1
|
Johan MZ, Pyne NT, Kolesnikoff N, Poltavets V, Esmaeili Z, Woodcock JM, Lopez AF, Cowin AJ, Pitson SM, Samuel MS. Accelerated Closure of Diabetic Wounds by Efficient Recruitment of Fibroblasts upon Inhibiting a 14-3-3/ROCK Regulatory Axis. J Invest Dermatol 2024; 144:2562-2573.e4. [PMID: 38582367 DOI: 10.1016/j.jid.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Chronic non-healing wounds negatively impact quality of life and are a significant financial drain on health systems. The risk of infection that exacerbates comorbidities in patients necessitates regular application of wound care. Understanding the mechanisms underlying impaired wound healing are therefore a key priority to inform effective new-generation treatments. In this study, we demonstrate that 14-3-3-mediated suppression of signaling through ROCK is a critical mechanism that inhibits the healing of diabetic wounds. Accordingly, pharmacological inhibition of 14-3-3 by topical application of the sphingo-mimetic drug RB-11 to diabetic wounds on a mouse model of type II diabetes accelerated wound closure more than 2-fold than vehicle control, phenocopying our previous observations in 14-3-3ζ-knockout mice. We also demonstrate that accelerated closure of the wounded epidermis by 14-3-3 inhibition causes enhanced signaling through the Rho-ROCK pathway and that the underlying cellular mechanism involves the efficient recruitment of dermal fibroblasts into the wound and the rapid production of extracellular matrix proteins to re-establish the injured dermis. Our observations that the 14-3-3/ROCK inhibitory axis characterizes impaired wound healing and that its suppression facilitates fibroblast recruitment and accelerated re-epithelialization suggest new possibilities for treating diabetic wounds by pharmacologically targeting this axis.
Collapse
Affiliation(s)
- M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Natasha T Pyne
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Natasha Kolesnikoff
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Valentina Poltavets
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Zahra Esmaeili
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Joanna M Woodcock
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Liu Y, Liang Z, Li Y, Zhu W, Feng B, Xu W, Fu J, Wei P, Luo M, Dong Z. Integrated transcriptome and microRNA analysis reveals molecular responses to high-temperature stress in the liver of American shad (Alosa sapidissima). BMC Genomics 2024; 25:656. [PMID: 38956484 PMCID: PMC11218383 DOI: 10.1186/s12864-024-10567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Fish reproduction, development and growth are directly affected by temperature, investigating the regulatory mechanisms behind high temperature stress is helpful to construct a finer molecular network. In this study, we systematically analyzed the transcriptome and miRNA information of American shad (Alosa sapidissima) liver tissues at different cultivation temperatures of 24 ℃ (Low), 27 ℃ (Mid) and 30 ℃ (High) based on a high-throughput sequencing platform. RESULTS The results showed that there were 1594 differentially expressed genes (DEGs) and 660 differentially expressed miRNAs (DEMs) in the LowLi vs. MidLi comparison group, 473 DEGs and 84 DEMs in the MidLi vs. HighLi group, 914 DEGs and 442 DEMs in the LowLi vs. HighLi group. These included some important genes and miRNAs such as calr, hsp90b1, hsp70, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p. The DEGs were mainly enriched in the protein folding, processing and export pathways of the endoplasmic reticulum; the target genes of the DEMs were mainly enriched in the focal adhesion pathway. Furthermore, the association analysis revealed that the key genes were mainly enriched in the metabolic pathway. Interestingly, we found a significant increase in the number of genes and miRNAs involved in the regulation of heat stress during the temperature change from 24 °C to 27 °C. In addition, we examined the tissue expression characteristics of some key genes and miRNAs by qPCR, and found that calr, hsp90b1 and dre-miR-125b-2-3p were significantly highly expressed in the liver at 27 ℃, while novel-m0481-5p, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p had the highest expression in the heart at 30℃. Finally, the quantitative expression trends of 10 randomly selected DEGs and 10 DEMs were consistent with the sequencing data, indicating the reliability of the results. CONCLUSIONS In summary, this study provides some fundamental data for subsequent in-depth research into the molecular regulatory mechanisms of A. sapidissima response to heat stress, and for the selective breeding of high temperature tolerant varieties.
Collapse
Affiliation(s)
- Ying Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yulin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Panpan Wei
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, Rescue Center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
4
|
Matsubayashi HT, Mountain J, Takahashi N, Deb Roy A, Yao T, Peterson AF, Saez Gonzalez C, Kawamata I, Inoue T. Non-catalytic role of phosphoinositide 3-kinase in mesenchymal cell migration through non-canonical induction of p85β/AP2-mediated endocytosis. Nat Commun 2024; 15:2612. [PMID: 38521786 PMCID: PMC10960865 DOI: 10.1038/s41467-024-46855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable these multifaceted roles, the catalytic subunit p110 utilizes the multi-domain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, its product PI(3,4,5)P3 generates locomotive activity. While non-catalytic roles are also implicated, underlying mechanisms and their relationship to PI(3,4,5)P3 signaling remain elusive. Here, we report that a disordered region of iSH2 contains AP2 binding motifs which can trigger clathrin and dynamin-mediated endocytosis independent of PI3K catalytic activity. The AP2 binding motif mutants of p85 aberrantly accumulate at focal adhesions and increase both velocity and persistency in fibroblast migration. We thus propose the dual functionality of PI3K in the control of cell motility, catalytic and non-catalytic, arising distinctly from juxtaposed regions within iSH2.
Collapse
Affiliation(s)
- Hideaki T Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Tohoku, Japan.
| | - Jack Mountain
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Nozomi Takahashi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Tohoku, Japan
| | - Abhijit Deb Roy
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Tony Yao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Amy F Peterson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian Saez Gonzalez
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ibuki Kawamata
- Department of Robotics, Tohoku University, Tohoku, Japan
- Natural Science Division, Ochanomizu University, Kyoto, Japan
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Liu Y, Jiao Y, Li X, Li G, Wang W, Liu Z, Qin D, Zhong L, Liu L, Shuai J, Li Z. An entropy-based approach for assessing the directional persistence of cell migration. Biophys J 2024; 123:730-744. [PMID: 38366586 PMCID: PMC10995411 DOI: 10.1016/j.bpj.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Cell migration, which is primarily characterized by directional persistence, is essential for the development of normal tissues and organs, as well as for numerous pathological processes. However, there is a lack of simple and efficient tools to analyze the systematic properties of persistence based on cellular trajectory data. Here, we present a novel approach, the entropy of angular distribution , which combines cellular turning dynamics and Shannon entropy to explore the statistical and time-varying properties of persistence that strongly correlate with cellular migration modes. Our results reveal the changes in the persistence of multiple cell lines that are tightly regulated by both intra- and extracellular cues, including Arpin protein, collagen gel/substrate, and physical constraints. Significantly, some previously unreported distinctive details of persistence have also been captured, helping to elucidate how directional persistence is distributed and evolves in different cell populations. The analysis suggests that the entropy of angular distribution-based approach provides a powerful metric for evaluating directional persistence and enables us to better understand the relationships between cellular behaviors and multiscale cues, which also provides some insights into the migration dynamics of cell populations, such as collective cell invasion.
