1
|
Readnour BM, Tjia-Fleck S, McCann NR, Ayinuola YA, Castellino FJ. High-resolution cryo-EM analysis of a Streptococcus pyogenes M-protein/human plasminogen complex. Structure 2024; 32:2231-2243.e4. [PMID: 39500317 DOI: 10.1016/j.str.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 12/08/2024]
Abstract
The importance of human plasminogen (hPg)/plasmin (hPm)/cell receptor complexes in invasiveness of cells has been amply established. The objective of this investigation was to determine a high-resolution structure of a major Group A Streptococcus (GAS) bacterial receptor (PAM) for hPg/hPm when bound on a cell surface to its major ligand, hPg. As a model cell surface with endogenous PAM, we employed engineered PAM-expressing lentivirus (LV) particles. We show that the ectodomain of a PAM-type M-Protein (M-Prt), in complex with hPg, is folded through distinct intra- and inter-domain interactions to a more compact form on the cell surface, thus establishing a new paradigm for membrane-bound M-Prt/ligand structures. These studies provide a framework for addressing the need for treatments of GAS disease by providing a molecular platform to solve structures of virulence-determining membrane proteins.
Collapse
Affiliation(s)
- Bradley M Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nathan R McCann
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Readnour BM, Ayinuola YA, Russo BT, Liang Z, Lee SW, Ploplis VA, Fischetti VA, Castellino FJ. Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation. J Biol Chem 2022; 298:101940. [PMID: 35430253 PMCID: PMC9123276 DOI: 10.1016/j.jbc.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.
Collapse
Affiliation(s)
- Bradley M Readnour
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
3
|
Qiu C, Yuan Y, Lee SW, Ploplis VA, Castellino FJ. A local α-helix drives structural evolution of streptococcal M-protein affinity for host human plasminogen. Biochem J 2020; 477:1613-1630. [PMID: 32270857 PMCID: PMC7663350 DOI: 10.1042/bcj20200197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Plasminogen-binding group A streptococcal M-protein (PAM) is a signature surface virulence factor of specific strains of Group A Streptococcus pyogenes (GAS) and is an important tight binding protein for human plasminogen (hPg). After activation of PAM-bound hPg to the protease, plasmin (hPm), GAS cells develop invasive surfaces that are critical for their pathogenicity. PAMs are helical dimers in solution, which are sensitive to temperature changes over a physiological temperature range. We previously categorized PAMs into three classes (I-III) based on the number and nature of short tandem α-helical repeats (a1 and a2) in their NH2-terminal A-domains that dictate interactions with hPg/hPm. Class II PAMs are special cases since they only contain the a2-repeat, while Class I and Class III PAMs encompass complete a1a2-repeats. All dimeric PAMs tightly associate with hPg, regardless of their categories, but monomeric Class II PAMs bind to hPg much weaker than their Class I and Class III monomeric counterparts. Additionally, since the A-domains of Class II PAMs comprise different residues from other PAMs, the issue emerges as to whether Class II PAMs utilize different amino acid side chains for interactions with hPg. Herein, through NMR-refined structural analyses, we elucidate the atomic-level hPg-binding mechanisms adopted by two representative Class II PAMs. Furthermore, we develop an evolutionary model that explains from unique structural perspectives why PAMs develop variable A-domains with regard to hPg-binding affinity.
Collapse
Affiliation(s)
- Cunjia Qiu
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Yue Yuan
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| |
Collapse
|
4
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Yuan Y, Ayinuola YA, Singh D, Ayinuola O, Mayfield JA, Quek A, Whisstock JC, Law RHP, Lee SW, Ploplis VA, Castellino FJ. Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. J Struct Biol 2019; 208:18-29. [PMID: 31301349 PMCID: PMC6983471 DOI: 10.1016/j.jsb.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.
