1
|
Sarkar A, Jones ZR, Parashar M, Druga E, Akkiraju A, Conti S, Krishnamoorthi P, Nachuri S, Aman P, Hashemi M, Nunn N, Torelli MD, Gilbert B, Wilson KR, Shenderova OA, Tanjore D, Ajoy A. High-precision chemical quantum sensing in flowing monodisperse microdroplets. SCIENCE ADVANCES 2024; 10:eadp4033. [PMID: 39661672 PMCID: PMC11633744 DOI: 10.1126/sciadv.adp4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
A method is presented for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. Using nanodiamonds (ND) with fluorescent nitrogen-vacancy (NV) centers as quantum sensors, rapidly flowing microdroplets containing analyte molecules are analyzed. A noise-suppressed mode of optically detected magnetic resonance is enabled by pairing controllable flow with microwave control of NV electronic spins, to detect analyte-induced signals of a few hundredths of a percent of the ND fluorescence. Using this method, paramagnetic ions in droplets are detected with low limit-of-detection using small analyte volumes, with exceptional measurement stability over >103 s. In addition, these droplets are used as microconfinement chambers by co-encapsulating ND quantum sensors with various analytes such as single cells, suggesting wide-ranging applications including single-cell metabolomics and real-time intracellular measurements from bioreactors. Important advances are enabled by this work, including portable chemical testing devices, amplification-free chemical assays, and chemical imaging tools for probing reactions within microenvironments.
Collapse
Affiliation(s)
- Adrisha Sarkar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zachary R. Jones
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Madhur Parashar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amala Akkiraju
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie Conti
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pranav Krishnamoorthi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srisai Nachuri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Parker Aman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mohammad Hashemi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Nunn
- Adamas Nanotechnologies Inc., Raleigh, NC 27617, USA
| | | | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Deepti Tanjore
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- CIFAR Azrieli Global Scholars Program, 661 University Ave, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Demirbay B, Baryshnikov G, Haraldsson M, Piguet J, Ågren H, Widengren J. Photo-physical characterization of high triplet yield brominated fluoresceins by transient state (TRAST) spectroscopy. Methods Appl Fluoresc 2023; 11:045011. [PMID: 37726005 DOI: 10.1088/2050-6120/acfb59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Photo-induced dark transient states of fluorophores can pose a problem in fluorescence spectroscopy. However, their typically long lifetimes also make them highly environment sensitive, suggesting fluorophores with prominent dark-state formation yields to be used as microenvironmental sensors in bio-molecular spectroscopy and imaging. In this work, we analyzed the singlet-triplet transitions of fluorescein and three synthesized carboxy-fluorescein derivatives, with one, two or four bromines linked to the anthracence backbone. Using transient state (TRAST) spectroscopy, we found a prominent internal heavy atom (IHA) enhancement of the intersystem crossing (ISC) rates upon bromination, inferred by density functional theory calculations to take place via a higher triplet state, followed by relaxation to the lowest triplet state. A corresponding external heavy atom (EHA) enhancement was found upon adding potassium iodide (KI). Notably, increased KI concentrations still resulted in lowered triplet state buildup in the brominated fluorophores, due to relatively lower enhancements in ISC, than in the triplet decay. Together with an antioxidative effect on the fluorophores, adding KI thus generated a fluorescence enhancement of the brominated fluorophores. By TRAST measurements, analyzing the average fluorescence intensity of fluorescent molecules subject to a systematically varied excitation modulation, dark state transitions within very high triplet yield (>90%) fluorophores can be directly analyzed under biologically relevant conditions. These measurements, not possible by other techniques such as fluorescence correlation spectroscopy, opens for bio-sensing applications based on high triplet yield fluorophores, and for characterization of high triplet yield photodynamic therapy agents, and how they are influenced by IHA and EHA effects.