Collapse
Affiliation(s)
- Yanping Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona
| | - Xinwei Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Guoqiang Li
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wei Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhichao Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dui Qin
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lisha Zhong
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhangyong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
6
|
Matsubayashi H, Mountain J, Yao T, Peterson A, Roy AD, Inoue T. Non-catalytic role of phosphoinositide 3-kinase in mesenchymal cell migration through non-canonical induction of p85β/AP-2-mediated endocytosis. RESEARCH SQUARE 2023:rs.3.rs-2432041. [PMID: 36712095 PMCID: PMC9882665 DOI: 10.21203/rs.3.rs-2432041/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable multifaceted roles, the catalytic subunit p110 utilizes a multi-domain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, their product PI(3,4,5)P3 generates locomotive activity. While non-catalytic roles are also implicated, underlying mechanisms and its relationship to PI(3,4,5)P3 signaling remain elusive. Here, we report that a disordered region of iSH2 contains previously uncharacterized AP-2 binding motifs which can trigger clathrin and dynamin-mediated endocytosis independent of PI3K catalytic activity. The AP-2 binding motif mutants of p85 aberrantly accumulate at focal adhesions and upregulate both velocity and persistency in fibroblast migration. We thus propose the dual functionality of PI3K in the control of cell motility, catalytic and non-catalytic, arising distinctly from juxtaposed regions within iSH2.
Collapse
|
7
|
Matsubayashi HT, Mountain J, Yao T, Peterson AF, Deb Roy A, Inoue T. Non-catalytic role of phosphoinositide 3-kinase in mesenchymal cell migration through non-canonical induction of p85β/AP-2-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522383. [PMID: 36712134 PMCID: PMC9881872 DOI: 10.1101/2022.12.31.522383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable multifaceted roles, the catalytic subunit p110 utilizes a multidomain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, their product PI(3,4,5)P3 generates locomotive activity. While non-catalytic roles are also implicated, underlying mechanisms and its relationship to PI(3,4,5)P3 signaling remain elusive. Here, we report that a disordered region of iSH2 contains previously uncharacterized AP-2 binding motifs which can trigger clathrin and dynamin-mediated endocytosis independent of PI3K catalytic activity. The AP-2 binding motif mutants of p85 aberrantly accumulate at focal adhesions and upregulate both velocity and persistency in fibroblast migration. We thus propose the dual functionality of PI3K in the control of cell motility, catalytic and non-catalytic, arising distinctly from juxtaposed regions within iSH2.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Jack Mountain
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Tony Yao
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Amy F. Peterson
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Abhijit Deb Roy
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
8
|
Merino-Casallo F, Gomez-Benito MJ, Martinez-Cantin R, Garcia-Aznar JM. A mechanistic protrusive-based model for 3D cell migration. Eur J Cell Biol 2022; 101:151255. [PMID: 35843121 DOI: 10.1016/j.ejcb.2022.151255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of research-mainly on flat surfaces-, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cell's adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cell's migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ruben Martinez-Cantin
- Robotics, Perception and Real Time Group (RoPeRT), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Computer Science and System Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
9
|
Ramirez SA, Pablo M, Burk S, Lew DJ, Elston TC. A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement. PLoS Comput Biol 2021; 17:e1008525. [PMID: 34264926 PMCID: PMC8315557 DOI: 10.1371/journal.pcbi.1008525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/27/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022] Open
Abstract
Cells polarize their movement or growth toward external directional cues in many different contexts. For example, budding yeast cells grow toward potential mating partners in response to pheromone gradients. Directed growth is controlled by polarity factors that assemble into clusters at the cell membrane. The clusters assemble, disassemble, and move between different regions of the membrane before eventually forming a stable polarity site directed toward the pheromone source. Pathways that regulate clustering have been identified but the molecular mechanisms that regulate cluster mobility are not well understood. To gain insight into the contribution of chemical noise to cluster behavior we simulated clustering using the reaction-diffusion master equation (RDME) framework to account for molecular-level fluctuations. RDME simulations are a computationally efficient approximation, but their results can diverge from the underlying microscopic dynamics. We implemented novel concentration-dependent rate constants that improved the accuracy of RDME-based simulations, allowing us to efficiently investigate how cluster dynamics might be regulated. Molecular noise was effective in relocating clusters when the clusters contained low numbers of limiting polarity factors, and when Cdc42, the central polarity regulator, exhibited short dwell times at the polarity site. Cluster stabilization occurred when abundances or binding rates were altered to either lengthen dwell times or increase the number of polarity molecules in the cluster. We validated key results using full 3D particle-based simulations. Understanding the mechanisms cells use to regulate the dynamics of polarity clusters should provide insights into how cells dynamically track external directional cues. Cells localize polarity molecules in a small region of the plasma membrane forming a polarity cluster that directs functions such as migration, reproduction, and growth. Guided by external signals, these clusters move across the membrane allowing cells to reorient growth or motion. The polarity molecules continuously and randomly shuttle between the cluster and the cell cytosol and, as a result, the number and distribution of molecules at the cluster constantly changes. Here we present an improved stochastic simulation algorithm to investigate how such molecular-scale fluctuations induce cluster movement across the cell membrane. Unexpectedly, cluster mobility does not correlate with variations in total molecule abundance within the cluster, but rather with changes in the spatial distribution of molecules that form the cluster. Cluster motion is faster when polarity molecules are scarce and when they shuttle rapidly between the cluster and the cytosol. Our results suggest that cells control cluster mobility by regulating the abundance of polarity molecules and biochemical reactions that affect the time molecules spend at the cluster. We provide insights into how cells harness random molecular behavior to perform functions important for survival, such as detecting the direction of external signals.
Collapse
Affiliation(s)
- Samuel A. Ramirez
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SAR); (TCE)
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sean Burk
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Timothy C. Elston
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SAR); (TCE)
| |
Collapse
|
10
|
Chen D, Dunkers JP, Losert W, Sarkar S. Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Biomaterials 2021; 274:120812. [PMID: 33962216 DOI: 10.1016/j.biomaterials.2021.120812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/12/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Nanofiber scaffolds can induce osteogenic differentiation and cell morphology alterations of human bone marrow stromal cells (hBMSCs) without introduction of chemical cues. In this study, we investigate the predictive power of day 1 cell morphology, quantified by a machine learning based method, as an indicator of osteogenic differentiation modulated by nanofiber density. Nanofiber scaffolds are fabricated via electrospinning. Microscopy, quantitative image processing and clustering analysis are used to systematically quantify scaffold properties as a function of fiber density. hBMSC osteogenic differentiation potential is evaluated after 14 days using osteogenic marker gene expression and after 50 days using calcium mineralization, showing enhanced osteogenic differentiation with an increase in nanofiber density. Cell morphology measurements at day 1 successfully predict differentiation potential when analyzed with the support vector machine (SVM)/supercell tools previously developed and trained on cells from a different donor. A correlation is observed between differentiation potential and cell morphology, demonstrating sensitivity of the morphology measurement to varying degrees of differentiation potential. To further understand how nanofiber density determines hBMSC morphology, both full 3-D morphology measurements as well as other measurements of the 2-D projected morphology are investigated in this study. To achieve predictive power on hBMSC osteogenic differentiation, at least two morphology metrics need to be considered together for each cell, with the majority of metric pairs including one 3-D morphology metric. Analysis of the local nanofiber structure surrounding each cell reveals a correlation with single-cell morphology and indicates that the osteogenic differentiation phenotype may be predictive at the single-cell level.
