1
|
Li J, Rahmani H, Abbasi Yeganeh F, Rastegarpouyani H, Taylor DW, Wood NB, Previs MJ, Iwamoto H, Taylor KA. Structure of the Flight Muscle Thick Filament from the Bumble Bee, Bombus ignitus, at 6 Å Resolution. Int J Mol Sci 2022; 24:377. [PMID: 36613818 PMCID: PMC9820631 DOI: 10.3390/ijms24010377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Four insect orders have flight muscles that are both asynchronous and indirect; they are asynchronous in that the wingbeat frequency is decoupled from the frequency of nervous stimulation and indirect in that the muscles attach to the thoracic exoskeleton instead of directly to the wing. Flight muscle thick filaments from two orders, Hemiptera and Diptera, have been imaged at a subnanometer resolution, both of which revealed a myosin tail arrangement referred to as “curved molecular crystalline layers”. Here, we report a thick filament structure from the indirect flight muscles of a third insect order, Hymenoptera, the Asian bumble bee Bombus ignitus. The myosin tails are in general agreement with previous determinations from Lethocerus indicus and Drosophila melanogaster. The Skip 2 region has the same unusual structure as found in Lethocerus indicus thick filaments, an α-helix discontinuity is also seen at Skip 4, but the orientation of the Skip 1 region on the surface of the backbone is less angled with respect to the filament axis than in the other two species. The heads are disordered as in Drosophila, but we observe no non-myosin proteins on the backbone surface that might prohibit the ordering of myosin heads onto the thick filament backbone. There are strong structural similarities among the three species in their non-myosin proteins within the backbone that suggest how one previously unassigned density in Lethocerus might be assigned. Overall, the structure conforms to the previously observed pattern of high similarity in the myosin tail arrangement, but differences in the non-myosin proteins.
Collapse
Affiliation(s)
- Jiawei Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Hamidreza Rahmani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Fatemeh Abbasi Yeganeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Dianne W. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Neil B. Wood
- Department of Molecular Physiology & Biophysics, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA
| | - Michael J. Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA
| | - Hiroyuki Iwamoto
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198, Japan
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
2
|
Iwamoto H. Synchrotron radiation X-ray diffraction studies on muscle: past, present, and future. Biophys Rev 2019; 11:547-558. [PMID: 31203514 PMCID: PMC6682197 DOI: 10.1007/s12551-019-00554-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
X-ray diffraction is a technique to study the structure of materials at spatial resolutions up to an atomic scale. In the field of life science, the X-ray diffraction technique is especially suited to study materials having periodical structures, such as protein crystals, nucleic acids, and muscle. Among others, muscle is a dynamic structure and the molecular events occurring during muscle contraction have been the main interest among muscle researchers. In early days, the laboratory X-ray generators were unable to deliver X-ray flux strong enough to resolve the dynamic molecular events in muscle. This situation has dramatically been changed by the advent of intense synchrotron radiation X-rays and advanced detectors, and today X-ray diffraction patterns can be recorded from muscle at sub-millisecond time resolutions. In this review, we shed light mainly on the technical aspects of the history and the current status of the X-ray diffraction studies on muscle and discuss what will be made possible for muscle studies by the advance of new techniques.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| |
Collapse
|
3
|
Ma W, Gong H, Irving T. Myosin Head Configurations in Resting and Contracting Murine Skeletal Muscle. Int J Mol Sci 2018; 19:E2643. [PMID: 30200618 PMCID: PMC6165214 DOI: 10.3390/ijms19092643] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Transgenic mouse models have been important tools for studying the relationship of genotype to phenotype for human diseases, including those of skeletal muscle. We show that mouse skeletal muscle can produce high quality X-ray diffraction patterns establishing the mouse intact skeletal muscle X-ray preparation as a potentially powerful tool to test structural hypotheses in health and disease. A notable feature of the mouse model system is the presence of residual myosin layer line intensities in contracting mouse muscle patterns. This provides an additional tool, along with the I1,1/I1,0 intensity ratio, for estimating the proportions of active versus relaxed myosin heads under a given set of conditions that can be used to characterize a given physiological condition or mutant muscle type. We also show that analysis of the myosin layer line intensity distribution, including derivation of the myosin head radius, Rm, may be used to study the role of the super-relaxed state in myosin regulation. When the myosin inhibitor blebbistatin is used to inhibit force production, there is a shift towards a highly quasi-helically ordered configuration that is distinct from the normal resting state, indicating there are more than one helically ordered configuration for resting crossbridges.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Thomas Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
4
|
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle. Int J Mol Sci 2018; 19:ijms19061748. [PMID: 29899245 PMCID: PMC6032142 DOI: 10.3390/ijms19061748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/02/2023] Open
Abstract
