and escape (≤ 25%) through the E7 pathway, presumably because the in Gln-44(E7) conformer is thermodynamically favored.
Collapse
Affiliation(s)
- Alessandra Pesce
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu J, Yin G, Du W. Distal mutation modulates the heme sliding in mouse neuroglobin investigated by molecular dynamics simulation. Proteins 2010; 79:191-202. [DOI: 10.1002/prot.22872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Bocahut A, Bernad S, Sebban P, Sacquin-Mora S. Relating the Diffusion of Small Ligands in Human Neuroglobin to Its Structural and Mechanical Properties. J Phys Chem B 2009; 113:16257-67. [DOI: 10.1021/jp906854x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony Bocahut
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France, Laboratoire de Chimie Physique, Université Paris-sud 11, CNRS UMR8000 Bât. 350, 91405 Orsay, France
| | - Sophie Bernad
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France, Laboratoire de Chimie Physique, Université Paris-sud 11, CNRS UMR8000 Bât. 350, 91405 Orsay, France
| | - Pierre Sebban
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France, Laboratoire de Chimie Physique, Université Paris-sud 11, CNRS UMR8000 Bât. 350, 91405 Orsay, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France, Laboratoire de Chimie Physique, Université Paris-sud 11, CNRS UMR8000 Bât. 350, 91405 Orsay, France
| |
Collapse
|