1
|
O’Hara-Wright M, Mobini S, Gonzalez-Cordero A. Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Front Cell Dev Biol 2022; 10:901652. [PMID: 35656553 PMCID: PMC9152151 DOI: 10.3389/fcell.2022.901652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cell-derived organoid models of the central nervous system represent one of the most exciting areas in in vitro tissue engineering. Classically, organoids of the brain, retina and spinal cord have been generated via recapitulation of in vivo developmental cues, including biochemical and biomechanical. However, a lesser studied cue, bioelectricity, has been shown to regulate central nervous system development and function. In particular, electrical stimulation of neural cells has generated some important phenotypes relating to development and differentiation. Emerging techniques in bioengineering and biomaterials utilise electrical stimulation using conductive polymers. However, state-of-the-art pluripotent stem cell technology has not yet merged with this exciting area of bioelectricity. Here, we discuss recent findings in the field of bioelectricity relating to the central nervous system, possible mechanisms, and how electrical stimulation may be utilised as a novel technique to engineer “next-generation” organoids.
Collapse
Affiliation(s)
- Michelle O’Hara-Wright
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Madrid, Spain
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- *Correspondence: Anai Gonzalez-Cordero,
| |
Collapse
|
2
|
Fischbarg J, Hernandez JA, Rubashkin AA, Iserovich P, Cacace VI, Kusnier CF. Epithelial Fluid Transport is Due to Electro-osmosis (80%), Plus Osmosis (20%). J Membr Biol 2017. [PMID: 28623474 PMCID: PMC5489618 DOI: 10.1007/s00232-017-9966-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epithelial fluid transport, an important physiological process shrouded in a long-standing enigma, may finally be moving closer to a solution. We propose that, for the corneal endothelium, relative proportions for the driving forces for fluid transport are 80% of paracellular electro-osmosis, and 20% classical transcellular osmosis. These operate in a cyclical process with a period of 9.2 s, which is dictated by the decrease and exhaustion of cellular Na+. Paracellular electro-osmosis is sketched here, and partially discussed as much as the subject still allows; transcellular osmosis is presented at length.
Collapse
Affiliation(s)
- Jorge Fischbarg
- Ininca, Conicet, Univ. of Buenos Aires2, Buenos Aires, Argentina.
| | - Julio A Hernandez
- Biophysics Section, Science Faculty, Univ. of the Republic, Montevideo, Uruguay
| | - Andrey A Rubashkin
- Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia
| | | | | | - Carlos F Kusnier
- Ininca, Conicet, Univ. of Buenos Aires2, Buenos Aires, Argentina
| |
Collapse
|
3
|
Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis. J Membr Biol 2016; 249:469-73. [PMID: 26989056 PMCID: PMC4942490 DOI: 10.1007/s00232-016-9887-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/09/2016] [Indexed: 11/04/2022]
Abstract
We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.
Collapse
|
4
|
Tran V, Zhang X, Cao L, Li H, Lee B, So M, Sun Y, Chen W, Zhao M. Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps. PLoS One 2013; 8:e61509. [PMID: 23585907 PMCID: PMC3621860 DOI: 10.1371/journal.pone.0061509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/09/2013] [Indexed: 01/13/2023] Open
Abstract
Transepithelial potential (TEP) is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, resulting in the establishment of an endogenous wound electric field (∼100 mV/mm) that is directed towards the center of the wound. This endogenous electric field is implicated to enhance wound healing by guiding cell migration. We thus seek techniques to enhance the TEP, which may increase the wound electric fields and enhance wound healing. We report a novel technique, termed synchronization modulation (SM) using a train of electric pulses to synchronize the Na/K pump activity, and then modulating the pumping cycles to increase the efficiency of the Na/K pumps. Kidney epithelial monolayers (MDCK cells) maintain a stable TEP and transepithelial resistance (TER). SM significantly increased TEP over four fold. Either ouabain or digoxin, which block Na/K pump, abolished SM-induced TEP increases. In addition to the pump activity, basolateral distribution of Na/K pumps is essential for an increase in TEP. Our study for the first time developed an electrical approach to significantly increase the TEP. This technique targeting the Na/K pump may be used to modulate TEP, and may have implication in wound healing and in diseases where TEP needs to be modulated.