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
Collapse
|
5
|
Iwamoto H. Effects of myosin inhibitors on the X-ray diffraction patterns of relaxed and calcium-activated rabbit skeletal muscle fibers. Biophys Physicobiol 2018; 15:111-120. [PMID: 29892517 PMCID: PMC5992860 DOI: 10.2142/biophysico.15.0_111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 01/22/2023] Open
Abstract
We studied the effect of myosin inhibitors, N-benzyl-p-toluenesulfonamide (BTS), blebbistatin, and butanedione monoxime (BDM) on X-ray diffraction patterns from rabbit psoas fibers under relaxing and contracting conditions. The first two inhibitors suppressed the contractile force almost completely at a 100 μM concentration, and a similar effect was obtained at 50 mM for BDM. However, still substantial changes were observed in the diffraction patterns upon calcium-activation of inhibited muscle fibers. (1) The 2nd actin layer-line reflection was enhanced normally, indicating that calcium binding to troponin and the subsequent movement of tropomyosin are not inhibited, (2) the myosin layer-line reflections became much weaker, and (3) the 1,1/1,0 intensity ratio of the equatorial reflections was increased. The observations (2) and (3) indicate that, even in the presence of the inhibitors at a saturating concentration, myosin heads leave the helix on the thick filaments and approach the thin filaments. Interestingly, the d1,0 spacing of the filament lattice remained unchanged upon activation of inhibited fibers, in contrast to the case of normal activation in which the spacing is decreased. This suggests that the normal activated myosin heads exert a pull in both axial and radial directions, but in the presence of the inhibitors, the pull is suppressed, and as a result, the heads simply bind to actin without exerting any force. The results support the idea that the inhibitors do not block the myosin binding to actin, but block the step of force-producing transition of the bound actomyosin complex.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
6
|
Iwamoto H. The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression. ZOOLOGICAL LETTERS 2017; 3:15. [PMID: 28879039 PMCID: PMC5581462 DOI: 10.1186/s40851-017-0077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The structural and biochemical features of the tymbal (sound-producing) muscle of cicadas were studied by X-ray diffraction and immunochemistry, and compared with those of flight muscles from the same species. RESULTS The X-ray diffraction pattern of the tymbal muscle was very similar to that of the dorsal longitudinal flight muscle: In both muscles, the 2,0 equatorial reflection is much more intense than the 1,1, indicating that both muscles have a flight muscle-type myofilament lattice. In rigor, the first myosin/actin layer line reflection was finely lattice-sampled, indicating that the contractile proteins are arranged with a crystalline regularity as in asynchronous flight muscles. In contrast, the diffraction pattern from the tensor muscle, which modulates the sound by stressing the tymbal, did not show signs of such high regularity or flight muscle-type filament lattice. Electrophoretic patterns of myofibrillar proteins were also very similar in the tymbal muscle and flight muscles, but distinct from those from the tensor or leg muscles. The antibody raised against the flight muscle-specific troponin-I isoform reacted with an 80-kDa band from both tymbal and flight muscles, but with none of the bands from the tensor or leg muscles. CONCLUSION The close similarities of the structural and biochemical profiles between the tymbal and the flight muscles suggest the possibility that a set of flight muscle-specific proteins is diverted to the tymbal muscle to meet its demand for fast, repetitive contractions.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| |
Collapse
|
7
|
Glasheen BM, Eldred CC, Sullivan LC, Zhao C, Reedy MK, Edwards RJ, Swank DM. Stretch activation properties of Drosophila and Lethocerus indirect flight muscle suggest similar calcium-dependent mechanisms. Am J Physiol Cell Physiol 2017; 313:C621-C631. [PMID: 28835434 DOI: 10.1152/ajpcell.00110.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle stretch activation (SA) is critical for optimal cardiac and insect indirect flight muscle (IFM) power generation. The SA mechanism has been investigated for decades with many theories proposed, but none proven. One reason for the slow progress could be that multiple SA mechanisms may have evolved in multiple species or muscle types. Laboratories studying IFM SA in the same or different species have reported differing SA functional properties which would, if true, suggest divergent mechanisms. However, these conflicting results might be due to different experimental methodologies. Thus, we directly compared SA characteristics of IFMs from two SA model systems, Drosophila and Lethocerus, using two different fiber bathing solutions. Compared with Drosophila IFM, Lethocerus IFM isometric tension is 10- or 17-fold higher and SA tension was 5- or 10-fold higher, depending on the bathing solution. However, the rate of SA tension generation was 9-fold faster for Drosophila IFM. The inverse differences between rate and tension in the two species causes maximum power output to be similar, where Drosophila power is optimized in the bathing solution that favors faster muscle kinetics and Lethocerus in the solution that favors greater tension generation. We found that isometric tension and SA tension increased with calcium concentration for both species in both solutions, reaching a maximum plateau around pCa 5.0. Our results favor a similar mechanism for both species, perhaps involving a troponin complex that does not fully calcium activate the thin filament thus leaving room for further tension generation by SA.