Collapse
Affiliation(s)
- Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Damini Singh
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A Mayfield
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
6
|
Quek AJH, Mazzitelli BA, Wu G, Leung EWW, Caradoc-Davies TT, Lloyd GJ, Jeevarajah D, Conroy PJ, Sanderson-Smith M, Yuan Y, Ayinuola YA, Castellino FJ, Whisstock JC, Law RHP. Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding. J Mol Biol 2019; 431:3804-3813. [PMID: 31295457 DOI: 10.1016/j.jmb.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022]
Abstract
Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-Å x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.
Collapse
Affiliation(s)
- Adam J H Quek
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Blake A Mazzitelli
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guojie Wu
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Eleanor W W Leung
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tom T Caradoc-Davies
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Gordon J Lloyd
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Devadharshini Jeevarajah
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Paul J Conroy
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; South East University-Monash Joint Institute, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Ruby H P Law
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
7
|
Qiu C, Yuan Y, Liang Z, Lee SW, Ploplis VA, Castellino FJ. Variations in the secondary structures of PAM proteins influence their binding affinities to human plasminogen. J Struct Biol 2019; 206:193-203. [PMID: 30880082 DOI: 10.1016/j.jsb.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
M-proteins (M-Prts) are major virulence determinants of Group A Streptococcus pyogenes (GAS) that are covalently anchored to the cell wall at their conserved COOH-termini while the NH2-terminal regions extend through the capsule into extracellular space. Functional M-Prts are also secreted and/or released from GAS cells where they exist as helical coiled-coil dimers in solution. Certain GAS strains (Pattern D) uniquely express an M-protein (plasminogen-binding group A streptococcal M-protein; PAM) that directly interacts with human plasminogen (hPg), a process strongly implicated in the virulence of these strains. M-Prt expressed by the emm gene is employed to serotype over 250 known strains of GAS, ∼20 of which are hitherto found to express PAMs. We have developed a modular structural model of the PAM dimer that describes the roles of different domains of this protein in various functions. While the helical COOH-terminal domains of PAM are essential for dimerization in solution, regions of its NH2-terminal domains also exhibit a weak potential to dimerize. We find that temperature controls the open (unwound) or closed (wound) states of the functional NH2-terminal domains of PAM. As temperature increases, α-helices are dramatically reduced, which concomitantly destabilizes the helical coiled-coil PAM dimers. PAMs with two a-repeats within the variable NH2-terminal A-domain (class I/III) bind to hPg tightly, but natural PAM isolates with a single a-repeat in this domain (class II) display dramatic changes in hPg binding with temperature. We conclude that coexistence of two a-repeats in PAM is critical to achieve optimal binding to hPg, especially in its monomeric form, at the biologically relevant temperature.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
8
|
Qiu C, Yuan Y, Zajicek J, Liang Z, Balsara RD, Brito-Robionson T, Lee SW, Ploplis VA, Castellino FJ. Contributions of different modules of the plasminogen-binding Streptococcus pyogenes M-protein that mediate its functional dimerization. J Struct Biol 2018; 204:151-164. [PMID: 30071314 PMCID: PMC6544907 DOI: 10.1016/j.jsb.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Group A Streptococcus pyogenes (GAS) is a causative agent of pharyngeal and dermal infections in humans. A major virulence determinant of GAS is its dimeric signature fibrillar M-protein (M-Prt), which is evolutionarily designed in modules, ranging from a hypervariable extracellular N-terminal region to a progressively more highly conserved C-terminus that is covalently anchored to the cell wall. Of the >250 GAS isolates classified, only the subset of skin-trophic Pattern D strains expresses a specific serotype of M-Prt, PAM, that directly binds to host human plasminogen (hPg) via its extracellular NH2-terminal variable A-domain region. This interaction allows these GAS strains to accumulate components of the host fibrinolytic system on their