Collapse
Affiliation(s)
- Baris Demirbay
- Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, SE-106 91, Stockholm, Sweden
| | - Glib Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Joachim Piguet
- Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, SE-106 91, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, SE-106 91, Stockholm, Sweden
| |
Collapse
|
3
|
Du Z, Piguet J, Baryshnikov G, Tornmalm J, Demirbay B, Ågren H, Widengren J. Imaging Fluorescence Blinking of a Mitochondrial Localization Probe: Cellular Localization Probes Turned into Multifunctional Sensors. J Phys Chem B 2022; 126:3048-3058. [PMID: 35417173 PMCID: PMC9059120 DOI: 10.1021/acs.jpcb.2c01271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Mitochondrial membranes and their microenvironments directly influence and reflect cellular metabolic states but are difficult to probe on site in live cells. Here, we demonstrate a strategy, showing how the widely used mitochondrial membrane localization fluorophore 10-nonyl acridine orange (NAO) can be transformed into a multifunctional probe of membrane microenvironments by monitoring its blinking kinetics. By transient state (TRAST) studies of NAO in small unilamellar vesicles (SUVs), together with computational simulations, we found that NAO exhibits prominent reversible singlet-triplet state transitions and can act as a light-induced Lewis acid forming a red-emissive doublet radical. The resulting blinking kinetics are highly environment-sensitive, specifically reflecting local membrane oxygen concentrations, redox conditions, membrane charge, fluidity, and lipid compositions. Here, not only cardiolipin concentration but also the cardiolipin acyl chain composition was found to strongly influence the NAO blinking kinetics. The blinking kinetics also reflect hydroxyl ion-dependent transitions to and from the fluorophore doublet radical, closely coupled to the proton-transfer events in the membranes, local pH, and two- and three-dimensional buffering properties on and above the membranes. Following the SUV studies, we show by TRAST imaging that the fluorescence blinking properties of NAO can be imaged in live cells in a spatially resolved manner. Generally, the demonstrated blinking imaging strategy can transform existing fluorophore markers into multiparametric sensors reflecting conditions of large biological relevance, which are difficult to retrieve by other means. This opens additional possibilities for fundamental membrane studies in lipid vesicles and live cells.
Collapse
Affiliation(s)
- Zhixue Du
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Glib Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Johan Tornmalm
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Baris Demirbay
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Jerker Widengren
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Liaros N, Gutierrez Razo SA, Thum MD, Ogden HM, Zeppuhar AN, Wolf S, Baldacchini T, Kelley MJ, Petersen JS, Falvey DE, Mullin AS, Fourkas JT. Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone. iScience 2022; 25:103600. [PMID: 35005547 PMCID: PMC8717599 DOI: 10.1016/j.isci.2021.103600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
We introduce techniques for probing the dynamics of triplet states. We employ these tools, along with conventional techniques, to develop a detailed understanding of a complex chemical system: a negative-tone, radical photoresist for multiphoton absorption polymerization in which isopropylthioxanthone (ITX) is the photoinitiator. This work reveals that the same color of light used for the 2-photon excitation of ITX, leading to population of the triplet manifold through intersystem crossing, also depletes this triplet population via linear absorption followed by reverse intersystem crossing (RISC). Using spectroscopic tools and kinetic modeling, we identify the reactive triplet state and a non-reactive reservoir triplet state. We present compelling evidence that the deactivation channel involves RISC from an excited triplet state to a highly vibrationally excited level of the electronic ground state. The work described here offers the enticing possibility of understanding, and ultimately controlling, the photochemistry and photophysics of a broad range of triplet processes.