Collapse
Affiliation(s)
- Desu Chen
- University of Maryland, Department of Physics, 1147 Physical Sciences Complex, College Park, MD, 20742, USA.
| | - Joy P Dunkers
- National Institute of Standards & Technology, Biosystems & Biomaterials Division, 100 Bureau Dr. Stop 8543, Gaithersburg, MD, 20899, USA.
| | - Wolfgang Losert
- University of Maryland, Department of Physics, 1147 Physical Sciences Complex, College Park, MD, 20742, USA.
| | - Sumona Sarkar
- National Institute of Standards & Technology, Biosystems & Biomaterials Division, 100 Bureau Dr. Stop 8543, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
11
|
Allen GM, Lee KC, Barnhart EL, Tsuchida MA, Wilson CA, Gutierrez E, Groisman A, Theriot JA, Mogilner A. Cell Mechanics at the Rear Act to Steer the Direction of Cell Migration. Cell Syst 2020; 11:286-299.e4. [PMID: 32916096 PMCID: PMC7530145 DOI: 10.1016/j.cels.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023]
Abstract
Motile cells navigate complex environments by changing their direction of travel, generating left-right asymmetries in their mechanical subsystems to physically turn. Currently, little is known about how external directional cues are propagated along the length scale of the whole cell and integrated with its force-generating apparatus to steer migration mechanically. We examine the mechanics of spontaneous cell turning in fish epidermal keratocytes and find that the mechanical asymmetries responsible for turning behavior predominate at the rear of the cell, where there is asymmetric centripetal actin flow. Using experimental perturbations, we identify two linked feedback loops connecting myosin II contractility, adhesion strength and actin network flow in turning cells that are sufficient to explain the observed cell shapes and trajectories. Notably, asymmetries in actin polymerization at the cell leading edge play only a minor role in the mechanics of cell turning-that is, cells steer from the rear.
Collapse
Affiliation(s)
- Greg M Allen
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kun Chun Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Erin L Barnhart
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark A Tsuchida
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cyrus A Wilson
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, San Diego, CA 92023, USA
| | - Alexander Groisman
- Department of Physics, University of California, San Diego, San Diego, CA 92023, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
12
|
Spatial confinement of receptor activity by tyrosine phosphatase during directional cell migration. Proc Natl Acad Sci U S A 2020; 117:14270-14279. [PMID: 32513699 DOI: 10.1073/pnas.2003019117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1-dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.
Collapse
|
13
|
Movilla N, Valero C, Borau C, García-Aznar JM. Matrix degradation regulates osteoblast protrusion dynamics and individual migration. Integr Biol (Camb) 2020; 11:404-413. [PMID: 31922533 DOI: 10.1093/intbio/zyz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/06/2019] [Accepted: 10/19/2019] [Indexed: 01/21/2023]
Abstract
Protrusions are one of the structures that cells use to sense their surrounding environment in a probing and exploratory manner as well as to communicate with other cells. In particular, osteoblasts embedded within a 3D matrix tend to originate a large number of protrusions compared to other type of cells. In this work, we study the role that mechanochemical properties of the extracellular matrix (ECM) play on the dynamics of these protrusions, namely, the regulation of the size and number of emanating structures. In addition, we also determine how the dynamics of the protrusions may lead the 3D movement of the osteoblasts. Significant differences were found in protrusion size and cell velocity, when degradation activity due to metalloproteases was blocked by means of an artificial broad-spectrum matrix metalloproteinase inhibitor, whereas stiffening of the matrix by introducing transglutaminase crosslinking, only induced slight changes in both protrusion size and cell velocity, suggesting that the ability of cells to create a path through the matrix is more critical than the matrix mechanical properties themselves. To confirm this, we developed a cell migration computational model in 3D including both the mechanical and chemical properties of the ECM as well as the protrusion mechanics, obtaining good agreement with experimental results.
Collapse
Affiliation(s)
- Nieves Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Clara Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
14
|
Interplay Between the Persistent Random Walk and the Contact Inhibition of Locomotion Leads to Collective Cell Behaviors. Bull Math Biol 2019; 81:3301-3321. [PMID: 30788690 DOI: 10.1007/s11538-019-00585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023]
Abstract
Cell migration plays an important role in physiology and pathophysiology. It was observed in the experiments that cells, such as fibroblast, leukocytes, and cancer cells, exhibit a wide variety of migratory behaviors, such as persistent random walk, contact inhibition of locomotion, and ordered behaviors. To identify biophysical mechanisms for these cellular behaviors, we developed a rigorous computational model of cell migration on a two-dimensional non-deformable substrate. Cells in the model undergo motion driven by mechanical interactions between cellular protrusions and the substrate via the balance of tensile forces. Properties of dynamic formation of lamellipodia induced the persistent random walk behavior of a migrating cell. When multiple cells are included in the simulation, the model recapitulated the contact inhibition of locomotion between cells at low density without any phenomenological assumptions or momentum transfer. Instead, the model showed that contact inhibition of locomotion can emerge via indirect interactions between the cells through their interactions with the underlying substrate. At high density, contact inhibition of locomotion between numerous cells gave rise to confined motions or ordered behaviors, depending on cell density and how likely lamellipodia turn over due to contact with other cells. Results in our study suggest that various collective migratory behaviors may emerge without more restrictive assumptions or direct cell-to-cell biomechanical interactions.
