1
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Namjoo AR, Hassani A, Amini H, Nazaryabrbekoh F, Saghati S, Saadatlou MAE, Khoshfetrat AB, Khosrowshahi ND, Rahbarghazi R. Multiprotein collagen/keratin hydrogel promoted myogenesis and angiogenesis of injured skeletal muscles in a mouse model. BMC Biotechnol 2024; 24:23. [PMID: 38671404 PMCID: PMC11055224 DOI: 10.1186/s12896-024-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa. Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological properties of the injured area. Here, myogenic properties of type I collagen (0.5%) and keratin (0.5%) were investigated in a mouse model of biceps femoris injury. Using FTIR, gelation time, and rheological analysis, the physicochemical properties of the collagen (Col)/Keratin scaffold were analyzed. Mouse C2C12 myoblast-laden Col/Keratin hydrogels were injected into the injury site and histological examination plus western blotting were performed to measure myogenic potential after 15 days. FTIR indicated an appropriate interaction between keratin and collagen. The blend of Col/Keratin delayed gelation time when compared to the collagen alone group. Rheological analysis revealed decreased stiffening in blended Col/Keratin hydrogel which is favorable for the extrudability of the hydrogel. Transplantation of C2C12 myoblast-laden Col/Keratin hydrogel to injured muscle tissues led to the formation of newly generated myofibers compared to cell-free hydrogel and collagen groups (p < 0.05). In the C2C12 myoblast-laden Col/Keratin group, a low number of CD31+ cells with minimum inflammatory cells was evident. Western blotting indicated the promotion of MyoD in mice that received cell-laden Col/Keratin hydrogel compared to the other groups (p < 0.05). Despite the increase of the myosin cell-laden Col/Keratin hydrogel group, no significant differences were obtained related to other groups (p > 0.05). The blend of Col/Keratin loaded with myoblasts provides a suitable myogenic platform for the alleviation of injured muscle tissue.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Nazaryabrbekoh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
O'Bryan CS, Ni Y, Taylor CR, Angelini TE, Schulze KD. Collagen Networks under Indentation and Compression Behave Like Cellular Solids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4228-4235. [PMID: 38357880 DOI: 10.1021/acs.langmuir.3c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Simple synthetic and natural hydrogels can be formulated to have elastic moduli that match biological tissues, leading to their widespread application as model systems for tissue engineering, medical device development, and drug delivery vehicles. However, two different hydrogels having the same elastic modulus but differing in microstructure or nanostructure can exhibit drastically different mechanical responses, including their poroelasticity, lubricity, and load bearing capabilities. Here, we investigate the mechanical response of collagen-1 networks to local and bulk compressive loads. We compare these results to the behavior of polyacrylamide, a fundamentally different class of hydrogel network consisting of flexible polymer chains. We find that the high bending rigidity of collagen fibers, which suppresses entropic bending fluctuations and osmotic pressure, facilitates the bulk compression of collagen networks under infinitesimal applied stress. These results are fundamentally different from the behavior of flexible polymer networks in which the entropic thermal fluctuations of the polymer chains result in an osmotic pressure that must first be overcome before bulk compression can occur. Furthermore, we observe minimal transverse strain during the axial loading of collagen networks, a behavior reminiscent of open-celled cellular solids. Inspired by these results, we applied mechanical models of cellular solids to predict the elastic moduli of the collagen networks and found agreement with the moduli values measured through contact indentation. Collectively, these results suggest that unlike flexible polymer networks that are often considered incompressible, collagen hydrogels behave like rigid porous solids that volumetrically compress and expel water rather than spreading laterally under applied normal loads.
Collapse
Affiliation(s)
- Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Curtis R Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32603, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kyle D Schulze
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
4
|
Castro-Abril H, Heras J, Del Barrio J, Paz L, Alcaine C, Aliácar MP, Garzón-Alvarado D, Doblaré M, Ochoa I. The Role of Mechanical Properties and Structure of Type I Collagen Hydrogels on Colorectal Cancer Cell Migration. Macromol Biosci 2023; 23:e2300108. [PMID: 37269065 DOI: 10.1002/mabi.202300108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Mechanical interactions between cells and their microenvironment play an important role in determining cell fate, which is particularly relevant in metastasis, a process where cells invade tissue matrices with different mechanical properties. In vitro, type I collagen hydrogels have been commonly used for modeling the microenvironment due to its ubiquity in the human body. In this work, the combined influence of the stiffness of these hydrogels and their ultrastructure on the migration patterns of HCT-116 and HT-29 spheroids are analyzed. For this, six different types of pure type I collagen hydrogels by changing the collagen concentration and the gelation temperature are prepared. The stiffness of each sample is measured and its ultrastructure is characterized. Cell migration studies are then performed by seeding the spheroids in three different spatial conditions. It is shown that changes in the aforementioned parameters lead to differences in the mechanical stiffness of the matrices as well as the ultrastructure. These differences, in turn, lead to distinct cell migration patterns of HCT-116 and HT-29 spheroids in either of the spatial conditions tested. Based on these results, it is concluded that the stiffness and the ultrastructural organization of the matrix can actively modulate cell migration behavior in colorectal cancer spheroids.
Collapse
Affiliation(s)
- Hector Castro-Abril
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Biomimetics Lab, National University of Colombia, Bogotá, 111321, Colombia
| | - Jónathan Heras
- Grupo de Informática, University of La Rioja, La Rioja, 26006, Spain
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), Department of Organic Chemistry, CSIC-University of Zaragoza, Zaragoza, 50018, Spain
| | - Laura Paz
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
| | - Clara Alcaine
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
| | - Marina Pérez Aliácar
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
| | | | - Manuel Doblaré
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
- Nanjing Tech University, Nanjing, 50018, China
| | - Ignacio Ochoa
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
- Nanjing Tech University, Nanjing, 50018, China
| |
Collapse
|
5
|
Adam S, Mohanan A, Bakshi S, Ghadai A, Majumdar S. Network architecture dependent mechanical response in temperature responsive collagen-PNIPAM composites. Colloids Surf B Biointerfaces 2023; 227:113380. [PMID: 37263106 DOI: 10.1016/j.colsurfb.2023.113380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Collagen is the most abundant protein in the mammalian extracellular matrix. In-vitro collagen-based materials with specific mechanical properties are important for various bio-medical and tissue-engineering applications. Here, we study the reversible mechanical switching behaviour of a bio-compatible composite formed by collagen networks seeded with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles, by exploiting the swelling/de-swelling of the particles across the lower critical solution temperature (LCST). Interestingly, we find that the shear modulus of the system reversibly enhances whenever the diameter of the microgel particles is changed from that corresponding to the polymerization temperature of the composite, irrespective of swelling or, de-swelling. However, the degree of such enhancement significantly depends on the temperature-dependent collagen network architecture quantified by the mesh size of the network. Furthermore, confocal imaging of the composite during the temperature switching reveals that the reversible clustering of microgel particles above LCST plays a crucial role in the observed switching response.
Collapse
Affiliation(s)
- Shibil Adam
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Akhil Mohanan
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Swarnadeep Bakshi
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Abhishek Ghadai
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Sayantan Majumdar
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
| |
Collapse
|
6
|
Hwang ES, Morgan DJ, Sun J, Hartnett ME, Toussaint KC, Coats B. Confocal reflectance microscopy for mapping collagen fiber organization in the vitreous gel of the eye. BIOMEDICAL OPTICS EXPRESS 2023; 14:932-944. [PMID: 36874496 PMCID: PMC9979684 DOI: 10.1364/boe.480343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Vitreous collagen structure plays an important role in ocular mechanics. However, capturing this structure with existing vitreous imaging methods is hindered by the loss of sample position and orientation, low resolution, or a small field of view. The objective of this study was to evaluate confocal reflectance microscopy as a solution to these limitations. Intrinsic reflectance avoids staining, and optical sectioning eliminates the requirement for thin sectioning, minimizing processing for optimal preservation of the natural structure. We developed a sample preparation and imaging strategy using ex vivo grossly sectioned porcine eyes. Imaging revealed a network of uniform diameter crossing fibers (1.1 ± 0.3 µm for a typical image) with generally poor alignment (alignment coefficient = 0.40 ± 0.21 for a typical image). To test the utility of our approach for detecting differences in fiber spatial distribution, we imaged eyes every 1 mm along an anterior-posterior axis originating at the limbus and quantified the number of fibers in each image. Fiber density was higher anteriorly near the vitreous base, regardless of the imaging plane. These data demonstrate that confocal reflectance microscopy addresses the previously unmet need for a robust, micron-scale technique to map features of collagen networks in situ across the vitreous.