Collapse
Affiliation(s)
- Nikolaos Liaros
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | - Matthew D. Thum
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Hannah M. Ogden
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Andrea N. Zeppuhar
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Steven Wolf
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | - John S. Petersen
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | - Daniel E. Falvey
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Amy S. Mullin
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - John T. Fourkas
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD 20742, USA
- Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
- Corresponding author
| |
Collapse
|
5
|
Takakura H. [Research on Photoimmunotherapy Based on Photochemical Property of Molecules]. YAKUGAKU ZASSHI 2022; 142:1313-1319. [PMID: 36450507 DOI: 10.1248/yakushi.22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Photoimmunotherapy (PIT) is a new cancer therapy that uses near-infrared (NIR) light and a conjugate of an antibody and a photosensitizer (IR700). Since both NIR light and the conjugate are not toxic for human, PIT has attracted attention as a promising cancer therapy with less side effects. However, there is no photosensitizer for PIT other than IR700. To improve the therapeutic effect, more light-sensitive dye is needed. To this end, we have studied the cytotoxic mechanism of PIT, showing that the hydrophilic axial ligand cleavage of IR700 by NIR light irradiation is important for the cytotoxicity. Herein, I focused on the triplet state (T1) of IR700 because the light-induced axial ligand cleavage reaction is thought to occur via the T1. First, the quantum yield of intersystem crossing, which is the transition efficiency from the excited singlet state (S1) to T1, was determined by analysis of the T1 kinetics using fluorescence correlation spectroscopy (FCS). Also, I examined whether the cytotoxicity of IR700 can be changed in the presence of a triplet quencher. The findings obtained here will be important information for the design of a new photosensitizer for PIT in the future.
Collapse
Affiliation(s)
- Hideo Takakura
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
6
|
Analysis of the triplet-state kinetics of a photosensitizer for photoimmunotherapy by fluorescence correlation spectroscopy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Tornmalm J, Piguet J, Chmyrov V, Widengren J. Imaging of intermittent lipid-receptor interactions reflects changes in live cell membranes upon agonist-receptor binding. Sci Rep 2019; 9:18133. [PMID: 31792325 PMCID: PMC6889430 DOI: 10.1038/s41598-019-54625-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Protein-lipid interactions in cellular membranes modulate central cellular functions, are often transient in character, but occur too intermittently to be readily observable. We introduce transient state imaging (TRAST), combining sensitive fluorescence detection of fluorophore markers with monitoring of their dark triplet state transitions, allowing imaging of such protein-lipid interactions. We first determined the dark state kinetics of the biomembrane fluorophore 7-nitrobenz-2-oxa-1,3-diazole-4-yl (NBD) in lipid vesicles, and how its triplet state is quenched by spin-labels in the same membranes. We then monitored collisional quenching of NBD-lipid derivatives by spin-labelled stearic acids in live cell plasma membranes, and of NBD-lipid derivatives by spin-labelled G-Protein Coupled Receptors (GPCRs). We could then resolve transient interactions between the GPCRs and different lipids, how these interactions changed upon GPCR activation, thereby demonstrating a widely applicable means to image and characterize transient molecular interactions in live cell membranes in general, not within reach via traditional fluorescence readouts.
Collapse
Affiliation(s)
- Johan Tornmalm
- Experimental Biomolecular Physics, KTH, 10691, Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, KTH, 10691, Stockholm, Sweden.
| | | | - Jerker Widengren
- Experimental Biomolecular Physics, KTH, 10691, Stockholm, Sweden.