Collapse
Affiliation(s)
- Bernadette M Glasheen
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Catherine C Eldred
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Leah C Sullivan
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Cuiping Zhao
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Michael K Reedy
- Department of Cell Biology, Duke University , Durham North Carolina
| | - Robert J Edwards
- Department of Cell Biology, Duke University , Durham North Carolina
| | - Douglas M Swank
- Department of Biological Sciences, Biomedical Engineering, & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
8
|
Shimomura T, Iwamoto H, Vo Doan TT, Ishiwata S, Sato H, Suzuki M. A Beetle Flight Muscle Displays Leg Muscle Microstructure. Biophys J 2017; 111:1295-1303. [PMID: 27653488 PMCID: PMC5034364 DOI: 10.1016/j.bpj.2016.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/11/2016] [Accepted: 08/11/2016] [Indexed: 11/03/2022] Open
Abstract
In contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying. What enables this small muscle to be so powerful? To explore this question, we examined the microstructure of the 3Ax muscle using synchrotron x-ray diffraction, optical microscopy, and immunoblotting analysis. We found that the 3Ax muscle has long (∼5 μm) myofilaments and that the ratio of thick (myosin) filaments to thin (actin) filaments is 1:5 or 1:6. These characteristics are not observed in the major flight muscles, which have shorter myofilaments (∼3.5 μm) with a smaller ratio (1:3), and instead are more typical of a leg muscle. Furthermore, the flight-muscle-specific troponin isoform, TnH, is not expressed in the 3Ax muscle. Since such a microstructure is suitable for generating large tension, the 3Ax muscle is appropriately designed to pull the wing strongly despite its small volume.
Collapse
Affiliation(s)
- Toshiki Shimomura
- Department of Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Iwamoto
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo, Japan
| | - Tat Thang Vo Doan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore, Singapore, Republic of Singapore; Comprehensive Research Organization, Waseda University, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
9
|
Iwamoto H. The earliest molecular response to stretch of insect flight muscle as revealed by fast X-ray diffraction recording. Sci Rep 2017; 7:42272. [PMID: 28176871 PMCID: PMC5296744 DOI: 10.1038/srep42272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/06/2017] [Indexed: 11/29/2022] Open
Abstract
Small insects drive their flight muscle at frequencies up to 1,000 Hz. This remarkable ability owes to the mechanism of stretch activation. However, it remains unknown as to what sarcomeric component senses the stretch and triggers the following force generation. Here we show that the earliest structural change after a step stretch is reflected in the blinking of the 111 and 201 reflections, as observed in the fast X-ray diffraction recording from isolated bumblebee flight muscle fibers. The same signal has also been observed in live bumblebee. We demonstrate that (1) the signal responds almost concomitantly to a quick step stretch, (2) the signal grows with increasing calcium levels as the stretch-activated force does, and (3) a full 3-dimensional model demonstrates that the signal is maximized when objects having a 38.7-nm actin periodicity travel by ~20 nm along the filament axis. This is the expected displacement if myosin heads are loosely associated with actin target zones (where actin monomers are favorably oriented), and are dragged by a 1.3% stretch, which effectively causes stretch-induced activation. These results support and strengthen our proposal that the myosin head itself acts as the stretch sensor, after calcium-induced association with actin in a low-force form.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
10
|
Zhao C, Swank DM. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type. Am J Physiol Cell Physiol 2016; 312:C111-C118. [PMID: 27881413 DOI: 10.1152/ajpcell.00284.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/22/2022]
Abstract
Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (FSA), whereas the jump muscle produces only minimal FSA We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA Highly SA muscle types, such as IFM, likely use a different or additional mechanism.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Biological Sciences, Department of Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas M Swank
- Department of Biological Sciences, Department of Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