Collapse
Affiliation(s)
- Eileen S. Hwang
- Department of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Denise J. Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Jieliyue Sun
- PROBE lab, School of Engineering, Brown University, Providence, RI 02912, USA
| | - M. Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kimani C. Toussaint
- PROBE lab, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, 1495 E 100 S, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Cameron AP, Zeng B, Liu Y, Wang H, Soheilmoghaddam F, Cooper-White J, Zhao CX. Biophysical properties of hydrogels for mimicking tumor extracellular matrix. BIOMATERIALS ADVANCES 2022; 136:212782. [PMID: 35929332 DOI: 10.1016/j.bioadv.2022.212782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
The extracellular matrix (ECM) is an essential component of the tumor microenvironment. It plays a critical role in regulating cell-cell and cell-matrix interactions. However, there is lack of systematic and comparative studies on different widely-used ECM mimicking hydrogels and their properties, making the selection of suitable hydrogels for mimicking different in vivo conditions quite random. This study systematically evaluates the biophysical attributes of three widely used natural hydrogels (Matrigel, collagen gel and agarose gel) including complex modulus, loss tangent, diffusive permeability and pore size. A new and facile method was developed combining Critical Point Drying, Scanning Electron Microscopy imaging and a MATLAB image processing program (CSM method) for the characterization of hydrogel microstructures. This CSM method allows accurate measurement of the hydrogel pore size down to nanometer resolution. Furthermore, a microfluidic device was implemented to measure the hydrogel permeability (Pd) as a function of particle size and gel concentration. Among the three gels, collagen gel has the lowest complex modulus, medium pore size, and the highest loss tangent. Agarose gel exhibits the highest complex modulus, the lowest loss tangent and the smallest pore size. Collagen gel and Matrigel produced complex moduli close to that estimated for cancer ECM. The Pd of these hydrogels decreases significantly with the increase of particle size. By assessing different hydrogels' biophysical characteristics, this study provides valuable insights for tailoring their properties for various three-dimensional cancer models.
Collapse
Affiliation(s)
- Anna P Cameron
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haofei Wang
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Farhad Soheilmoghaddam
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Justin Cooper-White
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Longitudinal shear wave elasticity measurements of millimeter-sized biomaterials using a single-element transducer platform. PLoS One 2022; 17:e0266235. [PMID: 35385536 PMCID: PMC8985960 DOI: 10.1371/journal.pone.0266235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Temporal variations of the extracellular matrix (ECM) stiffness profoundly impact cellular behaviors, possibly more significantly than the influence of static stiffness. Three-dimensional (3D) cell cultures with tunable matrix stiffness have been utilized to characterize the mechanobiological interactions of elasticity-mediated cellular behaviors. Conventional studies usually perform static interrogations of elasticity at micro-scale resolution. While such studies are essential for investigations of cellular mechanotransduction, few tools are available for depicting the temporal dynamics of the stiffness of the cellular environment, especially for optically turbid millimeter-sized biomaterials. We present a single-element transducer shear wave (SW) elasticity imaging system that is applied to a millimeter-sized, ECM-based cell-laden hydrogel. The single-element ultrasound transducer is used both to generate SWs and to detect their arrival times after being reflected from the side boundaries of the sample. The sample’s shear wave speed (SWS) is calculated by applying a time-of-flight algorithm to the reflected SWs. We use this noninvasive and technically straightforward approach to demonstrate that exposing 3D cancer cell cultures to X-ray irradiation induces a temporal change in the SWS. The proposed platform is appropriate for investigating in vitro how a group of cells remodels their surrounding matrix and how changes to their mechanical properties could affect the embedded cells in optically turbid millimeter-sized biomaterials.
Collapse
|
9
|
Shin DS, Schroeder ME, Anseth KS. Impact of Collagen Triple Helix Structure on Melanoma Cell Invadopodia Formation and Matrix Degradation upon BRAF Inhibitor Treatment. Adv Healthc Mater 2022; 11:e2101592. [PMID: 34783464 DOI: 10.1002/adhm.202101592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/11/2021] [Indexed: 11/07/2022]
Abstract
A collagen-rich tumor microenvironment (TME) is associated with worse outcomes in cancer patients and contributes to drug resistance in many cancer types. In melanoma, stiff and fibrillar collagen-abundant tissue is observed after failure of therapeutic treatments with BRAF inhibitors. Increased collagen in the TME can affect properties of the extracellular matrix (ECM), including stiffness, adhesiveness, and interaction of integrins with triple helix forming nanostructures. Decoupling these biochemical and biophysical properties of the ECM can lead to a better understanding of how each of these individual properties affect melanoma cancer behavior and drug efficacy. In addition, as drug treatment can induce cancer cell phenotypic switch, cancer cell responsiveness to the TME can be dynamically changed during therapeutic treatments. To investigate cancer cell phenotype changes and the role of the cancer TME, poly(ethylene glycol) (PEG) hydrogels functionalized with collagen mimetic peptides (CMPs) is utilized, or an interpenetrating network (IPN) of type І collagen within the PEG system to culture various melanoma cell lines in the presence or absence of Vemurafenib (PLX4032) drug treatment is prepared. Additionally, the potential of using CMP functionalized PEG hydrogels, which can provide better tunability is explored, to replace the existing invadopodia assay platform based on fluorescent gelatin.
Collapse
Affiliation(s)
- Della S. Shin
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA
| | - Megan E. Schroeder
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA
- BioFrontiers Institute University of Colorado Boulder Boulder CO 80303 USA
| |
Collapse
|
10
|
Mailand E, Özelçi E, Kim J, Rüegg M, Chaliotis O, Märki J, Bouklas N, Sakar MS. Tissue Engineering with Mechanically Induced Solid-Fluid Transitions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106149. [PMID: 34648197 PMCID: PMC11468955 DOI: 10.1002/adma.202106149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Epithelia are contiguous sheets of cells that stabilize the shape of internal organs and support their structure by covering their surfaces. They acquire diverse morphological forms appropriate for their specific functions during embryonic development, such as the kidney tubules and the complex branching structures found in the lung. The maintenance of epithelial morphogenesis and homeostasis is controlled by their remarkable mechanics-epithelia can become elastic, plastic, and viscous by actively remodeling cell-cell junctions and modulating the distribution of local stresses. Microfabrication, finite element modelling, light-sheet microscopy, and robotic micromanipulation are used to show that collagen gels covered with an epithelial skin serve as shape-programmable soft matter. The process involves solid to fluid transitions induced by mechanical perturbations, generates spatially distributed surface stresses at tissue interfaces, and is amenable to both additive and subtractive manufacturing techniques. The robustness and versatility of this strategy for engineering designer tissues is demonstrated by directing the morphogenesis of a variety of molded, carved, and assembled forms from the base material. The results provide insight into the active mechanical properties of the epithelia and establish methods for engineering tissues with sustainable architectures.