Collapse
|
15
|
Merino-Casallo F, Gomez-Benito MJ, Juste-Lanas Y, Martinez-Cantin R, Garcia-Aznar JM. Integration of in vitro and in silico Models Using Bayesian Optimization With an Application to Stochastic Modeling of Mesenchymal 3D Cell Migration. Front Physiol 2018; 9:1246. [PMID: 30271351 PMCID: PMC6142046 DOI: 10.3389/fphys.2018.01246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Cellular migration plays a crucial role in many aspects of life and development. In this paper, we propose a computational model of 3D migration that is solved by means of the tau-leaping algorithm and whose parameters have been calibrated using Bayesian optimization. Our main focus is two-fold: to optimize the numerical performance of the mechano-chemical model as well as to automate the calibration process of in silico models using Bayesian optimization. The presented mechano-chemical model allows us to simulate the stochastic behavior of our chemically reacting system in combination with mechanical constraints due to the surrounding collagen-based matrix. This numerical model has been used to simulate fibroblast migration. Moreover, we have performed in vitro analysis of migrating fibroblasts embedded in 3D collagen-based fibrous matrices (2 mg/ml). These in vitro experiments have been performed with the main objective of calibrating our model. Nine model parameters have been calibrated testing 300 different parametrizations using a completely automatic approach. Two competing evaluation metrics based on the Bhattacharyya coefficient have been defined in order to fit the model parameters. These metrics evaluate how accurately the in silico model is replicating in vitro measurements regarding the two main variables quantified in the experimental data (number of protrusions and the length of the longest protrusion). The selection of an optimal parametrization is based on the balance between the defined evaluation metrics. Results show how the calibrated model is able to predict the main features observed in the in vitro experiments.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| | - Maria J Gomez-Benito
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| | - Yago Juste-Lanas
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| | - Ruben Martinez-Cantin
- Centro Universitario de la Defensa, Zaragoza, Spain.,SigOpt, Inc., San Francisco, CA, United States
| | - Jose M Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
16
|
Mohan K, Nosbisch JL, Elston TC, Bear JE, Haugh JM. A Reaction-Diffusion Model Explains Amplification of the PLC/PKC Pathway in Fibroblast Chemotaxis. Biophys J 2017; 113:185-194. [PMID: 28700916 DOI: 10.1016/j.bpj.2017.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
During the proliferative phase of cutaneous wound healing, dermal fibroblasts are recruited into the clotted wound by a concentration gradient of platelet-derived growth factor (PDGF), together with other spatial cues. Despite the importance of this chemotactic process, the mechanisms controlling the directed migration of slow-moving mesenchymal cells such as fibroblasts are not well understood. Here, we develop and analyze a reaction-diffusion model of phospholipase C/protein kinase C (PKC) signaling, which was recently identified as a requisite PDGF-gradient-sensing pathway, with the goal of identifying mechanisms that can amplify its sensitivity in the shallow external gradients typical of chemotaxis experiments. We show that phosphorylation of myristoylated alanine-rich C kinase substrate by membrane-localized PKC constitutes a positive feedback that is sufficient for local pathway amplification. The release of phosphorylated myristoylated alanine-rich C kinase substrate and its subsequent diffusion and dephosphorylation in the cytosol also serves to suppress the pathway in down-gradient regions of the cell. By itself, this mechanism only weakly amplifies signaling in a shallow PDGF gradient, but it synergizes with other feedback mechanisms to enhance amplification. This model offers a framework for a mechanistic understanding of phospholipase C/PKC signaling in chemotactic gradient sensing and can guide the design of experiments to assess the roles of putative feedback loops.
Collapse
Affiliation(s)
- Krithika Mohan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Jamie L Nosbisch
- Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
17
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
18
|
Holmes WR, Park J, Levchenko A, Edelstein-Keshet L. A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns. PLoS Comput Biol 2017; 13:e1005524. [PMID: 28472054 PMCID: PMC5436877 DOI: 10.1371/journal.pcbi.1005524] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
Protrusion and retraction of lamellipodia are common features of eukaryotic cell motility. As a cell migrates through its extracellular matrix (ECM), lamellipod growth increases cell-ECM contact area and enhances engagement of integrin receptors, locally amplifying ECM input to internal signaling cascades. In contrast, contraction of lamellipodia results in reduced integrin engagement that dampens the level of ECM-induced signaling. These changes in cell shape are both influenced by, and feed back onto ECM signaling. Motivated by experimental observations on melanoma cells lines (1205Lu and SBcl2) migrating on fibronectin (FN) coated topographic substrates (anisotropic post-density arrays), we probe this interplay between intracellular and ECM signaling. Experimentally, cells exhibited one of three lamellipodial dynamics: persistently polarized, random, or oscillatory, with competing lamellipodia oscillating out of phase (Park et al., 2017). Pharmacological treatments, changes in FN density, and substrate topography all affected the fraction of cells exhibiting these behaviours. We use these observations as constraints to test a sequence of hypotheses for how intracellular (GTPase) and ECM signaling jointly regulate lamellipodial dynamics. The models encoding these hypotheses are predicated on mutually antagonistic Rac-Rho signaling, Rac-mediated protrusion (via activation of Arp2/3 actin nucleation) and Rho-mediated contraction (via ROCK phosphorylation of myosin light chain), which are coupled to ECM signaling that is modulated by protrusion/contraction. By testing each model against experimental observations, we identify how the signaling layers interact to generate the diverse range of cell behaviors, and how various molecular perturbations and changes in ECM signaling modulate the fraction of cells exhibiting each. We identify several factors that play distinct but critical roles in generating the observed dynamic: (1) competition between lamellipodia for shared pools of Rac and Rho, (2) activation of RhoA by ECM signaling, and (3) feedback from lamellipodial growth or contraction to cell-ECM contact area and therefore to the ECM signaling level.
Collapse
Affiliation(s)
- William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - JinSeok Park
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | | |
Collapse
|
19
|
Blasiak A, Kilinc D, Lee GU. Neuronal Cell Bodies Remotely Regulate Axonal Growth Response to Localized Netrin-1 Treatment via Second Messenger and DCC Dynamics. Front Cell Neurosci 2017; 10:298. [PMID: 28105005 PMCID: PMC5214882 DOI: 10.3389/fncel.2016.00298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
Netrin-1 modulates axonal growth direction and speed. Its best characterized receptor, Deleted in Colorectal Cancer (DCC), is localized to growth cones, but also observed in the cell bodies. We hypothesized that cell bodies sense Netrin-1 and contribute to axon growth rate modulation, mediated by the second messenger system. We cultured mouse cortical neurons in microfluidic devices to isolate distal axon and cell body microenvironments. Compared to isolated axonal treatment, global Netrin-1 treatment decreased the axon elongation rate and affected the dynamics of total and membranous DCC, calcium, and cyclic nucleotides. Signals induced by locally applied Netrin-1 propagated in both anterograde and retrograde directions, demonstrated by the long-range increase in DCC and by the increased frequency of calcium transients in cell bodies, evoked by axonal Netrin-1. Blocking the calcium efflux from endoplasmic reticulum suppressed the membranous DCC response. Our findings support the notion that neurons sense Netrin-1 along their entire lengths in making axonal growth decisions.
Collapse
Affiliation(s)
- Agata Blasiak
- Bionanosciences Group, School of Chemistry, University College Dublin Dublin, Ireland
| | - Devrim Kilinc
- Bionanosciences Group, School of Chemistry, University College DublinDublin, Ireland; UCD Conway Institute of Biomedical and Biomolecular Research, University College DublinDublin, Ireland
| | - Gil U Lee
- Bionanosciences Group, School of Chemistry, University College DublinDublin, Ireland; UCD Conway Institute of Biomedical and Biomolecular Research, University College DublinDublin, Ireland
| |
Collapse
|
20
|
Ribeiro FO, Gómez-Benito MJ, Folgado J, Fernandes PR, García-Aznar JM. Computational model of mesenchymal migration in 3D under chemotaxis. Comput Methods Biomech Biomed Engin 2017; 20:59-74. [PMID: 27336322 PMCID: PMC5061084 DOI: 10.1080/10255842.2016.1198784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL-1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
Collapse
Affiliation(s)
- F. O. Ribeiro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| | - M. J. Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| | - J. Folgado
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - P. R. Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - J. M. García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
21
|
Chen D, Sarkar S, Candia J, Florczyk SJ, Bodhak S, Driscoll MK, Simon CG, Dunkers JP, Losert W. Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues. Biomaterials 2016; 104:104-18. [PMID: 27449947 PMCID: PMC11305428 DOI: 10.1016/j.biomaterials.2016.06.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 01/02/2023]
Abstract
Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment.