11
|
Sanfelice D, Sanz-Hernández M, de Simone A, Bullard B, Pastore A. Toward Understanding the Molecular Bases of Stretch Activation: A STRUCTURAL COMPARISON OF THE TWO TROPONIN C ISOFORMS OF LETHOCERUS. J Biol Chem 2016; 291:16090-9. [PMID: 27226601 PMCID: PMC4965559 DOI: 10.1074/jbc.m116.726646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/18/2016] [Indexed: 11/25/2022] Open
Abstract
Muscles are usually activated by calcium binding to the calcium sensory protein troponin-C, which is one of the three components of the troponin complex. However, in cardiac and insect flight muscle activation is also produced by mechanical stress. Little is known about the molecular bases of this calcium-independent activation. In Lethocerus, a giant water bug often used as a model system because of its large muscle fibers, there are two troponin-C isoforms, called F1 and F2, that have distinct roles in activating the muscle. It has been suggested that this can be explained either by differences in structural features or by differences in the interactions with other proteins. Here we have compared the structural and dynamic properties of the two proteins and shown how they differ. We have also mapped the interactions of the F2 isoform with peptides spanning the sequence of its natural partner, troponin-I. Our data have allowed us to build a model of the troponin complex and may eventually help in understanding the specialized function of the F1 and F2 isoforms and the molecular mechanism of stretch activation.
Collapse
Affiliation(s)
- Domenico Sanfelice
- From the Department of Clinical and Basic Neurosciences, Wohl Institute, King's College, London SE5 3RT, United Kingdom
| | | | - Alfonso de Simone
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Belinda Bullard
- the Department of Biology, University of York, York YO10 5DD, United Kingdom, and
| | - Annalisa Pastore
- From the Department of Clinical and Basic Neurosciences, Wohl Institute, King's College, London SE5 3RT, United Kingdom, the Department of Molecular Medicine, Universita' of Pavia, Pavia I27100, Italy
| |
Collapse
|
12
|
Toba S, Iwamoto H, Kamimura S, Oiwa K. X-Ray Fiber Diffraction Recordings from Oriented Demembranated Chlamydomonas Flagellar Axonemes. Biophys J 2016; 108:2843-53. [PMID: 26083924 DOI: 10.1016/j.bpj.2015.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/05/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022] Open
Abstract
The high homology of its axonemal components with humans and a large repertoire of axonemal mutants make Chlamydomonas a useful model system for experiments on the structure and function of eukaryotic cilia and flagella. Using this organism, we explored the spatial arrangement of axonemal components under physiological conditions by small-angle x-ray fiber diffraction. Axonemes were oriented in physiological solution by continuous shear flow and exposed to intense and stable x rays generated in the synchrotron radiation facility SPring-8, BL45XU. We compared diffraction patterns from axonemes isolated from wild-type and mutant strains lacking the whole outer arm (oda1), radial spoke (pf14), central apparatus (pf18), or the α-chain of the outer arm dynein (oda11). Diffraction of the axonemes showed a series of well-defined meridional/layer-line and equatorial reflections. Diffraction patterns from mutant axonemes exhibited a systematic loss/attenuation of meridional/layer-line reflections, making it possible to determine the origin of various reflections. The 1/24 and 1/12 nm(-1) meridional reflections of oda1 and oda11 were much weaker than those of the wild-type, suggesting that the outer dynein arms are the main contributor to these reflections. The weaker 1/32 and 1/13.7 nm(-1) meridional reflections from pf14 compared with the wild-type suggest that these reflections come mainly from the radial spokes. The limited contribution of the central pair apparatus to the diffraction patterns was confirmed by the similarity between the patterns of the wild-type and pf18. The equatorial reflections were complex, but a comparison with electron micrograph-based models allowed the density of each axonemal component to be estimated. Addition of ATP to rigor-state axonemes also resulted in subtle changes in equatorial intensity profiles, which could report nucleotide-dependent structural changes of the dynein arms. The first detailed description of axonemal reflections presented here serves as a landmark for further x-ray diffraction studies to monitor the action of constituent proteins in functional axonemes.