Collapse
Affiliation(s)
- Erik Mailand
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Ece Özelçi
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Matthias Rüegg
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Odysseas Chaliotis
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jon Märki
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Mahmut Selman Sakar
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| |
Collapse
|
11
|
Mice with Type 2 Diabetes Present Significant Alterations in Their Tissue Biomechanical Properties and Histological Features. Biomedicines 2021; 10:biomedicines10010057. [PMID: 35052737 PMCID: PMC8773308 DOI: 10.3390/biomedicines10010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease often associated with severe complications that may result in patient morbidity or death. One T2DM etiological agent is chronic hyperglycemia, a condition that induces damaging biological processes, including impactful extracellular matrix (ECM) modifications, such as matrix components accumulation. The latter alters ECM stiffness, triggering fibrosis, inflammation, and pathological angiogenesis. Hence, studying ECM biochemistry and biomechanics in the context of T2DM, or obesity, is highly relevant. With this in mind, we examined both native and decellularized tissues of obese B6.Cg-Lepob/J (ob/ob) and diabetic BKS.Cg-Dock7m+/+LeprdbJ (db/db) mice models, and extensively investigated their histological and biomechanical properties. The tissues analyzed herein were those strongly affected by diabetes—skin, kidney, adipose tissue, liver, and heart. The referred organs and tissues were collected from 8-week-old animals and submitted to classical histological staining, immunofluorescence, scanning electron microscopy, rheology, and atomic force microscopy. Altogether, this systematic characterization has identified significant differences in the architecture of both ob/ob and db/db tissues, namely db/db skin presents loose epidermis and altered dermis structure, the kidneys have clear glomerulopathy traits, and the liver exhibits severe steatosis. The distribution of ECM proteins also pinpoints important differences, such as laminin accumulation in db/db kidneys and decreased hyaluronic acid in hepatocyte cytoplasm in both obese and diabetic mice. In addition, we gathered a significant set of data showing that ECM features are maintained after decellularization, making these matrices excellent biomimetic scaffolds for 3D in vitro approaches. Importantly, mechanical studies revealed striking differences between tissue ECM stiffness of control (C57BL/6J), obese, and diabetic mice. Notably, we have unveiled that the intraperitoneal adipose tissue of diabetic animals is significantly stiffer (G* ≈ 10,000 Pa) than that of ob/ob or C57BL/6J mice (G* ≈ 3000–5000 Pa). Importantly, this study demonstrates that diabetes and obesity selectively potentiate severe histological and biomechanical alterations in different matrices that may impact vital processes, such as angiogenesis, wound healing, and inflammation.
Collapse
|
12
|
Salipante PF, Hudson SD, Alimperti S. Blood vessel-on-a-chip examines the biomechanics of microvasculature. SOFT MATTER 2021; 18:117-125. [PMID: 34816867 PMCID: PMC9001019 DOI: 10.1039/d1sm01312b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We use a three-dimensional (3D) microvascular platform to measure the elasticity and membrane permeability of the endothelial cell layer. The microfluidic platform is connected with a pneumatic pressure controller to apply hydrostatic pressure. The deformation is measured by tracking the mean vessel diameter under varying pressures up to 300 Pa. We obtain a value for the Young's modulus of the cell layer in low strain where a linear elastic response is observed and use a hyperelastic model that describes the strain hardening observed at larger strains (pressure). A fluorescent dye is used to track the flow through the cell layer to determine the membrane flow resistance as a function of applied pressure. Finally, we track the 3D positions of cell nuclei while the vessel is pressurized to observe local deformation and correlate inter-cell deformation with the local structure of the cell layer. This approach is able to probe the mechanical properties of blood vessels in vitro and provides a methodology for investigating microvascular related diseases.
Collapse
Affiliation(s)
- Paul F Salipante
- Polymers and Complex Fluids Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Steven D Hudson
- Polymers and Complex Fluids Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Stella Alimperti
- ADA Science and Research Institute, 100 Bureau Dr, Gaithersburg, MD, 20899, USA
| |
Collapse
|
13
|
Asgeirsson DO, Christiansen MG, Valentin T, Somm L, Mirkhani N, Nami AH, Hosseini V, Schuerle S. 3D magnetically controlled spatiotemporal probing and actuation of collagen networks from a single cell perspective. LAB ON A CHIP 2021; 21:3850-3862. [PMID: 34505607 PMCID: PMC8507888 DOI: 10.1039/d1lc00657f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/28/2021] [Indexed: 05/15/2023]
Abstract
Cells continuously sense and react to mechanical cues from their surrounding matrix, which consists of a fibrous network of biopolymers that influences their fate and behavior. Several powerful methods employing magnetic control have been developed to assess the micromechanical properties within extracellular matrix (ECM) models hosting cells. However, many of these are limited to in-plane sensing and actuation, which does not allow the matrix to be probed within its full 3D context. Moreover, little attention has been given to factors specific to the model ECM systems that can profoundly influence the cells contained there. Here we present methods to spatiotemporally probe and manipulate extracellular matrix networks at the scale relevant to cells using magnetic microprobes (μRods). Our techniques leverage 3D magnetic field generation, physical modeling, and image analysis to examine and apply mechanical stimuli to fibrous collagen matrices. We determined shear moduli ranging between hundreds of Pa to tens of kPa and modeled the effects of proximity to rigid surfaces and local fiber densification. We analyzed the spatial extent and dynamics of matrix deformation produced in response to magnetic torques on the order of 10 pNm, deflecting fibers over an area spanning tens of micrometers. Finally, we demonstrate 3D actuation and pose extraction of fluorescently labelled μRods.
Collapse
Affiliation(s)
- Daphne O Asgeirsson
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael G Christiansen
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Thomas Valentin
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Luca Somm
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nima Mirkhani
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Amin Hosseini Nami
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Vahid Hosseini
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Simone Schuerle
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
14
|
Unnikandam Veettil SR, Hwang D, Correia J, Bartlett MD, Schneider IC. Cancer cell migration in collagen-hyaluronan composite extracellular matrices. Acta Biomater 2021; 130:183-198. [PMID: 34116226 DOI: 10.1016/j.actbio.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a key component in the tumor microenvironment (TME) that participates in cancer growth and invasiveness. While the molecular weight (MW) dependent properties of HA can cause tumor-promoting and -repressing effects, the elevated levels of HA in the TME impedes drug delivery. The degradation of HA using hyaluronidases (HYALs), resulting in fragments of HA, is a way to overcome this, but the consequences of changes in HA molecular weight and concentration is currently unknown. Therefore, it is critical to understand the MW-dependent biological effects of HA. Here we examine the influence of HA molecular weight on biophysical properties that regulate cell migration and extracellular matrix (ECM) remodeling. In our study, we used vLMW, LMW and HMW HA at different physiologically relevant concentrations, with a particular interest in correlating the mechanical and structural properties to different cell functions. The elastic modulus, collagen network pore size and collagen fiber diameter increased with increasing HA concentration. Although the collagen network pore size increased, these pores were filled with the bulky HA molecules. Consequently, cell migration decreased with increase in HA concentration due to multiple, long-lived and unproductive protrusions, suggesting the influence of steric factors. Surprisingly, even though elastic modulus increased with HA molecular weight and concentration, gel compaction assays showed an increased degree of ECM compaction among HMW HA gels at high concentrations (2 and 4 mg mL-1 [0.2 and 0.4%]). These results were not seen in collagen gels that lacked HA, but had similar stiffness. HA appears to have the effect of decreasing migration and increasing collagen network contraction, but only at high HA molecular weight. Consequently, changes in HA molecular weight can have relatively large effects on cancer cell behavior. STATEMENT OF SIGNIFICANCE: Hyaluronan (HA) is a critical component of the tumor microenvironment (TME). Overproduction of HA in the TME results in poor prognosis and collapse of blood vessels, inhibiting drug delivery. Hyaluronidases have been used to enhance drug delivery. However, they lead to low molecular weight (MW) HA, altering the mechanical and structural properties of the TME and cancer cell behavior. Understanding how HA degradation affects cancer cell behavior is critical for uncovering detrimental effects of this therapy. Very little is known about how HA MW affects cancer cell behavior in tumor-mimicking collagen-HA composite networks. Here we examine how MW and HA content in collagen-HA networks alter structural and mechanical properties to regulate cell migration and matrix remodeling in 3D TME-mimicking environments.
Collapse
|
15
|
Bakshi S, M VV, Sarkar R, Majumdar S. Strain localization and yielding dynamics in disordered collagen networks. SOFT MATTER 2021; 17:6435-6444. [PMID: 34132288 DOI: 10.1039/d1sm00300c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Collagen is the most abundant extracellular-matrix protein found in mammals and the main structural and load-bearing element of connective tissues. Collagen networks show remarkable strain-stiffening, which tunes the mechanical functions of tissues and regulates cell behaviours. Linear and non-linear mechanics of in vitro disordered collagen networks have been widely studied using rheology for a range of self-assembly conditions in recent years. However, the correlation between the onset of macroscopic network failure and local deformations is not well understood in these systems. Here, using shear rheology and in situ high-resolution boundary imaging, we study the yielding dynamics of in vitro reconstituted networks of uncrosslinked type-I collagen. We find that in the non-linear regime, the differential shear modulus (K) of the network initially increases with applied strain and then begins to drop as the network starts to yield beyond a critical strain (yield strain). Measurement of the local velocity profile using colloidal tracer particles reveals that beyond the peak of K, strong strain-localization and slippage between the network and the rheometer plate sets in that eventually leads to a detachment. We generalize this observation for a range of collagen concentrations, applied strain ramp rates, as well as, different network architectures obtained by varying the polymerization temperature. Furthermore, using a continuum affine network model, we map out a state diagram showing the dependence of yield-stain and -stress on the microscopic network parameters. Our findings can have broad implications in tissue engineering and designing highly resilient biological scaffolds.