| |
Collapse
|
8
|
Günther JP, Börsch M, Fischer P. Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy. Acc Chem Res 2018; 51:1911-1920. [PMID: 30160941 DOI: 10.1021/acs.accounts.8b00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-propelled chemical motors are chemically powered micro- or nanosized swimmers. The energy required for these motors' active motion derives from catalytic chemical reactions and the transformation of a fuel dissolved in the solution. While self-propulsion is now well established for larger particles, it is still unclear if enzymes, nature's nanometer-sized catalysts, are potentially also self-powered nanomotors. Because of its small size, any increase in an enzyme's diffusion due to active self-propulsion must be observed on top of the enzyme's passive Brownian motion, which dominates at this scale. Fluorescence correlation spectroscopy (FCS) is a sensitive method to quantify the diffusion properties of single fluorescently labeled molecules in solution. FCS experiments have shown a general increase in the diffusion constant of a number of enzymes when the enzyme is catalytically active. Diffusion enhancements after addition of the enzyme's substrate (and sometimes its inhibitor) of up to 80% have been reported, which is at least 1 order of magnitude higher than what theory would predict. However, many factors contribute to the FCS signal and in particular the shape of the autocorrelation function, which underlies diffusion measurements by fluorescence correlation spectroscopy. These effects need to be considered to establish if and by how much the catalytic activity changes an enzyme's diffusion. We carefully review phenomena that can play a role in FCS experiments and the determination of enzyme diffusion, including the dissociation of enzyme oligomers upon interaction with the substrate, surface binding of the enzyme to glass during the experiment, conformational changes upon binding, and quenching of the fluorophore. We show that these effects can cause changes in the FCS signal that behave similar to an increase in diffusion. However, in the case of the enzymes F1-ATPase and alkaline phosphatase, we demonstrate that there is no measurable increase in enzyme diffusion. Rather, dissociation and conformational changes account for the changes in the FCS signal in the former and fluorophore quenching in the latter. Within the experimental accuracy of our FCS measurements, we do not observe any change in diffusion due to activity for the enzymes we have investigated. We suggest useful control experiments and additional tests for future FCS experiments that should help establish if the observed diffusion enhancement is real or if it is due to an experimental or data analysis artifact. We show that fluorescence lifetime and mean intensity measurements are essential in order to identify the nature of the observed changes in the autocorrelation function. While it is clear from theory that chemically active enzymes should also act as self-propelled nanomotors, our FCS measurements show that the associated increase in diffusion is much smaller than previously reported. Further experiments are needed to quantify the contribution of the enzymes' catalytic activity to their self-propulsion. We hope that our findings help to establish a useful protocol for future FCS studies in this field and help establish by how much the diffusion of an enzyme is enhanced through catalytic activity.
Collapse
Affiliation(s)
- Jan-Philipp Günther
- Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Michael Börsch
- Jena University Hospital, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Rigler R, Widengren J. Fluorescence-based monitoring of electronic state and ion exchange kinetics with FCS and related techniques: from T-jump measurements to fluorescence fluctuations. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:479-492. [PMID: 29260269 PMCID: PMC5982452 DOI: 10.1007/s00249-017-1271-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/30/2017] [Accepted: 12/03/2017] [Indexed: 11/01/2022]
Abstract
In this review, we give a historical view of how our research in the development and use of fluorescence correlation spectroscopy (FCS) and related techniques has its roots and how it originally evolved from the pioneering work of Manfred Eigen, his colleagues, and coworkers. Work on temperature-jump (T-jump) experiments, conducted almost 50 years ago, led on to the development of the FCS technique. The pioneering work in the 1970s, introducing and demonstrating the concept for FCS, in turn formed the basis for the breakthrough use of FCS more than 15 years later. FCS can be used for monitoring reaction kinetics, based on fluctuations at thermodynamic equilibrium, rather than on relaxation measurements following perturbations. In this review, we more specifically discuss FCS measurements on photodynamic, electronic state transitions in fluorophore molecules, and on proton exchange dynamics in solution and on biomembranes. In the latter case, FCS measurements have proven capable of casting new light on the mechanisms of proton exchange at biological membranes, of central importance to bioenergetics and signal transduction. Finally, we describe the transient-state (TRAST) spectroscopy/imaging technique, sharing features with both relaxation (T-jump) and equilibrium fluctuation (FCS) techniques. TRAST is broadly applicable for cellular and molecular studies, and we briefly outline how TRAST can provide unique information from fluorophore blinking kinetics, reflecting e.g., cellular metabolism, rare molecular encounters, and molecular stoichiometries.
Collapse
Affiliation(s)
- Rudolf Rigler
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics/ Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
10
|
Aliaga C, Bravo-Moraga F, Gonzalez-Nilo D, Márquez S, Lühr S, Mena G, Rezende MC. Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chem 2015; 192:395-401. [PMID: 26304365 DOI: 10.1016/j.foodchem.2015.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/15/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Partition coefficients for six 4-substituted derivatives of the 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) derivatives in aqueous solutions of reduced Triton X-100 (RTX-100) were determined by measurements of the probe EPR g-factor and of the fluorescence quenching of pyrene by the radical in the micelle. The partition constant attained a maximum value and then decreased with increasing probe hydrophobicity. Simulation of the probes inside the micelle showed that this trend could be rationalized by a change in the orientation of the 4-substituted TEMPO derivatives with the increasing substituent chain-length. The use of the EPR g-factor for the determination of partition constants of radicals in micellar systems was thus validated as a reliable and sensitive method, capable of describing the probe orientation in its microenvironment.
