1
|
Gabriel TS, Hansen UP, Urban M, Drexler N, Winterstein T, Rauh O, Thiel G, Kast SM, Schroeder I. Asymmetric Interplay Between K + and Blocker and Atomistic Parameters From Physiological Experiments Quantify K + Channel Blocker Release. Front Physiol 2021; 12:737834. [PMID: 34777005 PMCID: PMC8586521 DOI: 10.3389/fphys.2021.737834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.
Collapse
Affiliation(s)
- Tobias S Gabriel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin Urban
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Nils Drexler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tobias Winterstein
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Selectivity filter ion binding affinity determines inactivation in a potassium channel. Proc Natl Acad Sci U S A 2020; 117:29968-29978. [PMID: 33154158 DOI: 10.1073/pnas.2009624117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Potassium channels can become nonconducting via inactivation at a gate inside the highly conserved selectivity filter (SF) region near the extracellular side of the membrane. In certain ligand-gated channels, such as BK channels and MthK, a Ca2+-activated K+ channel from Methanobacterium thermoautotrophicum, the SF has been proposed to play a role in opening and closing rather than inactivation, although the underlying conformational changes are unknown. Using X-ray crystallography, identical conductive MthK structures were obtained in wide-ranging K+ concentrations (6 to 150 mM), unlike KcsA, whose SF collapses at low permeant ion concentrations. Surprisingly, three of the SF's four binding sites remained almost fully occupied throughout this range, indicating high affinities (likely submillimolar), while only the central S2 site titrated, losing its ion at 6 mM, indicating low K+ affinity (∼50 mM). Molecular simulations showed that the MthK SF can also collapse in the absence of K+, similar to KcsA, but that even a single K+ binding at any of the SF sites, except S4, can rescue the conductive state. The uneven titration across binding sites differs from KcsA, where SF sites display a uniform decrease in occupancy with K+ concentration, in the low millimolar range, leading to SF collapse. We found that ions were disfavored in MthK's S2 site due to weaker coordination by carbonyl groups, arising from different interactions with the pore helix and water behind the SF. We conclude that these differences in interactions endow the seemingly identical SFs of KcsA and MthK with strikingly different inactivating phenotypes.
Collapse
|
3
|
Eckert D, Schulze T, Stahl J, Rauh O, Van Etten JL, Hertel B, Schroeder I, Moroni A, Thiel G. A small viral potassium ion channel with an inherent inward rectification. Channels (Austin) 2020; 13:124-135. [PMID: 31010373 PMCID: PMC6527081 DOI: 10.1080/19336950.2019.1605813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Some algal viruses have coding sequences for proteins with structural and functional characteristics of pore modules of complex K+ channels. Here we exploit the structural diversity among these channel orthologs to discover new basic principles of structure/function correlates in K+ channels. The analysis of three similar K+ channels with ≤ 86 amino acids (AA) shows that one channel (Kmpv1) generates an ohmic conductance in HEK293 cells while the other two (KmpvSP1, KmpvPL1) exhibit typical features of canonical Kir channels. Like Kir channels, the rectification of the viral channels is a function of the K+ driving force. Reconstitution of KmpvSP1 and KmpvPL1 in planar lipid bilayers showed rapid channel fluctuations only at voltages negative of the K+ reversal voltage. This rectification was maintained in KCl buffer with 1 mM EDTA, which excludes blocking cations as the source of rectification. This means that rectification of the viral channels must be an inherent property of the channel. The structural basis for rectification was investigated by a chimera between rectifying and non-rectifying channels as well as point mutations making the rectifier similar to the ohmic conducting channel. The results of these experiments exclude the pore with pore helix and selectivity filter as playing a role in rectification. The insensitivity of the rectifier to point mutations suggests that tertiary or quaternary structural interactions between the transmembrane domains are responsible for this type of gating.