surfaces to serve extracellular functions. While structure-function studies have been accomplished on M-Prts from Pattern A-C GAS isolates with different direct ligand binding properties compared to PAM, much less is known regarding the structure-function relationships of PAM-type M-Prts, particularly their dimerization determinants. To examine these questions, PAMs from seven GAS strains with sequence variations in the NH2-terminal ligand binding domains, as well as truncated versions of PAM, were designed and studied. The results from bioinformatic and biophysical analyses show that the different domains of PAM are disparately engaged in dimerization. From these data, we propose an experimentally-based model for PAM secondary and quaternary structures that is highly dependent on the conserved helical C-terminal C-D-domains. In addition, while the N-terminal regions of PAMs are variable in sequence, the binding properties of hPg and its activated product, plasmin, to the A-domain, remain intact.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jaroslav Zajicek
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rashna D Balsara
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Teresa Brito-Robionson
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
9
|
Yuan Y, Zajicek J, Qiu C, Chandrahas V, Lee SW, Ploplis VA, Castellino FJ. Conformationally organized lysine isosteres in Streptococcus pyogenes M protein mediate direct high-affinity binding to human plasminogen. J Biol Chem 2017; 292:15016-15027. [PMID: 28724633 PMCID: PMC5592677 DOI: 10.1074/jbc.m117.794198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
The binding of human plasminogen (hPg) to the surface of the human pathogen group A Streptococcus pyogenes (GAS) and subsequent hPg activation to the protease plasmin generate a proteolytic surface that GAS employs to circumvent host innate immunity. Direct high-affinity binding of hPg/plasmin to pattern D GAS is fully recapitulated by the hPg kringle 2 domain (K2hPg) and a short internal peptide region (a1a2) of a specific subtype of bacterial surface M protein, present in all GAS pattern D strains. To better understand the nature of this binding, critical to the virulence of many GAS skin-tropic strains, we used high-resolution NMR to define the interaction of recombinant K2hPg with recombinant a1a2 (VKK38) of the M protein from GAS isolate NS455. We found a 2:1 (m/m) binding stoichiometry of K2hPg/VKK38, with the lysine-binding sites of two K2hPg domains anchored to two regions of monomeric VKK38. The K2hPg/VKK38 binding altered the VKK38 secondary structure from a helical apo-peptide with a flexible center to an end-to-end K2hPg-bound α-helix. The K2hPg residues occupied opposite faces of this helix, an arrangement that minimized steric clashing of K2hPg We conclude that VKK38 provides two conformational lysine isosteres that each interact with the lysine-binding sites in K2hPg Further, the adoption of an α-helix by VKK38 upon binding to K2hPg sterically optimizes the side chains of VKK38 for maximal binding to K2hPg and minimizes steric overlap between the K2hPg domains. The mechanism for hPg/M protein binding uncovered here may facilitate targeting of GAS virulence factors for disease management.
Collapse
Affiliation(s)
- Yue Yuan
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | | | - Cunjia Qiu
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | - Vishwanatha Chandrahas
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research,
- Department of Chemistry and Biochemistry, and
| |
Collapse
|
10
|
Adrover M, Sanchis P, Vilanova B, Pauwels K, Martorell G, Pérez JJ. Conformational ensembles of neuromedin C reveal a progressive coil-helix transition within a binding-induced folding mechanism. RSC Adv 2015. [DOI: 10.1039/c5ra12753j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMR has been used to elucidate the folding pathway of neuromedin C and to characterize the architecture of the NMC–SDS micelle complex. Its C-terminal region is more prone to acquire an α-helical fold than the N-terminus, and it also binds to micelles.
Collapse
Affiliation(s)
- Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Pilar Sanchis
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Kris Pauwels
- Structural Biology Brussels
- Vrije Universiteit Brussels (VUB)
- 1050 Brussels
- Belgium
- Structural Biology Research Centre
| | - Gabriel Martorell
- Serveis Científico-Tècnics
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Juan Jesús Pérez
- Departament d'Enginyeria Química
- Universitat Politecnica de Catalunya (UPC)
- ETSEIB
- Barcelona
- Spain
| |
Collapse
|