Collapse
Affiliation(s)
- Vu Tran
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Xiaodong Zhang
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Lin Cao
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Hanqing Li
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Benjamin Lee
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Michelle So
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Yaohui Sun
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
| | - Wei Chen
- Cellular and Molecular Biophysics, Department of Physics, University of South Florida, Tampa, Florida, United States of America
| | - Min Zhao
- Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America
- Center for Neurosciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
5
|
Fischbarg J. Water channels and their roles in some ocular tissues. Mol Aspects Med 2012; 33:638-41. [PMID: 22819922 DOI: 10.1016/j.mam.2012.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/23/2023]
Abstract
Water is a major component of the eye, and water channels (aquaporins) are ubiquitous in ocular tissues, and quite abundant at their different locations. AQP1 is expressed in corneal endothelium, lens epithelium, ciliary epithelium, and retinal pigment epithelium. AQP3 is expressed in corneal epithelium, and in conjunctival epithelium. AQP4 is expressed in ciliary epithelium and retinal Muller cells. AQP5 is expressed in corneal epithelium, and conjunctival epithelium. AQP0 is expressed in lens fiber cells. It is known that five ocular tissues transport fluid, namely: (1) Corneal endothelium; (2) Conjunctival epithelium; (3) Lens epithelium; (4) Ciliary epithelium; (5) Retinal pigment epithelium. For the corneal endothelium, aquaporins are not the main route for trans-tissue water movement, which is paracellular. Instead, we propose that aquaporins allow fast osmotic equilibration of the cell, which is necessary to maintain optimal rates of fluid movement since the cyclic paracellular water transfer mechanism operates separately and tends to create periodic osmotic imbalances (τ∼5 s).
Collapse
Affiliation(s)
- Jorge Fischbarg
- Institute for Cardiological Investigations A.C. Taquini, University of Buenos Aires and CONICET, Marcelo T. de Alvear 2270, Buenos Aires, Argentina.
| |
Collapse
|
6
|
The plasma membrane potential and the organization of the actin cytoskeleton of epithelial cells. Int J Cell Biol 2012; 2012:121424. [PMID: 22315611 PMCID: PMC3272338 DOI: 10.1155/2012/121424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022] Open
Abstract
The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis.
Collapse
|
7
|
Cacace VI, Montalbetti N, Kusnier C, Gomez MP, Fischbarg J. Wavelet analysis of corneal endothelial electrical potential difference reveals cyclic operation of the secretory mechanism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:032902. [PMID: 22060438 DOI: 10.1103/physreve.84.032902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The corneal endothelium is a fluid-transporting epithelium. As other similar tissues, it displays an electrical potential of ~1 mV (aqueous side negative) across the entire layer [transendothelial potential difference (TEPD)]. It appears that this electrical potential is mainly the result of the transport of anions across the cell layer (from stroma to aqueous). There is substantial evidence that the TEPD is related linearly to fluid transport; hence, under proper conditions, its measure could serve as a measure of fluid transport. Furthermore, the TEPD is not steady; instead, it displays a spectrum of frequency components (0-15 Hz) recognized recently using Fourier transforms. Such frequency components appear due to charge-separating (electrogenic) processes mediated by epithelial plasma membrane proteins (both ionic channels and ionic cotransporters). In particular, the endothelial TEPD oscillations of the highest amplitude (1-2 Hz) were linked to the operation of so-called sodium bicarbonate cotransporters. However, no time localization of that activity could be obtained with the Fourier methodology utilized. For that reason we now characterize the TEPD using wavelet analysis with the aim to localize in time the variations in TEPD. We find that the mentioned high-amplitude oscillatory components of the TEPD appear cyclically during the several hours that an endothelial preparation survives in vitro. They have a period of 4.6 ± 0.4 s on average (n=4). The wavelet power value at the peak of such oscillations is 1.5 ± 0.1 mV(2) Hz on average (n = 4), and is remarkably narrow in its distribution.
Collapse
Affiliation(s)
- V I Cacace
- Institute of Cardiological Investigations, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Fischbarg J. Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins. Physiol Rev 2010; 90:1271-90. [DOI: 10.1152/physrev.00025.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical currents as long as there is tight junction integrity. The direction of the fluid movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Residual endothelial fluid transport persists even when no anions (hence no salt) are being transported by the tissue and is only eliminated when all local recirculating electrical currents are. Aquaporin (AQP) 1 is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability (by ∼40%) but fluid transport much less (∼20%), which militates against the presence of sizable water movements across the cell. In contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium we have developed correctly predicts experimental results only when paracellular electro-osmosis is assumed rather than transcellular local osmosis. Our evidence therefore suggests that the fluid is transported across this layer via the paracellular route by a mechanism that we attribute to electro-osmotic coupling at the junctions. From our findings we have developed a novel paradigm for this preparation that includes 1) paracellular fluid flow; 2) a crucial role for the junctions; 3) hypotonicity of the primary secretion; and 4) an AQP role in regulation rather than as a significant water pathway. These elements are remarkably similar to those proposed by the laboratory of Adrian Hill for fluid transport across other leaky epithelia.
Collapse
Affiliation(s)
- Jorge Fischbarg
- Institute of Cardiology Research “A. C. Taquini,” University of Buenos Aires and National Council for Scientific and Technical Investigations, Buenos Aires, Argentina
| |
Collapse
|