Collapse
Affiliation(s)
- Desu Chen
- Biophysics Program, University of Maryland, College Park, MD, United States
| | - Sumona Sarkar
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD, United States
| | - Julián Candia
- Department of Physics, University of Maryland, College Park, MD, United States; School of Medicine, University of Maryland, Baltimore, MD, United States; Center for Human Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Stephen J Florczyk
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD, United States
| | - Subhadip Bodhak
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD, United States
| | - Meghan K Driscoll
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Carl G Simon
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD, United States
| | - Joy P Dunkers
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD, United States
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD, United States.
| |
Collapse
|
22
|
Welf ES, Driscoll MK, Dean KM, Schäfer C, Chu J, Davidson MW, Lin MZ, Danuser G, Fiolka R. Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments. Dev Cell 2016; 36:462-75. [PMID: 26906741 DOI: 10.1016/j.devcel.2016.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/11/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The microenvironment determines cell behavior, but the underlying molecular mechanisms are poorly understood because quantitative studies of cell signaling and behavior have been challenging due to insufficient spatial and/or temporal resolution and limitations on microenvironmental control. Here we introduce microenvironmental selective plane illumination microscopy (meSPIM) for imaging and quantification of intracellular signaling and submicrometer cellular structures as well as large-scale cell morphological and environmental features. We demonstrate the utility of this approach by showing that the mechanical properties of the microenvironment regulate the transition of melanoma cells from actin-driven protrusion to blebbing, and we present tools to quantify how cells manipulate individual collagen fibers. We leverage the nearly isotropic resolution of meSPIM to quantify the local concentration of actin and phosphatidylinositol 3-kinase signaling on the surfaces of cells deep within 3D collagen matrices and track the many small membrane protrusions that appear in these more physiologically relevant environments.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meghan K Driscoll
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claudia Schäfer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Chu
- Departments of Bioengineering and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory, Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Michael Z Lin
- Departments of Bioengineering and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Liu X, Welf ES, Haugh JM. Linking morphodynamics and directional persistence of T lymphocyte migration. J R Soc Interface 2016; 12:rsif.2014.1412. [PMID: 25904526 DOI: 10.1098/rsif.2014.1412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T cells play a central role in the adaptive immune response, and their directed migration is essential for homing to sites of antigen presentation. Like neutrophils, T lymphocytes are rapidly moving cells that exhibit amoeboid movement, characterized by a definitive polarity with F-actin concentrated at the front and myosin II elsewhere. In this study, we used total internal reflection fluorescence (TIRF) microscopy to monitor the cells' areas of contact with a surface presenting adhesive ICAM-1 and the chemokine, CXCL12/SDF-1. Our analysis reveals that T-cell migration and reorientation are achieved by bifurcation and lateral separation of protrusions along the leading membrane edge, followed by cessation of one of the protrusions, which acts as a pivot for cell turning. We show that the distribution of bifurcation frequencies exhibits characteristics of a random, spontaneous process; yet, the waiting time between bifurcation events depends on whether or not the pivot point remains on the same side of the migration axis. Our analysis further suggests that switching of the dominant protrusion between the two sides of the migration axis is associated with persistent migration, whereas the opposite is true of cell turning. To help explain the bifurcation phenomenon and how distinct migration behaviours might arise, a spatio-temporal, stochastic model describing F-actin dynamics is offered.
Collapse
Affiliation(s)
- Xiaji Liu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695, USA
| | - Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Gordonov S, Hwang MK, Wells A, Gertler FB, Lauffenburger DA, Bathe M. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. Integr Biol (Camb) 2016; 8:73-90. [PMID: 26658688 PMCID: PMC5058786 DOI: 10.1039/c5ib00283d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.
Collapse
Affiliation(s)
- Simon Gordonov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Mun Kyung Hwang
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, PA, USA
| | - Frank B. Gertler
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Yang HW, Collins SR, Meyer T. Locally excitable Cdc42 signals steer cells during chemotaxis. Nat Cell Biol 2015; 18:191-201. [PMID: 26689677 PMCID: PMC5015690 DOI: 10.1038/ncb3292] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Neutrophils and other amoeboid cells chemotax by steering their front towards chemoattractant. While Ras, Rac, Cdc42, and RhoA small GTPases all regulate chemotaxis, it has been unclear how they spatiotemporally control polarization and steering. Using fluorescence biosensors in neutrophil-like PLB-985 cells and photorelease of chemoattractant, we show that local Cdc42 signals, but not those of Rac, RhoA or Ras, precede cell turning during chemotaxis. Furthermore, preexisting local Cdc42 signals in morphologically unpolarized cells predict the future direction of movement upon uniform stimulation. Moreover, inhibition of actin polymerization uncovers recurring local Cdc42 activity pulses, suggesting that Cdc42 has the excitable characteristic of the compass activity proposed in models of chemotaxis. Globally, Cdc42 antagonizes RhoA, and maintains a steep spatial activity gradient during migration, while Ras and Rac form shallow gradients. Thus, chemotactic steering and de novo polarization are both directed by locally excitable Cdc42 signals.
Collapse
Affiliation(s)
- Hee Won Yang
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean R Collins
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Meyer
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Johnson HE, King SJ, Asokan SB, Rotty JD, Bear JE, Haugh JM. F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling. ACTA ACUST UNITED AC 2015; 208:443-55. [PMID: 25666809 PMCID: PMC4332254 DOI: 10.1083/jcb.201406102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells such as fibroblasts are weakly polarized and reorient directionality by a lamellipodial branching mechanism that is stabilized by phosphoinositide 3-kinase (PI3K) signaling. However, the mechanisms by which new lamellipodia are initiated and directed are unknown. Using total internal reflection fluorescence microscopy to monitor cytoskeletal and signaling dynamics in migrating cells, we show that peripheral F-actin bundles/filopodia containing fascin-1 serve as templates for formation and orientation of lamellipodia. Accordingly, modulation of fascin-1 expression tunes cell shape, quantified as the number of morphological extensions. Ratiometric imaging reveals that F-actin bundles/filopodia play both structural and signaling roles, as they prime the activation of PI3K signaling mediated by integrins and focal adhesion kinase. Depletion of fascin-1 ablated fibroblast haptotaxis on fibronectin but not platelet-derived growth factor chemotaxis. Based on these findings, we conceptualize haptotactic sensing as an exploration, with F-actin bundles directing and lamellipodia propagating the process and with signaling mediated by adhesions playing the role of integrator.