Collapse
Affiliation(s)
- Shiori Toba
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan; Graduate School of Life Science, University of Hyogo, Hyogo, Japan; CREST, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
13
|
Abstract
Here we review recent contributions to the study of insect flight, in particular those brought about by advances in experimental techniques. We focus particularly on the following areas: wing flexibility and deformation, the physiology and biophysics of asynchronous insect flight muscle, the aerodynamics of flight, and stability and maneuverability. This recent research reveals the importance of wing flexibility to insect flight, provides a detailed model of how asynchronous flight muscle functions and how it may have evolved, synthesizes many recent studies of insect flight aerodynamics into a broad-reaching summary of unsteady flight aerodynamics, and highlights new insights into the sources of flight stability in insects. The focus on experimental techniques and recently developed apparatus shows how these advancements have occurred and point the way towards future experiments.
Collapse
Affiliation(s)
- Tyson L. Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stacey A. Combes
- Harvard University, Concord Field Station, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - Laura A. Miller
- Departments of Mathematics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Iwamoto H. X-ray diffraction pattern from the flight muscle of Toxorhynchites towadensis reveals the specific phylogenic position of mosquito among Diptera. ZOOLOGICAL LETTERS 2015; 1:24. [PMID: 26605069 PMCID: PMC4657346 DOI: 10.1186/s40851-015-0024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The Diptera are a group of insects with only a single pair of wings (forewings), and are considered monophyletic (originating from a common ancestor). The flight muscle in Diptera has features not observed in other insects, such as the long Pro-Ala-rich peptide associated with tropomyosin, not with troponin-I as in other insects, and the formation of a superlattice by myosin filaments analogous to that in vertebrate skeletal muscle. RESULTS Here we describe X-ray diffraction patterns from the flight muscle of a mosquito, Toxorhynchites towadensis (Culicidae), belonging to a primitive group of Diptera. The diffraction pattern indicates that myosin filaments in the flight muscle of this species do not form a superlattice. X-ray diffraction also shows meridional reflections that are not observed in other dipterans, but are present in the patterns from bumblebee (Hymenoptera) flight muscle. CONCLUSION These observations suggest that the superlattice structure evolved after the common ancestor of Diptera had diverged from other insects. The flight muscle of mosquito may retain primitive structural features that are shared by Hymenoptera.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| |
Collapse
|
15
|
Iwamoto H, Trombitás K, Yagi N, Suggs JA, Bernstein SI. X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns. Front Physiol 2014; 5:416. [PMID: 25400584 PMCID: PMC4212879 DOI: 10.3389/fphys.2014.00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/08/2014] [Indexed: 11/13/2022] Open
Abstract
Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc (10) -Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8 Hyogo, Japan
| | - Károly Trombitás
- Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University Pullman, WA, USA
| | - Naoto Yagi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8 Hyogo, Japan
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University San Diego, CA, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University San Diego, CA, USA
| |
Collapse
|
16
|
The roles of troponin C isoforms in the mechanical function of Drosophila indirect flight muscle. J Muscle Res Cell Motil 2014; 35:211-23. [PMID: 25134799 DOI: 10.1007/s10974-014-9387-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Stretch activation (SA) is a fundamental property of all muscle types that increases power output and efficiency, yet its mechanism is unknown. Recently, studies have implicated troponin isoforms as important in the SA mechanism. The highly stretch-activated Drosophila IFMs express two isoforms of the Ca(2+)-binding subunit of troponin (TnC). TnC1 (TnC-F2 in Lethocerus IFM) has two calcium binding sites, while an unusual isoform, TnC4 (TnC-F1 in Lethocerus IFM), has only one binding site. We investigated the roles of these two TnC isoforms in Drosophila IFM by targeting RNAi to each isoform. IFMs with TnC4 expression (normally ~90% of total TnC) replaced by TnC1 did not generate isometric tension, power or display SA. However, TnC4 knockdown resulted in sarcomere ultrastructure disarray, which could explain the lack of mechanical function and thus make interpretation of the influence of TnC4 on SA difficult. Elimination of TnC1 expression (normally ~10% of total TnC) by RNAi resulted in normal muscle structure. In these IFMs, fiber power generation, isometric tension, stretch-activated force and calcium sensitivity were statistically identical to wild type. When TnC1 RNAi was driven by an IFM specific driver, there was no decrease in flight ability or wing beat frequency, which supports our mechanical findings suggesting that TnC1 is not essential for the mechanical function of Drosophila IFM. This finding contrasts with previous work in Lethocerus IFM showing TnC1 is essential for maximum isometric force generation. We propose that differences in TnC1 function in Lethocerus and Drosophila contribute to the ~40-fold difference in IFM isometric tension generated between these species.