Collapse
Affiliation(s)
- Denise Eckert
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Tobias Schulze
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Julian Stahl
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Oliver Rauh
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - James L Van Etten
- b Department of Plant Pathology and Nebraska Center for Virology , University of Nebraska Lincoln , Lincoln , NE , USA
| | - Brigitte Hertel
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Indra Schroeder
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Anna Moroni
- c Department of Biosciences and CNR IBF-Mi , Università degli Studi di Milano , Milano , Italy
| | - Gerhard Thiel
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
4
|
Jara-Oseguera A, Huffer KE, Swartz KJ. The ion selectivity filter is not an activation gate in TRPV1-3 channels. eLife 2019; 8:51212. [PMID: 31724952 PMCID: PMC6887487 DOI: 10.7554/elife.51212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Activation of TRPV1 channels in sensory neurons results in opening of a cation permeation pathway that triggers the sensation of pain. Opening of TRPV1 has been proposed to involve two gates that appear to prevent ion permeation in the absence of activators: the ion selectivity filter on the external side of the pore and the S6 helices that line the cytosolic half of the pore. Here we measured the access of thiol-reactive ions across the selectivity filters in rodent TRPV1-3 channels. Although our results are consistent with structural evidence that the selectivity filters in these channels are dynamic, they demonstrate that cations can permeate the ion selectivity filters even when channels are closed. Our results suggest that the selectivity filters in TRPV1-3 channels do not function as activation gates but might contribute to coupling structural rearrangements in the external pore to those in the cytosolic S6 gate.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Katherine E Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
5
|
Sumikama T, Oiki S. Queueing arrival and release mechanism for K + permeation through a potassium channel. J Physiol Sci 2019; 69:919-930. [PMID: 31456113 PMCID: PMC10717923 DOI: 10.1007/s12576-019-00706-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/18/2019] [Indexed: 01/26/2023]
Abstract
The mechanism underlying ion permeation through potassium channels still remains controversial. K+ ions permeate across a narrow selectivity filter (SF) in a single file. Conventional scenarios assume that K+ ions are tightly bound in the SF, and, thus, they are displaced from their energy well by ion-ion repulsion with an incoming ion. This tight coupling between entering and exiting ions has been called the "knock-on" mechanism. However, this paradigm is contradicted by experimental data measuring the water-ion flux coupling ratio, demonstrating fewer ion occupancies. Here, the results of molecular dynamics simulations of permeation through the KcsA potassium channel revealed an alternative mechanism. In the aligned ions in the SF (an ion queue), the outermost K+ was readily and spontaneously released toward the extracellular space, and the affinity of the relevant ion was ~ 50 mM. Based on this low-affinity regime, a simple queueing mechanism described by loose coupling of entering and exiting ions is proposed.
Collapse
Affiliation(s)
- Takashi Sumikama
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
- Biomedical Imaging Research Center, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
6
|
Rauh O, Hansen UP, Scheub DD, Thiel G, Schroeder I. Site-specific ion occupation in the selectivity filter causes voltage-dependent gating in a viral K + channel. Sci Rep 2018; 8:10406. [PMID: 29991721 PMCID: PMC6039446 DOI: 10.1038/s41598-018-28751-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
Many potassium channels show voltage-dependent gating without a dedicated voltage sensor domain. This is not fully understood yet, but often explained by voltage-induced changes of ion occupation in the five distinct K+ binding sites in the selectivity filter. To better understand this mechanism of filter gating we measured the single-channel current and the rate constant of sub-millisecond channel closure of the viral K+ channel KcvNTS for a wide range of voltages and symmetric and asymmetric K+ concentrations in planar lipid membranes. A model-based analysis employed a global fit of all experimental data, i.e., using a common set of parameters for current and channel closure under all conditions. Three different established models of ion permeation and various relationships between ion occupation and gating were tested. Only one of the models described the data adequately. It revealed that the most extracellular binding site (S0) in the selectivity filter functions as the voltage sensor for the rate constant of channel closure. The ion occupation outside of S0 modulates its dependence on K+ concentration. The analysis uncovers an important role of changes in protein flexibility in mediating the effect from the sensor to the gate.
Collapse
Affiliation(s)
- O Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - U P Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - D D Scheub
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - G Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - I Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
7
|
Abstract
Since the availability of the first crystal structure of a bacterial Na+ channel in 2011, understanding selectivity across this family of membrane proteins has been the subject of intense research efforts. Initially, free energy calculations based on molecular dynamics simulations revealed that although sodium ions can easily permeate the channel with their first hydration shell almost intact, the selectivity filter is too narrow for efficient conduction of hydrated potassium ions. This steric view of selectivity was subsequently questioned by microsecond atomic trajectories, which proved that the selectivity filter appears to the permeating ions as a highly degenerate, liquid-like environment. Although this liquid-like environment looks optimal for rapid conduction of Na+, it seems incompatible with efficient discrimination between similar ion species, such as Na+ and K+, through steric effects. Here extensive molecular dynamics simulations, combined with Markov state model analyses, reveal that at positive membrane potentials, potassium ions trigger a conformational change of the selectivity toward a nonconductive metastable state. It is this transition of the selectivity filter, and not steric effects, that prevents the outward flux of K+ at positive membrane potentials. This description of selectivity, triggered by the nature of the permeating ions, might have implications on the current understanding of how ion channels, and in particular bacterial Na+ channels, operate at the atomic scale.