Collapse
Affiliation(s)
- Swarnadeep Bakshi
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, India.
| | - Vaisakh V M
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, India. and Department of Physics, HKUST, Clear Water Bay, Hong Kong
| | - Ritwick Sarkar
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, India.
| | - Sayantan Majumdar
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, India.
| |
Collapse
|
16
|
Buchmann B, Fernández P, Bausch AR. The role of nonlinear mechanical properties of biomimetic hydrogels for organoid growth. BIOPHYSICS REVIEWS 2021; 2:021401. [PMID: 35722505 PMCID: PMC7612859 DOI: 10.1063/5.0044653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-driven plastic remodeling of the extracellular matrix (ECM) is a key regulator driving cell invasion and organoid morphogenesis in 3D. While, mostly, the linear properties are reported, the nonlinear and plastic property of the used matrix is required for these processes to occur. Here, we report on the nonlinear and plastic mechanical properties of networks derived from collagen I, Matrigel, and related hybrid gels and link their mechanical response to the underlying collagen structure. We reveal the predominantly linear behavior of Matrigel over a wide range of strains and contrast this to the highly nonlinear and plastic response of collagen upon mechanical load. We show that the mechanical nonlinear response of collagen can be gradually diminished by enriching the network stepwise with Matrigel. This tunability results from the suppression of collagen polymerization in the presence of Matrigel, resulting in a collagen network structure with significant smaller mesh size and consequent contribution to the mechanical response. Thus, the nonlinear plastic properties and structure of the ECM is not simply the addition of two independent network types but depends on the exact polymerization conditions. The understanding of this interplay is key toward an understanding of the dependencies of cellular interactions with their ECM and sheds light on the nonlinear cell-ECM interaction during organogenesis.
Collapse
Affiliation(s)
- Benedikt Buchmann
- Lehrstuhl für Biophysik E27, Physics Department and Center for Protein Assemblies CPA, Technische Universität München, 85747 Garching, Germany
| | - Pablo Fernández
- Lehrstuhl für Biophysik E27, Physics Department and Center for Protein Assemblies CPA, Technische Universität München, 85747 Garching, Germany
| | - Andreas R. Bausch
- Lehrstuhl für Biophysik E27, Physics Department and Center for Protein Assemblies CPA, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
17
|
McGlynn JA, Druggan KJ, Croland KJ, Schultz KM. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology. Acta Biomater 2021; 121:405-417. [PMID: 33278674 DOI: 10.1016/j.actbio.2020.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Biological materials have length scale dependent structure enabling complex cell-material interactions and driving cellular processes. Synthetic biomaterials are designed to mimic aspects of these biological materials for applications including enhancing cell delivery during wound healing. To mimic native microenvironments, we must understand how cells manipulate their surroundings over several length scales. Our work characterizes length scale dependent rheology in a well-established 3D cell culture platform for human mesenchymal stem cells (hMSCs). hMSCs re-engineer their microenvironment through matrix metalloproteinase (MMP) secretions and cytoskeletal tension. Remodeling occurs across length scales: MMPs degrade cross-links on nanometer scales resulting in micrometer-sized paths that hMSCs migrate through, eventually resulting in bulk scaffold degradation. We use multiple particle tracking microrheology (MPT) and bi-disperse MPT to characterize hMSC-mediated length scale dependent pericellular remodeling. MPT measures particle Brownian motion to calculate rheological properties. We use MPT to measure larger length scales with 4.5 µm particles. Bi-disperse MPT simultaneously measures two different length scales (0.5 and 2.0 µm). We measure that hMSCs preferentially remodel larger length scales measured as a higher mobility of larger particles. We inhibit cytoskeletal tension by inhibiting myosin-II and no longer measure this difference in particle mobility. This indicates that cytoskeletal tension is the source of cell-mediated length scale dependent rheological changes. Particle mobility correlates with cell speed across length scales, relating material rheology to cell behavior. These results quantify length scale dependent pericellular remodeling and provide insight into how these microenvironments can be designed into materials to direct cell behavior.
Collapse
Affiliation(s)
- John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kilian J Druggan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kiera J Croland
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
| |
Collapse
|
18
|
Campbell KT, Silva EA. Biomaterial Based Strategies for Engineering New Lymphatic Vasculature. Adv Healthc Mater 2020; 9:e2000895. [PMID: 32734721 PMCID: PMC8985521 DOI: 10.1002/adhm.202000895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Indexed: 12/15/2022]
Abstract
The lymphatic system is essential for tissue regeneration and repair due to its pivotal role in resolving inflammation, immune cell surveillance, lipid transport, and maintaining tissue homeostasis. Loss of functional lymphatic vasculature is directly implicated in a variety of diseases, including lymphedema, obesity, and the progression of cardiovascular diseases. Strategies that stimulate the formation of new lymphatic vessels (lymphangiogenesis) could provide an appealing new approach to reverse the progression of these diseases. However, lymphangiogenesis is relatively understudied and stimulating therapeutic lymphangiogenesis faces challenges in precise control of lymphatic vessel formation. Biomaterial delivery systems could be used to unleash the therapeutic potential of lymphangiogenesis for a variety of tissue regenerative applications due to their ability to achieve precise spatial and temporal control of multiple therapeutics, direct tissue regeneration, and improve the survival of delivered cells. In this review, the authors begin by introducing therapeutic lymphangiogenesis as a target for tissue regeneration, then an overview of lymphatic vasculature will be presented followed by a description of the mechanisms responsible for promoting new lymphatic vessels. Importantly, this work will review and discuss current biomaterial applications for stimulating lymphangiogenesis. Finally, challenges and future directions for utilizing biomaterials for lymphangiogenic based treatments are considered.
Collapse
Affiliation(s)
- Kevin T Campbell
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Arzash S, Shivers JL, MacKintosh FC. Finite size effects in critical fiber networks. SOFT MATTER 2020; 16:6784-6793. [PMID: 32638813 DOI: 10.1039/d0sm00764a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA and Departments of Chemistry and Physics & Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
20
|
Burla F, Dussi S, Martinez-Torres C, Tauber J, van der Gucht J, Koenderink GH. Connectivity and plasticity determine collagen network fracture. Proc Natl Acad Sci U S A 2020; 117:8326-8334. [PMID: 32238564 PMCID: PMC7165426 DOI: 10.1073/pnas.1920062117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Collagen forms the structural scaffold of connective tissues in all mammals. Tissues are remarkably resistant against mechanical deformations because collagen molecules hierarchically self-assemble in fibrous networks that stiffen with increasing strain. Nevertheless, collagen networks do fracture when tissues are overloaded or subject to pathological conditions such as aneurysms. Prior studies of the role of collagen in tissue fracture have mainly focused on tendons, which contain highly aligned bundles of collagen. By contrast, little is known about fracture of the orientationally more disordered collagen networks present in many other tissues such as skin and cartilage. Here, we combine shear rheology of reconstituted collagen networks with computer simulations to investigate the primary determinants of fracture in disordered collagen networks. We show that the fracture strain is controlled by the coordination number of the network junctions, with less connected networks fracturing at larger strains. The hierarchical structure of collagen fine-tunes the fracture strain by providing structural plasticity at the network and fiber level. Our findings imply that low connectivity and plasticity provide protective mechanisms against network fracture that can optimize the strength of biological tissues.