Collapse
|
17
|
|
18
|
Iwamoto H. Flight muscle-specific Pro-Ala-rich extension of troponin is important for maintaining the insect-type myofilament lattice integrity. J Struct Biol 2013; 183:33-9. [PMID: 23707700 DOI: 10.1016/j.jsb.2013.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/08/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Insect flight muscle (IFM) can oscillate at frequencies up to 1000Hz, owing to its capability of stretch activation (SA). It is a highly specialized form of cross striated muscles, and its peculiar features include the IFM-specific isoform of troponin-I (troponin-H or TnH) with an unusually long Pro-Ala-rich extension at the C-terminus. Although we have shown that this extension does not directly take part in SA, questions remain as to what its real role is and why it is expressed only in IFM. Here we explored the structural role of the extension, be comparing X-ray diffraction patterns and electron micrographs of bumblebee IFM fibers before and after enzymatic removal of the extension. The removal had a dramatic effect on diffraction patterns: In IFMs in general, the equatorial 2,0 reflection is much stronger than the 1,1 reflection, but after removal, their intensities became almost equal (stronger 1,1 is a feature of vertebrate skeletal muscle). Electron micrographs revealed that a substantial fraction of the thin filaments showed a tendency to move towards the vertebrate position (the trigonal position between three thick filaments), while the rest of the thin filaments remained in their original insect position (midway between two neighboring thick filaments). Therefore, one of the roles of the extension is suggested to keep the filament lattice in the correct configuration for IFM. This insect-type lattice structure is preserved among IFMs from varied insect orders but not in body muscles, suggesting that the maintenance of this lattice structure is important for flight functions.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Div., SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-6198, Japan.
| |
Collapse
|
19
|
Lehmann FO, Skandalis DA, Berthé R. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight. J R Soc Interface 2013; 10:20121050. [PMID: 23486171 DOI: 10.1098/rsif.2012.1050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings' downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings.
Collapse
Affiliation(s)
- Fritz-Olaf Lehmann
- Department of Animal Physiology, University of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
20
|
The long C-terminal extension of insect flight muscle-specific troponin-I isoform is not required for stretch activation. Biochem Biophys Res Commun 2013; 431:47-51. [PMID: 23291173 DOI: 10.1016/j.bbrc.2012.12.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/25/2012] [Indexed: 11/21/2022]
Abstract
Stretch-induced enhancement of active force (stretch activation, SA) is observed in striated muscles in general, and most conspicuously in insect flight muscle (IFM). It remains unclear whether a common mechanism underlies the SA of all muscle types, or the SA of IFM relies on its highly specialized features. Recent studies suggest that IFM-specific isoforms of thin filament regulatory proteins (troponin and tropomyosin) are implicated in SA. Among others, IFM-specific troponin-I (troponin-H or TnH), with an unusually long Pro-Ala-rich extension at the C-terminus, has been speculated to transmit the mechanical signal of stretch to the troponin complex. To verify this hypothesis, it was removed by a specific endoproteinase in bumblebee IFM, expecting that it would eliminate SA while leaving intact the capacity for Ca(2+)-activated isometric force. Electrophoretic data showed that the extension was almost completely (97%) removed from IFM fibers after treatment. Unexpectedly, SA force was still conspicuous, and its rate of rise was not affected. Therefore, the results preclude the possibility that the extension is a main part of the mechanism of SA. This leaves open the possibility that SAs of IFM and vertebrate striated muscles, which lack the extension, operate under common basic mechanisms.