Collapse
|
8
|
Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 2017; 552:421-425. [PMID: 29236691 DOI: 10.1038/nature24652] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
Abstract
The calcium-activated chloride channel TMEM16A is a ligand-gated anion channel that opens in response to an increase in intracellular Ca2+ concentration. The protein is broadly expressed and contributes to diverse physiological processes, including transepithelial chloride transport and the control of electrical signalling in smooth muscles and certain neurons. As a member of the TMEM16 (or anoctamin) family of membrane proteins, TMEM16A is closely related to paralogues that function as scramblases, which facilitate the bidirectional movement of lipids across membranes. The unusual functional diversity of the TMEM16 family and the relationship between two seemingly incompatible transport mechanisms has been the focus of recent investigations. Previous breakthroughs were obtained from the X-ray structure of the lipid scramblase of the fungus Nectria haematococca (nhTMEM16), and from the cryo-electron microscopy structure of mouse TMEM16A at 6.6 Å (ref. 14). Although the latter structure disclosed the architectural differences that distinguish ion channels from lipid scramblases, its low resolution did not permit a detailed molecular description of the protein or provide any insight into its activation by Ca2+. Here we describe the structures of mouse TMEM16A at high resolution in the presence and absence of Ca2+. These structures reveal the differences between ligand-bound and ligand-free states of a calcium-activated chloride channel, and when combined with functional experiments suggest a mechanism for gating. During activation, the binding of Ca2+ to a site located within the transmembrane domain, in the vicinity of the pore, alters the electrostatic properties of the ion conduction path and triggers a conformational rearrangement of an α-helix that comes into physical contact with the bound ligand, and thereby directly couples ligand binding and pore opening. Our study describes a process that is unique among channel proteins, but one that is presumably general for both functional branches of the TMEM16 family.
Collapse
|
9
|
Cheng MH, Torres-Salazar D, Gonzalez-Suarez AD, Amara SG, Bahar I. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters. eLife 2017; 6. [PMID: 28569666 PMCID: PMC5472439 DOI: 10.7554/elife.25850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Delany Torres-Salazar
- Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Aneysis D Gonzalez-Suarez
- Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Susan G Amara
- Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
10
|
Naranjo D, Moldenhauer H, Pincuntureo M, Díaz-Franulic I. Pore size matters for potassium channel conductance. J Gen Physiol 2016; 148:277-91. [PMID: 27619418 PMCID: PMC5037345 DOI: 10.1085/jgp.201611625] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance.
Collapse
Affiliation(s)
- David Naranjo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Matías Pincuntureo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Programa de Doctorado en Ciencias, mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile Fraunhofer Chile Research, Las Condes 7550296, Chile
| |
Collapse
|
11
|
Sumikama T, Oiki S. Digitalized K+ Occupancy in the Nanocavity Holds and Releases Queues of K+ in a Channel. J Am Chem Soc 2016; 138:10284-92. [DOI: 10.1021/jacs.6b05270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Takashi Sumikama
- Department of Molecular Physiology
and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology
and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
12
|
Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Cell 2016; 164:937-49. [PMID: 26919430 PMCID: PMC4771873 DOI: 10.1016/j.cell.2016.02.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.
Collapse
Affiliation(s)
- Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | | | - Han Sun
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marianne Musinszki
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Giovanna Bucci
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative, University of Oxford, Oxford OX1 3PU, UK
| | - Markus Rapedius
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany; Nanion Technologies GmbH, 80636 Munich, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany.
| |
Collapse
|
13
|
Díaz-Franulic I, Sepúlveda RV, Navarro-Quezada N, González-Nilo F, Naranjo D. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels. ACTA ACUST UNITED AC 2016. [PMID: 26216859 PMCID: PMC4516780 DOI: 10.1085/jgp.201411353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The resistance of the inner vestibule limits Shaker’s conductance. K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance.