Collapse
Affiliation(s)
- Carolina Aliaga
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago de Chile, Chile; Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Chile.
| | - Felipe Bravo-Moraga
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Chile
| | - Danilo Gonzalez-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Chile
| | - Sebastián Márquez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago de Chile, Chile
| | - Susan Lühr
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago de Chile, Chile
| | - Geraldine Mena
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago de Chile, Chile
| | - Marcos Caroli Rezende
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago de Chile, Chile
| |
Collapse
|
11
|
Chmyrov V, Spielmann T, Hevekerl H, Widengren J. Trans–Cis Isomerization of Lipophilic Dyes Probing Membrane Microviscosity in Biological Membranes and in Live Cells. Anal Chem 2015; 87:5690-7. [DOI: 10.1021/acs.analchem.5b00863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Volodymyr Chmyrov
- Experimental
Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Thiemo Spielmann
- Experimental
Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Heike Hevekerl
- Experimental
Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Jerker Widengren
- Experimental
Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm 106 91, Sweden
| |
Collapse
|
12
|
Khatua S, Yuan H, Orrit M. Enhanced-fluorescence correlation spectroscopy at micro-molar dye concentration around a single gold nanorod. Phys Chem Chem Phys 2015; 17:21127-32. [DOI: 10.1039/c4cp03057e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Field enhancement by a single gold nanorod enables μM dye solution FCS (red). The solution itself gives no signal (green).
Collapse
Affiliation(s)
- Saumyakanti Khatua
- MoNOS
- Huygens-Kamerlingh Onnes Laboratory
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Haifeng Yuan
- MoNOS
- Huygens-Kamerlingh Onnes Laboratory
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Michel Orrit
- MoNOS
- Huygens-Kamerlingh Onnes Laboratory
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
13
|
Xiong X, Song F, Wang J, Zhang Y, Xue Y, Sun L, Jiang N, Gao P, Tian L, Peng X. Thermally Activated Delayed Fluorescence of Fluorescein Derivative for Time-Resolved and Confocal Fluorescence Imaging. J Am Chem Soc 2014; 136:9590-7. [DOI: 10.1021/ja502292p] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoqing Xiong
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Fengling Song
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Jingyun Wang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yukang Zhang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yingying Xue
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Liangliang Sun
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Na Jiang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Pan Gao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Lu Tian
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| |
Collapse
|
14
|
Spielmann T, Xu L, Gad AKB, Johansson S, Widengren J. Transient state microscopy probes patterns of altered oxygen consumption in cancer cells. FEBS J 2014; 281:1317-1332. [PMID: 24418170 DOI: 10.1111/febs.12709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/06/2013] [Accepted: 01/01/2014] [Indexed: 11/30/2022]
Abstract
Altered cellular metabolism plays an important role in many diseases, not least in many forms of cancer, where cellular metabolic pathways requiring lower oxygen consumption are often favored (the so-called Warburg effect). In this work, we have applied fluorescence-based transient state imaging and have exploited the environment sensitivity of long-lived dark states of fluorophores, in particular triplet state decay rates, to image the oxygen consumption of living cells. Our measurements can resolve differences in oxygen concentrations between different regions of individual cells, between different cell types, and also based on what metabolic pathways the cells use. In MCF-7 breast cancer cells, higher oxygen consumption can be detected when they rely on glutamine instead of glucose as their main metabolite, predominantly undergoing oxidative phosphorylation rather than glycolysis. By use of the high triplet yield dye Eosin Y the irradiance requirements during the measurements can be kept low. This reduces the instrumentation requirements, and harmful biological effects from high excitation doses can be avoided. Taken together, our imaging approach is widely applicable and capable of detecting subtle changes in oxygen consumption in live cells, stemming from the Warburg effect or reflecting other differences in the cellular metabolism. This may lead to new diagnostic means as well as advance our understanding of the interplay between cellular metabolism and major disease categories, such as cancer.