Collapse
|
21
|
Nishiura M, Toba S, Takao D, Miyashiro D, Sakakibara H, Matsuo T, Kamimura S, Oiwa K, Yagi N, Iwamoto H. X-ray diffraction recording from single axonemes of eukaryotic flagella. J Struct Biol 2012; 178:329-37. [PMID: 22503702 DOI: 10.1016/j.jsb.2012.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/17/2022]
Abstract
We report the first X-ray diffraction patterns recorded from single axonemes of eukaryotic flagella with a diameter of only <0.2 μm, by using the technique of cryomicrodiffraction. A spermatozoon isolated from the testis of a fruit fly, Drosophila melanogaster, either intact or demembranated, was mounted straight in a glass capillary, quickly frozen and its 800-μm segment was irradiated end-on with intense synchrotron radiation X-ray microbeams (diameter, ~2 μm) at 74 K. Well-defined diffraction patterns were recorded, consisting of a large number of isolated reflection spots, extending up to 1/5 nm(-1). These reflections showed a tendency to peak every 20°, i.e., the patterns had features of an 18-fold rotational symmetry as expected from the 9-fold rotational symmetry of axonemal structure. This means that the axonemes remain untwisted, even after the manual mounting procedure. The diffraction patterns were compared with the results of model calculations based on a published electron micrograph of the Drosophila axoneme. The comparison provided information about the native state of axoneme, including estimates of axonemal diameter, interdoublet spacing, and masses of axonemal components relative to those of microtubules (e.g., radial spokes, dynein arms, and proteins associated with accessory singlet microtubules). When combined with the genetic resource of Drosophila, the technique presented here will serve as a powerful tool for studying the structure-function relationship of eukaryotic flagella in general.
Collapse
Affiliation(s)
- Masaya Nishiura
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Q, Zhao C, Swank DM. Calcium and stretch activation modulate power generation in Drosophila flight muscle. Biophys J 2011; 101:2207-13. [PMID: 22067160 DOI: 10.1016/j.bpj.2011.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022] Open
Abstract
Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | |
Collapse
|
23
|
Iwamoto H. Structure, function and evolution of insect flight muscle. Biophysics (Nagoya-shi) 2011; 7:21-28. [PMID: 27857589 PMCID: PMC5036774 DOI: 10.2142/biophysics.7.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 12/01/2022] Open
Abstract
Insects, the largest group of animals on the earth, owe their prosperity to their ability of flight and small body sizes. The ability of flight provided means for rapid translocation. The small body size allowed access to unutilized niches. By acquiring both features, however, insects faced a new problem: They were forced to beat their wings at enormous frequencies. Insects have overcome this problem by inventing asynchronous flight muscle, a highly specialized form of striated muscle capable of oscillating at >1,000 Hz. This article reviews the structure, mechanism, and molecular evolution of this unique invention of nature.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| |
Collapse
|
24
|
X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc Natl Acad Sci U S A 2010; 108:120-5. [PMID: 21148419 DOI: 10.1073/pnas.1014599107] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stretch activation is important in the mechanical properties of vertebrate cardiac muscle and essential to the flight muscles of most insects. Despite decades of investigation, the underlying molecular mechanism of stretch activation is unknown. We investigated the role of recently observed connections between myosin and troponin, called "troponin bridges," by analyzing real-time X-ray diffraction "movies" from sinusoidally stretch-activated Lethocerus muscles. Observed changes in X-ray reflections arising from myosin heads, actin filaments, troponin, and tropomyosin were consistent with the hypothesis that troponin bridges are the key agent of mechanical signal transduction. The time-resolved sequence of molecular changes suggests a mechanism for stretch activation, in which troponin bridges mechanically tug tropomyosin aside to relieve tropomyosin's steric blocking of myosin-actin binding. This enables subsequent force production, with cross-bridge targeting further enhanced by stretch-induced lattice compression and thick-filament twisting. Similar linkages may operate in other muscle systems, such as mammalian cardiac muscle, where stretch activation is thought to aid in cardiac ejection.
Collapse
|