Collapse
Affiliation(s)
- Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Romina V Sepúlveda
- Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Nieves Navarro-Quezada
- Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Fernando González-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile
| | - David Naranjo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile
| |
Collapse
|
14
|
Marchesi A, Arcangeletti M, Mazzolini M, Torre V. Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J Physiol 2015; 593:857-70. [PMID: 25480799 DOI: 10.1113/jphysiol.2014.284216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Desensitization and inactivation provide a form of short-term memory controlling the firing patterns of excitable cells and adaptation in sensory systems. Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels are thought not to desensitize or inactivate. Here we report that CNG channels do inactivate and that inactivation is controlled by extracellular protons. Titration of a glutamate residue within the selectivity filter destabilizes the pore architecture, which collapses towards a non-conductive, inactivated state in a process reminiscent of the usual C-type inactivation observed in many K(+) channels. These results indicate that inactivation in CNG channels represents a regulatory mechanism that has been neglected thus far, with possible implications in several physiological processes ranging from signal transduction to growth cone navigation. ABSTRACT Ion channels control ionic fluxes across biological membranes by residing in any of three functionally distinct states: deactivated (closed), activated (open) or inactivated (closed). Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels do not desensitize or inactivate. Using patch recording techniques, we show that when extracellular pH (pHo ) is decreased from 7.4 to 6 or lower, wild-type CNGA1 channels inactivate in a voltage-dependent manner. pHo titration experiments show that at pHo < 7 the I-V relationships are outwardly rectifying and that inactivation is coupled to current rectification. Single-channel recordings indicate that a fast mechanism of proton blockage underlines current rectification while inactivation arises from conformational changes downstream from protonation. Furthermore, mutagenesis and ionic substitution experiments highlight the role of the selectivity filter in current decline, suggesting analogies with the C-type inactivation observed in K(+) channels. Analysis with Markovian models indicates that the non-independent binding of two protons within the transmembrane electrical field explains both the voltage-dependent blockage and the inactivation. Low pH, by inhibiting the CNGA1 channels in a state-dependent manner, may represent an unrecognized endogenous signal regulating CNG physiological functions in diverse tissues.
Collapse
Affiliation(s)
- Arin Marchesi
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
15
|
The voltage-dependent gate in MthK potassium channels is located at the selectivity filter. Nat Struct Mol Biol 2012; 20:159-66. [PMID: 23262489 PMCID: PMC3565016 DOI: 10.1038/nsmb.2473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/21/2012] [Indexed: 12/18/2022]
Abstract
Understanding how ion channels open and close their pores is crucial for understanding their physiological roles. We used intracellular quaternary ammonium blockers to locate the voltage-dependent gate in MthK potassium channels from Methanobacterium thermoautotrophicum with electrophysiology and X-ray crystallography. Blockers bind in an aqueous cavity between two putative gates, an intracellular gate and the selectivity filter. Thus, these blockers directly probe gate location: an intracellular gate will prevent binding when closed, whereas a selectivity filter gate will always allow binding. A kinetic analysis of tetrabutylammonium block of single MthK channels combined with X-ray crystallographic analysis of the pore with tetrabutylantimony unequivocally determined that the voltage-dependent gate, like the C-type inactivation gate in eukaryotic channels, is located at the selectivity filter. State-dependent binding kinetics suggests that MthK inactivation leads to conformational changes within the cavity and intracellular pore entrance.
Collapse
|
16
|
Marchesi A, Mazzolini M, Torre V. A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. J Physiol 2012; 590:5075-90. [PMID: 22869010 DOI: 10.1113/jphysiol.2012.238352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels and K+ channels have a significant sequence identity and are thought to share a similar 3D structure. K+ channels can accommodate simultaneously two or three permeating ions inside their pore and therefore are referred to as multi-ion channels. Also CNGA1 channels are multi-ion channels, as they exhibit an anomalous mole fraction effect (AMFE) in the presence of mixtures of 110 mM Li+ and Cs+ on the cytoplasmic side of the membrane. Several observations have identified the ring of Glu363 in the outer vestibule of the pore as one of the binding sites within the pore of CNGA1 channels. In the present work we identify a second binding site in the selectivity filter of CNGA1 channels controlling AMFE. Here, we show also that Cs+ ions at the intracellular side of the membrane block the entry of Na+ ions. This blockage is almost completely removed at high hyperpolarized voltages as expected if the Cs+ blocking site is located within the transmembrane electric field. Indeed, mutagenesis experiments show that the block is relieved when Thr359 and Thr360 at the intracellular entrance of the selectivity filter are replaced with an alanine. In T359A mutant channels AMFE in the presence of intracellular mixtures of Li+ and Cs+ is still present but is abolished in T360A mutant channels. These results suggest that the ring of Thr360 at the intracellular entrance of the selectivity filter forms another ion binding site in the CNGA1 channel. The two binding sites composed of the rings of Glu363 and Thr360 are not independent; in fact they mediate a powerful coupling between permeation and gating, a specific aspect of CNG channels.
Collapse
Affiliation(s)
- Arin Marchesi
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
17
|
Geng Y, Niu X, Magleby KL. Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume. ACTA ACUST UNITED AC 2011; 137:533-48. [PMID: 21576375 PMCID: PMC3105516 DOI: 10.1085/jgp.201110616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA− increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger.
Collapse
Affiliation(s)
- Yanyan Geng
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, FL 33136, USA. ygeng@-med.miami.edu
| | | | | |
Collapse
|