Collapse
Affiliation(s)
- Federica Burla
- Biological Soft Matter Group, Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Cristina Martinez-Torres
- Biological Soft Matter Group, Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, The Netherlands;
| | - Gijsje H Koenderink
- Biological Soft Matter Group, Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands;
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Dussi S, Tauber J, van der Gucht J. Athermal Fracture of Elastic Networks: How Rigidity Challenges the Unavoidable Size-Induced Brittleness. PHYSICAL REVIEW LETTERS 2020; 124:018002. [PMID: 31976728 DOI: 10.1103/physrevlett.124.018002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 06/10/2023]
Abstract
By performing extensive simulations with unprecedentedly large system sizes, we unveil how rigidity influences the fracture of disordered materials. We observe the largest damage in networks with connectivity close to the isostatic point and when the rupture thresholds are small. However, irrespective of network and spring properties, a more brittle fracture is observed upon increasing system size. Differently from most of the fracture descriptors, the maximum stress drop, a proxy for brittleness, displays a universal nonmonotonic dependence on system size. Based on this uncommon trend it is possible to identify the characteristic system size L^{*} at which brittleness kicks in. The more the disorder in network connectivity or in spring thresholds, the larger L^{*}. Finally, we speculate how this size-induced brittleness is influenced by thermal fluctuations.
Collapse
Affiliation(s)
- Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| |
Collapse
|
22
|
Olivares V, Cóndor M, Del Amo C, Asín J, Borau C, García-Aznar JM. Image-based Characterization of 3D Collagen Networks and the Effect of Embedded Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:971-981. [PMID: 31210124 DOI: 10.1017/s1431927619014570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Collagen microstructure is closely related to the mechanical properties of tissues and affects cell migration through the extracellular matrix. To study these structures, three-dimensional (3D) in vitro collagen-based gels are often used, attempting to mimic the natural environment of cells. Some key parameters of the microstructure of these gels are fiber orientation, fiber length, or pore size, which define the mechanical properties of the network and therefore condition cell behavior. In the present study, an automated tool to reconstruct 3D collagen networks is used to extract the aforementioned parameters of gels of different collagen concentration and determine how their microstructure is affected by the presence of cells. Two different experiments are presented to test the functionality of the method: first, collagen gels are embedded within a microfluidic device and collagen fibers are imaged by using confocal fluorescence microscopy; second, collagen gels are directly polymerized in a cell culture dish and collagen fibers are imaged by confocal reflection microscopy. Finally, we investigate and compare the collagen microstructure far from and in the vicinities of MDA-MB 23 cells, finding that cell activity during migration was able to strongly modify the orientation of the collagen fibers and the porosity-related values.
Collapse
Affiliation(s)
- Vanesa Olivares
- Multiscale in Mechanical and Biological Engineering (Department of Mechanical Engineering),University of Zaragoza,Zaragoza,Spain
| | - Mar Cóndor
- Multiscale in Mechanical and Biological Engineering (Department of Mechanical Engineering),University of Zaragoza,Zaragoza,Spain
| | - Cristina Del Amo
- Multiscale in Mechanical and Biological Engineering (Department of Mechanical Engineering),University of Zaragoza,Zaragoza,Spain
| | - Jesús Asín
- Department of Statistical Methods,University of Zaragoza,Zaragoza,Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering (Department of Mechanical Engineering),University of Zaragoza,Zaragoza,Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering (Department of Mechanical Engineering),University of Zaragoza,Zaragoza,Spain
| |
Collapse
|
23
|
Rubiano A, Delitto D, Han S, Gerber M, Galitz C, Trevino J, Thomas RM, Hughes SJ, Simmons CS. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater 2018; 67:331-340. [PMID: 29191507 PMCID: PMC5797706 DOI: 10.1016/j.actbio.2017.11.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is almost universally fatal, in large part due to a protective fibrotic barrier generated by tumor-associated stromal (TAS) cells. This barrier is thought to promote cancer cell survival and confounds attempts to develop effective therapies. We present a 3D in vitro system that replicates the mechanical properties of the PDAC microenvironment, representing an invaluable tool for understanding the biology of the disease. Mesoscale indentation quantified viscoelastic metrics of resected malignant tumors, inflamed chronic pancreatitis regions, and histologically normal tissue. Both pancreatitis (2.15 ± 0.41 kPa, Mean ± SD) and tumors (5.46 ± 3.18 kPa) exhibit higher Steady-State Modulus (SSM) than normal tissue (1.06 ± 0.25 kPa; p < .005). The average viscosity of pancreatitis samples (63.2 ± 26.7 kPa·s) is significantly lower than that of both normal tissue (252 ± 134 kPa·s) and tumors (349 ± 222 kPa·s; p < .005). To mimic this remodeling behavior, PDAC and TAS cells were isolated from human PDAC tumors. Conditioned medium from PDAC cells was used to culture TAS-embedded collagen hydrogels. After 7 days, TAS-embedded gels in control medium reached SSM (1.45 ± 0.12 kPa) near normal pancreas, while gels maintained with conditioned medium achieved higher SSM (3.38 ± 0.146 kPa) consistent with tumors. Taken together, we have demonstrated an in vitro system that recapitulates in vivo stiffening of PDAC tumors. In addition, our quantification of viscoelastic properties suggests that elastography algorithms incorporating viscosity may be able to more accurately distinguish between pancreatic cancer and pancreatitis. STATEMENT OF SIGNIFICANCE Understanding tumor-stroma crosstalk in pancreatic ductal adenocarcinoma (PDAC) is challenged by a lack of stroma-mimicking model systems. To design appropriate models, pancreatic tissue must be characterized with a method capable of evaluating in vitro models as well. Our indentation-based characterization tool quantified the distinct viscoelastic signatures of inflamed resections from pancreatitis, tumors from PDAC, and otherwise normal tissue to inform development of mechanically appropriate engineered tissues and scaffolds. We also made progress toward a 3D in vitro system that recapitulates mechanical properties of tumors. Our in vitro model of stromal cells in collagen and complementary characterization system can be used to investigate mechanisms of cancer-stroma crosstalk in PDAC and to propose and test innovative therapies.
Collapse
Affiliation(s)
- Andres Rubiano
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States
| | - Daniel Delitto
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Michael Gerber
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Carly Galitz
- Department of Mathematics, College of Liberal Arts and Sciences, University of Florida, United States
| | - Jose Trevino
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Ryan M Thomas
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, United States.
| |
Collapse
|
24
|
Picu RC, Deogekar S, Islam MR. Poisson's Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations. J Biomech Eng 2018; 140:2663690. [PMID: 29131889 PMCID: PMC5816257 DOI: 10.1115/1.4038428] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Connective tissue mechanics is highly nonlinear, exhibits a strong Poisson's effect, and is associated with significant collagen fiber re-arrangement. Although the general features of the stress-strain behavior have been discussed extensively, the Poisson's effect received less attention. In general, the relationship between the microscopic fiber network mechanics and the macroscopic experimental observations remains poorly defined. The objective of the present work is to provide additional insight into this relationship. To this end, results from models of random collagen networks are compared with experimental data on reconstructed collagen gels, mouse skin dermis, and the human amnion. Attention is devoted to the mechanism leading to the large Poisson's effect observed in experiments. The results indicate that the incremental Poisson's contraction is directly related to preferential collagen orientation. The experimentally observed downturn of the incremental Poisson's ratio at larger strains is associated with the confining effect of fibers transverse to the loading direction and contributing little to load bearing. The rate of collagen orientation increases at small strains, reaches a maximum, and decreases at larger strains. The peak in this curve is associated with the transition of the network deformation from bending dominated, at small strains, to axially dominated, at larger strains. The effect of fiber tortuosity on network mechanics is also discussed, and a comparison of biaxial and uniaxial loading responses is performed.