Collapse
Affiliation(s)
- Heath E Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Samantha J King
- UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Sreeja B Asokan
- UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jeremy D Rotty
- UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - James E Bear
- UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 UNC Lineberger Cancer Center, the Department of Cell Biology and Physiology, and Howard Hughes Medical Institute, The University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
27
|
Vorotnikov AV, Tyurin-Kuzmin PA. Chemotactic signaling in mesenchymal cells compared to amoeboid cells. Genes Dis 2014; 1:162-173. [PMID: 30258862 PMCID: PMC6150068 DOI: 10.1016/j.gendis.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 01/09/2023] Open
Abstract
Cell chemotaxis plays a pivotal role in normal development, inflammatory response, injury repair and tissue regeneration in all organisms. It is also a critical contributor to cancer metastasis, altered angiogenesis and neurite growth in disease. The molecular mechanisms regulating chemotaxis are currently being identified and key components may be pertinent therapeutic targets. Although these components appear to be mostly common in various cells, there are important differences in chemotactic signaling networks and signal processing that result in the distinct chemotactic behavior of mesenchymal cells compared to much better studied amoeboid blood cells. These differences are not necessarily predetermined based on cell type, but are rather chosen and exploited by cells to modify their chemotactic behavior based on physical constraints and/or environmental conditions. This results in a specific type of chemotactic migration in mesenchymal cells that can be selectively targeted in disease. Here, we compare the chemotactic behavior, signaling and motility of mesenchymal and amoeboid cells. We suggest that the current model of chemotaxis is applicable for small amoeboid cells but needs to be reconsidered for large mesenchymal cells. We focus on new candidate regulatory molecules and feedback mechanisms that may account for mesenchymal cell type-specific chemotaxis.
Collapse
Key Words
- Chemotaxis
- Feedback regulation
- Fibroblasts
- GEFs, guanine nucleotide exchange factors
- GPCRs, G-protein coupled receptors
- Hydrogen peroxide
- LEGI, local excitation and global inhibition
- MAP-kinase, mitogen-activated protein kinase
- NOX, NADPH-oxidase
- PDGF, platelet derived growth factor
- PI3-kinase, phosphatidylinositol-3-kinase
- PIP3, phosphatidylinositol (3,4,5)-trisphosphate
- PLA2, phospholipase A2
- PTEN, phosphatase and tensin homolog
- RTKs, receptor tyrosine kinases
- Signaling
- mTORC, mechanistic target of rapamycin complex
- РТР-1В, protein tyrosine phosphatase-1B
Collapse
Affiliation(s)
- Alexander V. Vorotnikov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
- Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russian Federation
- Corresponding author. Department of Biochemistry and Molecular Medicine, Faculty of Fundamental Medicine, Moscow State University, 31 Lomonosov Ave., Bldg 5, Russian Federation.
| | - Pyotr A. Tyurin-Kuzmin
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
28
|
Volakis LI, Li R, Ackerman WE, Mihai C, Bechel M, Summerfield TL, Ahn CS, Powell HM, Zielinski R, Rosol TJ, Ghadiali SN, Kniss DA. Loss of myoferlin redirects breast cancer cell motility towards collective migration. PLoS One 2014; 9:e86110. [PMID: 24586247 PMCID: PMC3935829 DOI: 10.1371/journal.pone.0086110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022] Open
Abstract
Cell migration plays a central role in the invasion and metastasis of tumors. As cells leave the primary tumor, they undergo an epithelial to mesenchymal transition (EMT) and migrate as single cells. Epithelial tumor cells may also migrate in a highly directional manner as a collective group in some settings. We previously discovered that myoferlin (MYOF) is overexpressed in breast cancer cells and depletion of MYOF results in a mesenchymal to epithelial transition (MET) and reduced invasion through extracellular matrix (ECM). However, the biomechanical mechanisms governing cell motility during MYOF depletion are poorly understood. We first demonstrated that lentivirus-driven shRNA-induced MYOF loss in MDA-MB-231 breast cancer cells (MDA-231(MYOF-KD)) leads to an epithelial morphology compared to the mesenchymal morphology observed in control (MDA-231(LTVC)) and wild-type cells. Knockdown of MYOF led to significant reductions in cell migration velocity and MDA-231(MYOF-KD) cells migrated directionally and collectively, while MDA-231(LTVC) cells exhibited single cell migration. Decreased migration velocity and collective migration were accompanied by significant changes in cell mechanics. MDA-231(MYOF-KD) cells exhibited a 2-fold decrease in cell stiffness, a 2-fold increase in cell-substrate adhesion and a 1.5-fold decrease in traction force generation. In vivo studies demonstrated that when immunocompromised mice were implanted with MDA-231(MYOF-KD) cells, tumors were smaller and demonstrated lower tumor burden. Moreover, MDA-231(MYOF-KD) tumors were highly circularized and did not invade locally into the adventia in contrast to MDA-231(LTVC)-injected animals. Thus MYOF loss is associated with a change in tumor formation in xenografts and leads to smaller, less invasive tumors. These data indicate that MYOF, a previously unrecognized protein in cancer, is involved in MDA-MB-231 cell migration and contributes to biomechanical alterations. Our results indicate that changes in biomechanical properties following loss of this protein may be an effective way to alter the invasive capacity of cancer cells.
Collapse
Affiliation(s)
- Leonithas I. Volakis
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Ruth Li
- Department of Obstetrics & Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio, United States of America
| | - William E. Ackerman
- Department of Obstetrics & Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio, United States of America
| | - Cosmin Mihai
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Meagan Bechel
- Department of Obstetrics & Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio, United States of America
| | - Taryn L. Summerfield
- Department of Obstetrics & Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher S. Ahn
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Heather M. Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Department of Material Science Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Rachel Zielinski
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Samir N. Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Douglas A. Kniss
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Department of Obstetrics & Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ahmed S, Grant KG, Edwards LE, Rahman A, Cirit M, Goshe MB, Haugh JM. Data-driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states. Mol Syst Biol 2014; 10:718. [PMID: 24489118 PMCID: PMC4023404 DOI: 10.1002/msb.134708] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extracellular signal‐regulated kinase (ERK) signaling pathway controls cell proliferation and differentiation in metazoans. Two hallmarks of its dynamics are adaptation of ERK phosphorylation, which has been linked to negative feedback, and nucleocytoplasmic shuttling, which allows active ERK to phosphorylate protein substrates in the nucleus and cytosol. To integrate these complex features, we acquired quantitative biochemical and live‐cell microscopy data to reconcile phosphorylation, localization, and activity states of ERK. While maximal growth factor stimulation elicits transient ERK phosphorylation and nuclear translocation responses, ERK activities available to phosphorylate substrates in the cytosol and nuclei show relatively little or no adaptation. Free ERK activity in the nucleus temporally lags the peak in nuclear translocation, indicating a slow process. Additional experiments, guided by kinetic modeling, show that this process is consistent with ERK's modification of and release from nuclear substrate anchors. Thus, adaptation of whole‐cell ERK phosphorylation is a by‐product of transient protection from phosphatases. Consistent with this interpretation, predictions concerning the dose‐dependence of the pathway response and its interruption by inhibition of MEK were experimentally confirmed.
Collapse
Affiliation(s)
- Shoeb Ahmed
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Johnson HE, Haugh JM. Quantitative analysis of phosphoinositide 3-kinase (PI3K) signaling using live-cell total internal reflection fluorescence (TIRF) microscopy. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; 61:14.14.1-14.14.24. [PMID: 24510804 DOI: 10.1002/0471143030.cb1414s61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors.