Collapse
Affiliation(s)
- Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Deng W, Cho S, Li R. FERM domain of moesin desorbs the basic-rich cytoplasmic domain of l-selectin from the anionic membrane surface. J Mol Biol 2013; 425:3549-62. [PMID: 23796515 DOI: 10.1016/j.jmb.2013.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Moesin and calmodulin (CaM) jointly associate with the cytoplasmic domain of l-selectin in the cell to modulate the function and ectodomain shedding of l-selectin. Using fluorescence spectroscopy, we have examined the association of moesin FERM domain with the recombinant transmembrane and cytoplasmic domains of l-selectin (CLS) reconstituted in model phospholipid liposomes. The dissociation constant of moesin FERM domain to CLS in the phosphatidylcholine liposome is about 300nM. In contrast to disrupting the CaM association with CLS, inclusion of anionic phosphatidylserine lipids in the phosphatidylcholine liposome increased the apparent binding affinity of moesin FERM domain for CLS. Using the environmentally sensitive fluorescent probe attached to the cytoplasmic domain of CLS and the nitroxide quencher attached to the lipid bilayer, we showed that the association of moesin FERM domain induced the desorption of the basic-rich cytoplasmic domain of CLS from the anionic membrane surface, which enabled subsequent association of CaM to the cytoplasmic domain of CLS. These results have elucidated the molecular basis for the moesin/l-selectin/CaM ternary complex and suggested an important role of phospholipids in modulating l-selectin function and shedding.
Collapse
Affiliation(s)
- Wei Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Room 440, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
16
|
Geissbuehler M, Bonacina L, Shcheslavskiy V, Bocchio NL, Geissbuehler S, Leutenegger M, Märki I, Wolf JP, Lasser T. Nonlinear correlation spectroscopy (NLCS). NANO LETTERS 2012; 12:1668-72. [PMID: 22372559 DOI: 10.1021/nl300070n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present a novel concept for optical spectroscopy called nonlinear correlation spectroscopy (NLCS). NLCS analyses coherent field fluctuations of the second and third harmonic light generated by diffusing nanoparticles. Particles based on noncentrosymmetric nonlinear materials such as KNbO(3) show a strong second as well as third harmonic response. The method and the theory are introduced and experimental NLCS results in fetal calf serum are presented showing the promising selectivity of this technique for measurement in complex biological environments.
Collapse
Affiliation(s)
- Matthias Geissbuehler
- Laboratoire d'Optique Biomédicale LOB, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Widengren J. Fluorescence-based transient state monitoring for biomolecular spectroscopy and imaging. J R Soc Interface 2010; 7:1135-44. [PMID: 20375039 PMCID: PMC2894879 DOI: 10.1098/rsif.2010.0146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/12/2022] Open
Abstract
To increase read-out speed, sensitivity or specificity, an often applied strategy in fluorescence-based biomolecular spectroscopy and imaging is to simultaneously record two or more of the fluorescence parameters: intensity, lifetime, polarization or wavelength. This review highlights how additional, to-date largely unexploited, information can be extracted by monitoring long-lived, photo-induced transient states of organic dyes and their dynamics. Two major approaches are presented, where the transient state information is obtained either from fluorescence fluctuation analysis or by recording the time-averaged fluorescence response to a time-modulated excitation. The two approaches combine the detection sensitivity of the fluorescence signal with the environmental sensitivity of the long-lived transient states. For both techniques, proof-of-principle experiments are reviewed, and advantages, limitations and possible applications for biomolecular cellular biology studies are discussed.
Collapse
Affiliation(s)
- Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, Stockholm 106 91, Sweden.
| |
Collapse
|