Collapse
Affiliation(s)
- R. C. Picu
- Department of Mechanical, Aerospace
and Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - S. Deogekar
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - M. R. Islam
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| |
Collapse
|
25
|
Tomasetti L, Breunig M. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix. Adv Healthc Mater 2018; 7. [PMID: 29121453 DOI: 10.1002/adhm.201700739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Indexed: 12/13/2022]
Abstract
Although nanosized drug delivery systems are promising tools for the treatment of severe diseases, the extracellular matrix (ECM) constitutes a major obstacle that endangers therapeutic success. Mobility of diffusing species is restricted not only by small pore size (down to as low as 3 nm) but also by electrostatic interactions with the network. This article evaluates commonly used in vitro models of ECM, analytical methods, and particle types with respect to their similarity to native conditions in the target tissue. In this cross-study evaluation, results from a wide variety of mobility studies are analyzed to discern general principles of particle-ECM interactions. For instance, cross-linked networks and a negative network charge are essential to reliably recapitulate key features of the native ECM. Commonly used ECM mimics comprised of one or two components can lead to mobility calculations which have low fidelity to in vivo results. In addition, analytical methods must be tailored to the properties of both the matrix and the diffusing species to deliver accurate results. Finally, nanoparticles must be sufficiently small to penetrate the matrix pores (ideally Rd/p < 0.5; d = particle diameter, p = pore size) and carry a neutral surface charge to avoid obstructions. Larger (Rd/p >> 1) or positively charged particles are trapped.
Collapse
Affiliation(s)
- Luise Tomasetti
- Department of Pharmaceutical Technology; University of Regensburg; Universitaetsstrasse 31 93040 Regensburg Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology; University of Regensburg; Universitaetsstrasse 31 93040 Regensburg Germany
| |
Collapse
|
26
|
Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition. Biophys J 2017; 113:1882-1892. [PMID: 29045881 DOI: 10.1016/j.bpj.2017.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023] Open
Abstract
Fibrillar type I collagen-based hydrogels are commonly used in tissue engineering and as matrices for biophysical studies. Mechanical and structural properties of these gels are known to be governed by the conditions under which fibrillogenesis occurs, exhibiting variation as a function of protein concentration, temperature, pH, and ionic strength. Deeper understanding of how macroscopic structure affects viscoelastic properties of collagen gels over the course of fibrillogenesis provides fundamental insight into biopolymer gel properties and promises enhanced control over the properties of such gels. Here, we investigate type I collagen fibrillogenesis using confocal rheology-simultaneous confocal reflectance microscopy, confocal fluorescence microscopy, and rheology. The multimodal approach allows direct comparison of how viscoelastic properties track the structural evolution of the gel on fiber and network length scales. Quantitative assessment and comparison of each imaging modality and the simultaneously collected rheological measurements show that the presence of a system-spanning structure occurs at a time similar to rheological determinants of gelation. Although this and some rheological measures are consistent with critical gelation through percolation, additional rheological and structural properties of the gel are found to be inconsistent with this theory. This study clarifies how structure sets viscoelasticity during collagen fibrillogenesis and more broadly highlights the utility of multimodal measurements as critical test-beds for theoretical descriptions of complex systems.
Collapse
|
27
|
Kim J, Feng J, Jones CAR, Mao X, Sander LM, Levine H, Sun B. Stress-induced plasticity of dynamic collagen networks. Nat Commun 2017; 8:842. [PMID: 29018207 PMCID: PMC5635002 DOI: 10.1038/s41467-017-01011-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022] Open
Abstract
The structure and mechanics of tissues is constantly perturbed by endogenous forces originated from cells, and at the same time regulate many important cellular functions such as migration, differentiation, and growth. Here we show that 3D collagen gels, major components of connective tissues and extracellular matrix (ECM), are significantly and irreversibly remodeled by cellular traction forces, as well as by macroscopic strains. To understand this ECM plasticity, we develop a computational model that takes into account the sliding and merging of ECM fibers. We have confirmed the model predictions with experiment. Our results suggest the profound impacts of cellular traction forces on their host ECM during development and cancer progression, and suggest indirect mechanical channels of cell-cell communications in 3D fibrous matrices.The structure and mechanics of tissues is constantly perturbed by endogenous forces originated from cells. Here the authors show that 3D collagen gels, major components of connective tissues and extracellular matrix, are significantly and irreversibly remodelled by cellular traction forces and by macroscopic strains.
Collapse
Affiliation(s)
- Jihan Kim
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Jingchen Feng
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX, 77005-1892, USA
| | - Christopher A R Jones
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI, 48109-1120, USA
| | - Leonard M Sander
- Physics and Complex Systems, University of Michigan, Ann Arbor, MI, 48109-1120, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX, 77005-1892, USA. .,Department of Bioengineering, Rice University, Houston, TX, 77030-1402, USA.
| | - Bo Sun
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA.
| |
Collapse
|
28
|
Cóndor M, Steinwachs J, Mark C, García‐Aznar J, Fabry B. Traction Force Microscopy in 3‐Dimensional Extracellular Matrix Networks. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpcb.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M. Cóndor
- Department of Mechanical Engineering, University of Zaragoza Zaragoza Spain
| | - J. Steinwachs
- Department of Physics, University of Erlangen‐Nuremberg Erlangen Germany
| | - C. Mark
- Department of Physics, University of Erlangen‐Nuremberg Erlangen Germany
| | - J.M. García‐Aznar
- Department of Mechanical Engineering, University of Zaragoza Zaragoza Spain
| | - B. Fabry
- Department of Physics, University of Erlangen‐Nuremberg Erlangen Germany
| |
Collapse
|
29
|
Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials 2017; 125:54-64. [PMID: 28231508 DOI: 10.1016/j.biomaterials.2017.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSC) reside in unique bone marrow niches and are influenced by signals from surrounding cells, the extracellular matrix (ECM), ECM-bound or diffusible biomolecules. Here we describe the use of a three-dimensional hydrogel to alter the balance of HSC-generated autocrine feedback and paracrine signals generated by co-cultured niche-associated cells. We report shifts in HSC proliferation rate and fate specification in the presence of lineage positive (Lin+) niche cells. Hydrogels promoting autocrine feedback enhanced expansion of early hematopoietic progenitors while paracrine signals from Lin+ cells increased myeloid differentiation. We report thresholds where autocrine vs. paracrine cues alter HSC fate transitions, and were able to selectively abrogate the effects of matrix diffusivity and niche cell co-culture via the use of inhibitory cocktails of autocrine or paracrine signals. Together, these results suggest diffusive biotransport in three-dimensional biomaterials are a critical design element for the development of a synthetic stem cell niche.
Collapse
|
30
|
Li H, Xu B, Zhou EH, Sunyer R, Zhang Y. Multiscale Measurements of the Mechanical Properties of Collagen Matrix. ACS Biomater Sci Eng 2017; 3:2815-2824. [DOI: 10.1021/acsbiomaterials.6b00634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Enhua H. Zhou
- Ophthalmology, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia, Baldiri-Reixac 15-21, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | | |
Collapse
|
31
|
Roberts SA, DiVito KA, Ligler FS, Adams AA, Daniele MA. Microvessel manifold for perfusion and media exchange in three-dimensional cell cultures. BIOMICROFLUIDICS 2016; 10:054109. [PMID: 27703595 PMCID: PMC5035297 DOI: 10.1063/1.4963145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/08/2016] [Indexed: 05/08/2023]
Abstract
Integrating a perfusable microvasculature system in vitro is a substantial challenge for "on-chip" tissue models. We have developed an inclusive on-chip platform that is capable of maintaining laminar flow through porous biosynthetic microvessels. The biomimetic microfluidic device is able to deliver and generate a steady perfusion of media containing small-molecule nutrients, drugs, and gases in three-dimensional cell cultures, while replicating flow-induced mechanical stimuli. Here, we characterize the diffusion of small molecules from the perfusate, across the microvessel wall, and into the matrix of a 3D cell culture.