Collapse
Affiliation(s)
- Heath E Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
31
|
Abstract
This review focuses on basic principles of motility in different cell types, formation of the specific cell structures that enable directed migration, and how external signals are transduced into cells and coupled to the motile machinery. Feedback mechanisms and their potential role in maintenance of internal chemotactic gradients and persistence of directed migration are highlighted.
Collapse
Affiliation(s)
- A V Vorotnikov
- Department of Biochemistry and Molecular Medicine, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
32
|
Welf ES, Ahmed S, Johnson HE, Melvin AT, Haugh JM. Migrating fibroblasts reorient directionality by a metastable, PI3K-dependent mechanism. ACTA ACUST UNITED AC 2012; 197:105-14. [PMID: 22472441 PMCID: PMC3317800 DOI: 10.1083/jcb.201108152] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal cell migration as exhibited by fibroblasts is distinct from amoeboid cell migration and is characterized by dynamic competition among multiple protrusions, which determines directional persistence and responses to spatial cues. Localization of phosphoinositide 3-kinase (PI3K) signaling is thought to play a broadly important role in cell motility, yet the context-dependent functions of this pathway have not been adequately elucidated. By mapping the spatiotemporal dynamics of cell protrusion/retraction and PI3K signaling monitored by total internal reflection fluorescence microscopy, we show that randomly migrating fibroblasts reorient polarity through PI3K-dependent branching and pivoting of protrusions. PI3K inhibition did not affect the initiation of newly branched protrusions, nor did it prevent protrusion induced by photoactivation of Rac. Rather, PI3K signaling increased after, not before, the onset of local protrusion and was required for the lateral spreading and stabilization of nascent branches. During chemotaxis, the branch experiencing the higher chemoattractant concentration was favored, and, thus, the cell reoriented so as to align with the external gradient.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
33
|
Park HY, Trcek T, Wells AL, Chao JA, Singer RH. An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep 2012; 1:179-84. [PMID: 22832165 PMCID: PMC4079260 DOI: 10.1016/j.celrep.2011.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/22/2011] [Accepted: 12/23/2011] [Indexed: 12/03/2022] Open
Abstract
Localization of mRNA is a critical mechanism used by a large fraction of transcripts to restrict its translation to specific cellular regions. Although current high- resolution imaging techniques provide ample information, the analysis methods for localization have either been qualitative or employed quantification in non-randomly selected regions of interest. Here, we describe an analytical method for objective quantification of mRNA localization using a combination of two characteristics of its molecular distribution, polarization and dispersion. The validity of the method is demonstrated using single-molecule FISH images of budding yeast and fibroblasts. Live-cell analysis of endogenous β-actin mRNA in mouse fibroblasts reveals that mRNA polarization has a half- life of ~16 min and is cross-correlated with directed cell migration. This novel approach provides insights into the dynamic regulation of mRNA localization and its physiological roles.
Collapse
Affiliation(s)
- Hye Yoon Park
- Department of Anatomy and Structural Biology
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Robert H. Singer
- Department of Anatomy and Structural Biology
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
34
|
Hughes-Alford SK, Lauffenburger DA. Quantitative analysis of gradient sensing: towards building predictive models of chemotaxis in cancer. Curr Opin Cell Biol 2012; 24:284-91. [PMID: 22284347 DOI: 10.1016/j.ceb.2012.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022]
Abstract
Chemotaxis of tumor cells in response to a gradient of extracellular ligand is an important step in cancer metastasis. The heterogeneity of chemotactic responses in cancer has not been widely addressed by experimental or mathematical modeling techniques. However, recent advancements in chemoattractant presentation, fluorescent-based signaling probes, and phenotypic analysis paradigms provide rich sources for building data-driven relational models that describe tumor cell chemotaxis in response to a wide variety of stimuli. Here we present gradient sensing, and the resulting chemotactic behavior, in a 'cue-signal-response' framework and suggest methods for utilizing recently reported experimental methods in data-driven modeling ventures.
Collapse
Affiliation(s)
- Shannon K Hughes-Alford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
35
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Traction forces of neutrophils migrating on compliant substrates. Biophys J 2011; 101:575-84. [PMID: 21806925 DOI: 10.1016/j.bpj.2011.05.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
Proper functioning of the innate immune response depends on migration of circulating neutrophils into tissues at sites of infection and inflammation. Migration of highly motile, amoeboid cells such as neutrophils has significant physiological relevance, yet the traction forces that drive neutrophil motion in response to chemical cues are not well characterized. To better understand the relationship between chemotactic signals and the organization of forces in motile neutrophils, force measurements were made on hydrogel surfaces under well-defined chemotactic gradients created with a microfluidic device. Two parameters, the mean chemoattractant concentration (C(M)) and the gradient magnitude (Δc/Δx) were varied. Cells experiencing a large gradient with C(M) near the chemotactic receptor K(D) displayed strong punctate centers of uropodial contractile force and strong directional motion on stiff (12 kPa) surfaces. Under conditions of ideal chemotaxis--cells in strong gradients with mean chemoattractant near the receptor K(D) and on stiffer substrates--there is a correlation between the magnitude of force generation and directional motion as measured by the chemotactic index. However, on soft materials or under weaker chemotactic conditions, directional motion is uncorrelated with the magnitude of traction force. Inhibition of either β(2) integrins or Rho-associated kinase, a kinase downstream from RhoA, greatly reduced rearward traction forces and directional motion, although some vestigial lamellipodium-driven motility remained. In summary, neutrophils display a diverse repertoire of methods for organizing their internal machinery to generate directional motion.
Collapse
|
37
|
Melvin AT, Welf ES, Wang Y, Irvine DJ, Haugh JM. In chemotaxing fibroblasts, both high-fidelity and weakly biased cell movements track the localization of PI3K signaling. Biophys J 2011; 100:1893-901. [PMID: 21504725 DOI: 10.1016/j.bpj.2011.02.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022] Open
Abstract
Cell movement biased by a chemical gradient, or chemotaxis, coordinates the recruitment of cells and collective migration of cell populations. During wound healing, chemotaxis of fibroblasts is stimulated by platelet-derived growth factor (PDGF) and certain other chemoattractants. Whereas the immediate PDGF gradient sensing response has been characterized previously at the level of phosphoinositide 3-kinase (PI3K) signaling, the sensitivity of the response at the level of cell migration bias has not yet been studied quantitatively. In this work, we used live-cell total internal reflection fluorescence microscopy to monitor PI3K signaling dynamics and cell movements for extended periods. We show that persistent and properly aligned (i.e., high-fidelity) fibroblast migration does indeed correlate with polarized PI3K signaling; accordingly, this behavior is seen only under conditions of high gradient steepness (>10% across a typical cell length of 50 μm) and a certain range of PDGF concentrations. Under suboptimal conditions, cells execute a random or biased random walk, but nonetheless move in a predictable fashion according to the changing pattern of PI3K signaling. Inhibition of PI3K during chemotaxis is accompanied by loss of both cell-substratum contact and morphological polarity, but after a recovery period, PI3K-inhibited fibroblasts often regain the ability to orient toward the PDGF gradient.