Collapse
Affiliation(s)
- Steven A Roberts
- Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, USA
| | - Kyle A DiVito
- Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina , Chapel Hill, 911 Oval Dr., Raleigh, North Carolina 27695, USA
| | - André A Adams
- Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, USA
| | | |
Collapse
|
32
|
Staunton JR, Vieira W, Fung KL, Lake R, Devine A, Tanner K. Mechanical properties of the tumor stromal microenvironment probed in vitro and ex vivo by in situ-calibrated optical trap-based active microrheology. Cell Mol Bioeng 2016; 9:398-417. [PMID: 27752289 PMCID: PMC5065074 DOI: 10.1007/s12195-016-0460-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of the malignant transformation of epithelial tissue is the modulation of stromal components of the microenvironment. In particular, aberrant extracellular matrix (ECM) remodeling and stiffening enhances tumor growth and survival and promotes metastasis. Type I collagen is one of the major ECM components. It serves as a scaffold protein in the stroma contributing to the tissue's mechanical properties, imparting tensile strength and rigidity to tissues such as those of the skin, tendons, and lungs. Here we investigate the effects of intrinsic spatial heterogeneities due to fibrillar architecture, pore size and ligand density on the microscale and bulk mechanical properties of the ECM. Type I collagen hydrogels with topologies tuned by polymerization temperature and concentration to mimic physico-chemical properties of a normal tissue and tumor microenvironment were measured by in situ-calibrated Active Microrheology by Optical Trapping revealing significantly different microscale complex shear moduli at Hz-kHz frequencies and two orders of magnitude of strain amplitude that we compared to data from bulk rheology measurements. Access to higher frequencies enabled observation of transitions from elastic to viscous behavior that occur at ~200Hz to 2750Hz, which largely was dependent on tissue architecture well outside the dynamic range of instrument acquisition possible with SAOS bulk rheology. We determined that mouse melanoma tumors and human breast tumors displayed complex moduli ~5-1000 Pa, increasing with frequency and displaying a nonlinear stress-strain response. Thus, we show the feasibility of a mechanical biopsy in efforts to provide a diagnostic tool to aid in the design of therapeutics complementary to those based on standard histopathology.
Collapse
Affiliation(s)
- Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Wilfred Vieira
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - King Leung Fung
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:388-97. [PMID: 27612727 DOI: 10.1016/j.msec.2016.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
Abstract
The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro.
Collapse
Affiliation(s)
- Raluca Vulpe
- "Gheorghe Asachi" Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 73 Prof. Dr. docent Dimitrie Mangeron Street, 700050 Iasi, Romania; Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - Didier Le Cerf
- Normandie Université, France; Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France; CNRS UMR 6270 & FR3038, F-76821 Mont Saint Aignan, France
| | - Virginie Dulong
- Normandie Université, France; Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France; CNRS UMR 6270 & FR3038, F-76821 Mont Saint Aignan, France
| | - Marcel Popa
- "Gheorghe Asachi" Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 73 Prof. Dr. docent Dimitrie Mangeron Street, 700050 Iasi, Romania; Academy of Romanian Scientists, Splaiul Independentei, 54, Sector 5, 050094, Bucuresti, Romania; "Apollonia" University of Iași, Faculty of Dental Medicine, Muzicii Avenue, 2, 700399, Iasi, Romania
| | - Catalina Peptu
- "Gheorghe Asachi" Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 73 Prof. Dr. docent Dimitrie Mangeron Street, 700050 Iasi, Romania
| | - Liliana Verestiuc
- "Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biological Sciences, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Luc Picton
- Normandie Université, France; Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France; CNRS UMR 6270 & FR3038, F-76821 Mont Saint Aignan, France.
| |
Collapse
|
34
|
Kim J, Jones CAR, Groves NS, Sun B. Three-Dimensional Reflectance Traction Microscopy. PLoS One 2016; 11:e0156797. [PMID: 27304456 PMCID: PMC4909212 DOI: 10.1371/journal.pone.0156797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/19/2016] [Indexed: 01/18/2023] Open
Abstract
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix.
Collapse
Affiliation(s)
- Jihan Kim
- Department of Physics, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Nicholas Scott Groves
- Department of Physics, Oregon State University, Corvallis, Oregon, United States of America
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bornschlögl T, Bildstein L, Thibaut S, Santoprete R, Fiat F, Luengo GS, Doucet J, Bernard BA, Baghdadli N. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber. Proc Natl Acad Sci U S A 2016; 113:5940-5. [PMID: 27162354 PMCID: PMC4889357 DOI: 10.1073/pnas.1520302113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization.
Collapse
Affiliation(s)
| | | | | | | | - Françoise Fiat
- L'Oreal Research & Innovation, F93600 Aulnay-sous-Bois, France
| | | | - Jean Doucet
- Laboratoire de Physique des Solides, Paris-Sud University, F91400 Orsay, France
| | - Bruno A Bernard
- L'Oreal Research & Innovation, F93600 Aulnay-sous-Bois, France
| | - Nawel Baghdadli
- L'Oreal Research & Innovation, F93600 Aulnay-sous-Bois, France
| |
Collapse
|
36
|
Abstract
Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain.
Collapse
Affiliation(s)
- Stéphanie Motte
- Department of Chemistry, Columbia University, New York, NY 10027
| | | |
Collapse
|
37
|
Castro APG, Laity P, Shariatzadeh M, Wittkowske C, Holland C, Lacroix D. Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:79. [PMID: 26914710 PMCID: PMC4767858 DOI: 10.1007/s10856-016-5688-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/17/2016] [Indexed: 06/04/2023]
Abstract
This work presents a combined experimental-numerical framework for the biomechanical characterization of highly hydrated collagen hydrogels, namely with 0.20, 0.30 and 0.40% (by weight) of collagen concentration. Collagen is the most abundant protein in the extracellular matrix of animals and humans. Its intrinsic biocompatibility makes collagen a promising substrate for embedding cells within a highly hydrated environment mimicking natural soft tissues. Cell behaviour is greatly influenced by the mechanical properties of the surrounding matrix, but the biomechanical characterization of collagen hydrogels has been challenging up to now, since they present non-linear poro-viscoelastic properties. Combining the stiffness outcomes from rheological experiments with relevant literature data on collagen permeability, poroelastic finite element (FE) models were developed. Comparison between experimental confined compression tests available in the literature and analogous FE stress relaxation curves showed a close agreement throughout the tests. This framework allowed establishing that the dynamic shear modulus of the collagen hydrogels is between 0.0097 ± 0.018 kPa for the 0.20% concentration and 0.0601 ± 0.044 kPa for the 0.40% concentration. The Poisson's ratio values for such conditions lie within the range of 0.495-0.485 for 0.20% and 0.480-0.470 for 0.40%, respectively, showing that rheology is sensitive enough to detect these small changes in collagen concentration and thus allowing to link rheology results with the confined compression tests. In conclusion, this integrated approach allows for accurate constitutive modelling of collagen hydrogels. This framework sets the grounds for the characterization of related hydrogels and to the use of this collagen parameterization in more complex multiscale models.
Collapse
Affiliation(s)
- A P G Castro
- Department of Mechanical Engineering, INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Pam Liversidge Building - Room F32, Mappin Street, Sheffield, S1 3JD, UK
| | - P Laity
- Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
| | - M Shariatzadeh
- Department of Mechanical Engineering, INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Pam Liversidge Building - Room F32, Mappin Street, Sheffield, S1 3JD, UK
| | - C Wittkowske
- Department of Mechanical Engineering, INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Pam Liversidge Building - Room F32, Mappin Street, Sheffield, S1 3JD, UK
| | - C Holland
- Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
| | - D Lacroix
- Department of Mechanical Engineering, INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Pam Liversidge Building - Room F32, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
38
|
Roberts SA, Waziri AE, Agrawal N. Development of a Single-Cell Migration and Extravasation Platform through Selective Surface Modification. Anal Chem 2016; 88:2770-6. [DOI: 10.1021/acs.analchem.5b04391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Steven A. Roberts
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Allen E. Waziri
- Department
of Neurosurgery, Inova Fairfax Hospital, Fairfax, Virginia 22042, United States
- Krasnow Institute, George Mason University, Fairfax, Virginia 22030, United States
| | - Nitin Agrawal
- Department
of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
- Krasnow Institute, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
39
|
Quennouz N, Hashmi SM, Choi HS, Kim JW, Osuji CO. Rheology of cellulose nanofibrils in the presence of surfactants. SOFT MATTER 2016; 12:157-164. [PMID: 26466557 DOI: 10.1039/c5sm01803j] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellulose nanofibrils (CNFs) present unique opportunities for rheology modification in complex fluids. Here we systematically consider the effect of ionic and non-ionic surfactants on the rheology of dilute CNF suspensions. Neat suspensions are transparent yield-stress fluids which display strong shear thinning and power-law dependence of modulus on concentration, G' ∼ c(2.1). Surfactant addition below a critical mass concentration cc produces an increase in the gel modulus with retention of optical clarity. Larger than critical concentrations induce significant fibril aggregation leading to the loss of suspension stability and optical clarity, and to aggregate sedimentation. The critical concentration was the lowest for a cationic surfactant (DTAB), cc ≈ 0.08%, while suspension stability was retained for non-ionic surfactants (Pluronic F68, TX100) at concentrations up to 8%. The anionic surfactant SDS led to a loss of stability at cc ≈ 1.6% whereas suspension stability was not compromised by anionic SLES up to 8%. Dynamic light scattering data are consistent with a scenario in which gel formation is driven by micelle-nanofibril bridging mediated by associative interactions of ethoxylated surfactant headgroups with the cellulose fibrils. This may explain the strong difference between the properties of SDS and SLES-modified suspensions. These results have implications for the use of CNFs as a rheology modifier in surfactant-containing systems.
Collapse
Affiliation(s)
- Nawal Quennouz
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA.
| | - Sara M Hashmi
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA.
| | - Hong Sung Choi
- Shinsegae International Co. Ltd, Seoul, 135-954, Republic of Korea
| | - Jin Woong Kim
- Department of Applied Chemistry, Hanyang University, Ansan, 426-791, Republic of Korea and Department of Biono Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Chinedum O Osuji
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA.
| |
Collapse
|
40
|
Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods 2015; 13:171-6. [DOI: 10.1038/nmeth.3685] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
|
41
|
Fraley SI, Wu PH, He L, Feng Y, Krisnamurthy R, Longmore GD, Wirtz D. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci Rep 2015; 5:14580. [PMID: 26423227 PMCID: PMC4589685 DOI: 10.1038/srep14580] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/03/2015] [Indexed: 12/30/2022] Open
Abstract
Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.
Collapse
Affiliation(s)
- Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yunfeng Feng
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Medicine and Cell Biology and Physiology and BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Ranjini Krisnamurthy
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Gregory D. Longmore
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Medicine and Cell Biology and Physiology and BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
42
|
Abstract
Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.
Collapse
|
43
|
Arevalo RC, Kumar P, Urbach JS, Blair DL. Stress heterogeneities in sheared type-I collagen networks revealed by Boundary Stress Microscopy. PLoS One 2015; 10:e0118021. [PMID: 25734484 PMCID: PMC4348423 DOI: 10.1371/journal.pone.0118021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023] Open
Abstract
Disordered fiber networks provide structural support to a wide range of important materials, and the combination of spatial and dynamic complexity may produce large inhomogeneities in mechanical properties, an effect that is largely unexplored experimentally. In this work, we introduce Boundary Stress Microscopy to quantify the non-uniform surface stresses in sheared collagen gels. We find local stresses exceeding average stresses by an order of magnitude, with variations over length scales much larger than the network mesh size. The strain stiffening behavior observed over a wide range of network mesh sizes can be parameterized by a single characteristic strain and associated stress, which describes both the strain stiffening regime and network yielding. The characteristic stress is approximately proportional to network density, but the peak boundary stress at both the characteristic strain and at yielding are remarkably insensitive to concentration.
Collapse
Affiliation(s)
- Richard C. Arevalo
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Pramukta Kumar
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Jeffrey S. Urbach
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Daniel L. Blair
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| |
Collapse
|
44
|
Muehleder S, Ovsianikov A, Zipperle J, Redl H, Holnthoner W. Connections matter: channeled hydrogels to improve vascularization. Front Bioeng Biotechnol 2014; 2:52. [PMID: 25453032 PMCID: PMC4231943 DOI: 10.3389/fbioe.2014.00052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.
Collapse
Affiliation(s)
- Severin Muehleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Aleksandr Ovsianikov
- Austrian Cluster for Tissue Regeneration , Vienna , Austria ; Institute of Material Science and Technology, Vienna University of Technology , Vienna , Austria
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| |
Collapse
|
45
|
Lee B, Zhou X, Riching K, Eliceiri KW, Keely PJ, Guelcher SA, Weaver AM, Jiang Y. A three-dimensional computational model of collagen network mechanics. PLoS One 2014; 9:e111896. [PMID: 25386649 PMCID: PMC4227658 DOI: 10.1371/journal.pone.0111896] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/30/2014] [Indexed: 01/08/2023] Open
Abstract
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.
Collapse
Affiliation(s)
- Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Xin Zhou
- School of Physics, Graduate University of Chinese Academy of Science, Beijing, China
| | - Kristin Riching
- Laboratory for Optical and Computational Instrumentation, Laboratory for Cell and Molecular Biology and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Laboratory for Cell and Molecular Biology and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Keely
- Laboratory for Optical and Computational Instrumentation, Laboratory for Cell and Molecular Biology and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alissa M. Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
46
|
Silverberg JL, Barrett AR, Das M, Petersen PB, Bonassar LJ, Cohen I. Structure-function relations and rigidity percolation in the shear properties of articular cartilage. Biophys J 2014; 107:1721-30. [PMID: 25296326 PMCID: PMC4190603 DOI: 10.1016/j.bpj.2014.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G(∗)| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G(∗)| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G(∗)| scaling as (vc - v0)(ξ). Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue's surface.
Collapse
Affiliation(s)
| | - Aliyah R Barrett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Moumita Das
- School of Physics & Astronomy, Rochester Institute of Technology, Rochester, New York
| | - Poul B Petersen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Lawrence J Bonassar
- Biomedical Engineering, Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Itai Cohen
- Physics Department, Cornell University, Ithaca, New York
| |
Collapse
|
47
|
Branco da Cunha C, Klumpers DD, Li WA, Koshy ST, Weaver JC, Chaudhuri O, Granja PL, Mooney DJ. Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials 2014; 35:8927-36. [PMID: 25047628 DOI: 10.1016/j.biomaterials.2014.06.047] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/25/2014] [Indexed: 12/18/2022]
Abstract
Wound dressing biomaterials are increasingly being designed to incorporate bioactive molecules to promote healing, but the impact of matrix mechanical properties on the biology of resident cells orchestrating skin repair and regeneration remains to be fully understood. This study investigated whether tuning the stiffness of a model wound dressing biomaterial could control the behavior of dermal fibroblasts. Fully interpenetrating networks (IPNs) of collagen-I and alginate were fabricated to enable gel stiffness to be tuned independently of gel architecture, polymer concentration or adhesion ligand density. Three-dimensional cultures of dermal fibroblasts encapsulated within matrices of different stiffness were shown to promote dramatically different cell morphologies, and enhanced stiffness resulted in upregulation of key-mediators of inflammation such as IL-10 and COX-2. These findings suggest that simply modulating the matrix mechanical properties of a given wound dressing biomaterial deposited at the wound site could regulate the progression of wound healing.
Collapse
Affiliation(s)
- Cristiana Branco da Cunha
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal; Instituto de Engenharia Biomédica da Universidade do Porto (INEB), 4150-180 Porto, Portugal; Faculdade de Medicina da Universidade do Porto (FMUP)/Hospital S. João, 4200-319 Porto, Portugal
| | - Darinka D Klumpers
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Dept. Orthopedic Surgery, Research Institute MOVE, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Weiwei A Li
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sandeep T Koshy
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 10239, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Pedro L Granja
- Instituto de Engenharia Biomédica da Universidade do Porto (INEB), 4150-180 Porto, Portugal; Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), 4050-313 Porto, Portugal
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Kayser J, Haslbeck M, Dempfle L, Krause M, Grashoff C, Buchner J, Herrmann H, Bausch AR. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys J 2014; 105:1778-85. [PMID: 24138853 DOI: 10.1016/j.bpj.2013.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023] Open
Abstract
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation.
Collapse
Affiliation(s)
- Jona Kayser
- Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pritchard RH, Huang YYS, Terentjev EM. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. SOFT MATTER 2014; 10:1864-84. [PMID: 24652375 DOI: 10.1039/c3sm52769g] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Robyn H Pritchard
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | | | |
Collapse
|
50
|
Ma X, Schickel ME, Stevenson MD, Sarang-Sieminski AL, Gooch KJ, Ghadiali SN, Hart RT. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys J 2013; 104:1410-8. [PMID: 23561517 DOI: 10.1016/j.bpj.2013.02.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/15/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022] Open
Abstract
Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel's fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission.
Collapse
Affiliation(s)
- Xiaoyue Ma
- The Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|