Collapse
Affiliation(s)
- Adam T Melvin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
We model the motility of Dictyostelium cells in a systematic data-driven manner. We deduce a minimal dynamical model that reproduces the statistical features of experimental trajectories. These are trajectories of the centroid of the cell perimeter, which is more sensitive to pseudopod activity than the usual tracking by centroid or nucleus. Our data account for cell individuality and dictate a model that extends the cell-type specific models recently derived for mammalian cells. Two generalized Langevin equations model stochastic periodic pseudopod motion parallel and orthogonal to the amoeba's direction of motion. This motion propels the amoeba with a random periodic left-right waddle in a direction that has a long persistence time. The model fully accounts for the statistics of the experimental trajectories, including velocity power spectra and auto-correlations, non-Gaussian velocity distributions, and multiplicative noise. Thus, we find neither need nor place in our data for an interpretation in terms of anomalous diffusion. The model faithfully captures cell individuality as different parameter values in the model, and serves as a basis for integrating the local mechanics of cell motion with our observed long-term behavior.
Collapse
Affiliation(s)
- Liang Li
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Edward C. Cox
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
39
|
Lu S, Kim TJ, Chen CE, Ouyang M, Seong J, Liao X, Wang Y. Computational analysis of the spatiotemporal coordination of polarized PI3K and Rac1 activities in micro-patterned live cells. PLoS One 2011; 6:e21293. [PMID: 21738630 PMCID: PMC3124492 DOI: 10.1371/journal.pone.0021293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/24/2011] [Indexed: 12/31/2022] Open
Abstract
Polarized molecular activities play important roles in guiding the cell toward persistent and directional migration. In this study, the polarized distributions of the activities of phosphatidylinositol 3-kinase (PI3K) and the Rac1 small GTPase were monitored using chimeric fluorescent proteins (FPs) in cells constrained on micro-patterned strips, with one end connecting to a neighboring cell (junction end) and the other end free of cell-cell contact (free end). The recorded spatiotemporal dynamics of the fluorescent intensity from different cells was scaled into a uniform coordinate system and applied to compute the molecular activity landscapes in space and time. The results revealed different polarization patterns of PI3K and Rac1 activity induced by the growth factor stimulation. The maximal intensity of different FPs, and the edge position and velocity at the free end were further quantified to analyze their correlation and decipher the underlying signaling sequence. The results suggest that the initiation of the edge extension occurred before the activation of PI3K, which led to a stable extension of the free end followed by the Rac1 activation. Therefore, the results support a concerted coordination of sequential signaling events and edge dynamics, underscoring the important roles played by PI3K activity at the free end in regulating the stable lamellipodia extension and cell migration. Meanwhile, the quantification methods and accompanying software developed can provide a convenient and powerful computational analysis platform for the study of spatiotemporal molecular distribution and hierarchy in live cells based on fluorescence images.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | | | | | | | | | | | | |
Collapse
|
40
|
Welf ES, Haugh JM. Signaling pathways that control cell migration: models and analysis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:231-40. [PMID: 21305705 DOI: 10.1002/wsbm.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dissecting the intracellular signaling mechanisms that govern the movement of eukaryotic cells presents a major challenge, not only because of the large number of molecular players involved, but even more so because of the dynamic nature of their regulation by both biochemical and mechanical interactions. Computational modeling and analysis have emerged as useful tools for understanding how the physical properties of cells and their microenvironment are coupled with certain biochemical pathways to actuate and control cell motility. In this focused review, we highlight some of the more recent applications of quantitative modeling and analysis in the field of cell migration. Both in modeling and experiment, it has been prudent to follow a reductionist approach in order to characterize what are arguably the principal modules: spatial polarization of signaling pathways, regulation of the actin cytoskeleton, and dynamics of focal adhesions. While it is important that we 'cut our teeth' on these subsystems, focusing on the details of certain aspects while ignoring or coarse-graining others, it is clear that the challenge ahead will be to characterize the couplings between them in an integrated framework.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
41
|
Berezhkovskii AM, Sample C, Shvartsman SY. Formation of morphogen gradients: local accumulation time. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051906. [PMID: 21728570 PMCID: PMC4957404 DOI: 10.1103/physreve.83.051906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/12/2010] [Indexed: 05/31/2023]
Abstract
Spatial regulation of cell differentiation in embryos can be provided by morphogen gradients, which are defined as the concentration fields of molecules that control gene expression. For example, a cell can use its surface receptors to measure the local concentration of an extracellular ligand and convert this information into a corresponding change in its transcriptional state. We characterize the time needed to establish a steady-state gradient in problems with diffusion and degradation of locally produced chemical signals. A relaxation function is introduced to describe how the morphogen concentration profile approaches its steady state. This function is used to obtain a local accumulation time that provides a time scale that characterizes relaxation to steady state at an arbitrary position within the patterned field. To illustrate the approach we derive local accumulation times for a number of commonly used models of morphogen gradient formation.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
42
|
Ahmed S, Yang HK, Ozcam AE, Efimenko K, Weiger MC, Genzer J, Haugh JM. Poly(vinylmethylsiloxane) Elastomer Networks as Functional Materials for Cell Adhesion and Migration Studies. Biomacromolecules 2011; 12:1265-71. [DOI: 10.1021/bm101549y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shoeb Ahmed
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Hyun-kwan Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Ali E. Ozcam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Kirill Efimenko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Michael C. Weiger
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
43
|
Gruver JS, Potdar AA, Jeon J, Sai J, Anderson B, Webb D, Richmond A, Quaranta V, Cummings PT, Chung CY. Bimodal analysis reveals a general scaling law governing nondirected and chemotactic cell motility. Biophys J 2010; 99:367-76. [PMID: 20643054 DOI: 10.1016/j.bpj.2010.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 12/31/2022] Open
Abstract
Cell motility is a fundamental process with relevance to embryonic development, immune response, and metastasis. Cells move either spontaneously, in a nondirected fashion, or in response to chemotactic signals, in a directed fashion. Even though they are often studied separately, both forms of motility share many complex processes at the molecular and subcellular scale, e.g., orchestrated cytoskeletal rearrangements and polarization. In addition, at the cellular level both types of motility include persistent runs interspersed with reorientation pauses. Because there is a great range of variability in motility among different cell types, a key challenge in the field is to integrate these multiscale processes into a coherent framework. We analyzed the motility of Dictyostelium cells with bimodal analysis, a method that compares time spent in persistent versus reorientation mode. Unexpectedly, we found that reorientation time is coupled with persistent time in an inverse correlation and, surprisingly, the inverse correlation holds for both nondirected and chemotactic motility, so that the full range of Dictyostelium motility can be described by a single scaling relationship. Additionally, we found an identical scaling relationship for three human cell lines, indicating that the coupling of reorientation and persistence holds across species and making it possible to describe the complexity of cell motility in a surprisingly general and simple manner. With this new perspective, we analyzed the motility of Dictyostelium mutants, and found four in which the coupling between two modes was altered. Our results point to a fundamental underlying principle, described by a simple scaling law, unifying mechanisms of eukaryotic cell motility at several scales.
Collapse
Affiliation(s)
- J Scott Gruver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2010; 129:62-81. [PMID: 20965213 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.
| | | | | | | |
Collapse
|