1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Hu K, Zhang Y, Ding F, Yang D, Yu Y, Yu Y, Wang Q, Baoyin H. Innate Orientating Behavior of a Multi-Legged Robot Driven by the Neural Circuits of C. elegans. Biomimetics (Basel) 2024; 9:314. [PMID: 38921194 PMCID: PMC11201571 DOI: 10.3390/biomimetics9060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
The objective of this research is to achieve biologically autonomous control by utilizing a whole-brain network model, drawing inspiration from biological neural networks to enhance the development of bionic intelligence. Here, we constructed a whole-brain neural network model of Caenorhabditis elegans (C. elegans), which characterizes the electrochemical processes at the level of the cellular synapses. The neural network simulation integrates computational programming and the visualization of the neurons and synapse connections of C. elegans, containing the specific controllable circuits and their dynamic characteristics. To illustrate the biological neural network (BNN)'s particular intelligent control capability, we introduced an innovative methodology for applying the BNN model to a 12-legged robot's movement control. Two methods were designed, one involving orientation control and the other involving locomotion generation, to demonstrate the intelligent control performance of the BNN. Both the simulation and experimental results indicate that the robot exhibits more autonomy and a more intelligent movement performance under BNN control. The systematic approach of employing the whole-brain BNN for robot control provides biomimetic research with a framework that has been substantiated by innovative methodologies and validated through the observed positive outcomes. This method is established as follows: (1) two integrated dynamic models of the C. elegans' whole-brain network and the robot moving dynamics are built, and all of the controllable circuits are discovered and verified; (2) real-time communication is achieved between the BNN model and the robot's dynamical model, both in the simulation and the experiments, including applicable encoding and decoding algorithms, facilitating their collaborative operation; (3) the designed mechanisms using the BNN model to control the robot are shown to be effective through numerical and experimental tests, focusing on 'foraging' behavior control and locomotion control.
Collapse
Affiliation(s)
- Kangxin Hu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Yu Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; (Y.Z.); (H.B.)
| | - Fei Ding
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Dun Yang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Yang Yu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Ying Yu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Qingyun Wang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Hexi Baoyin
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; (Y.Z.); (H.B.)
| |
Collapse
|
3
|
Essmann CL, Elmi M, Rekatsinas C, Chrysochoidis N, Shaw M, Pawar V, Srinivasan MA, Vavourakis V. The influence of internal pressure and neuromuscular agents on C. elegans biomechanics: an empirical and multi-compartmental in silico modelling study. Front Bioeng Biotechnol 2024; 12:1335788. [PMID: 38558792 PMCID: PMC10978802 DOI: 10.3389/fbioe.2024.1335788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
The function of a specific tissue and its biomechanics are interdependent, with pathologies or ageing often being intertwined with structural decline. The biomechanics of Caenorhabditis elegans, a model organism widely used in pharmacological and ageing research, has been established as biomarker for healthy ageing. However, the properties of the constituent tissues, and their contribution to the overall mechanical characteristics of the organism, remain relatively unknown. In this study we investigated the biomechanics of healthy C. elegans cuticle, muscle tissue, and pseudocoelom using a combination of indentation experiments and in silico modelling. We performed stiffness measurements using an atomic force microscope. To approximate the nematode's cylindrical body we used a novel three-compartment nonlinear finite element model, enabling us to analyse of how changes in the elasticity of individual compartments affect the bulk stiffness. We then fine-tuned the parameters of the model to match the simulation force-indentation output to the experimental data. To test the finite element model, we modified distinct compartments experimentally. Our in silico results, in agreement with previous studies, suggest that hyperosmotic shock reduces stiffness by decreasing the internal pressure. Unexpectedly, treatment with the neuromuscular agent aldicarb, traditionally associated with muscle contraction, reduced stiffness by decreasing the internal pressure. Furthermore, our finite element model can offer insights into how drugs, mutations, or processes such as ageing target individual tissues.
Collapse
Affiliation(s)
- Clara L. Essmann
- Department of Bioinformatics and Molecular Genetics, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- Department of Computer Science, University College London, London, United Kingdom
| | - Muna Elmi
- Department of Computer Science, University College London, London, United Kingdom
| | | | - Nikolaos Chrysochoidis
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Michael Shaw
- Department of Computer Science, University College London, London, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Vijay Pawar
- Department of Computer Science, University College London, London, United Kingdom
| | | | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
4
|
Weng JW, Park H, Valotteau C, Chen RT, Essmann CL, Pujol N, Sternberg PW, Chen CH. Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Curr Biol 2023; 33:3585-3596.e5. [PMID: 37541249 PMCID: PMC10530406 DOI: 10.1016/j.cub.2023.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.
Collapse
Affiliation(s)
- Jen-Wei Weng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Claire Valotteau
- Aix-Marseille Univ, INSERM, CNRS, LAI, Turing Centre for Living Systems, 163 Avenue de Luminy, 13009 Marseille, France
| | - Rui-Tsung Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Clara L Essmann
- Bio3/Bioinformatics and Molecular Genetics, Albert-Ludwigs-University, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, case 906, 13009 Marseille, France
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Chun-Hao Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Hernando G, Turani O, Rodriguez Araujo N, Bouzat C. The diverse family of Cys-loop receptors in Caenorhabditis elegans: insights from electrophysiological studies. Biophys Rev 2023; 15:733-750. [PMID: 37681094 PMCID: PMC10480131 DOI: 10.1007/s12551-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.
Collapse
Affiliation(s)
- Guillermina Hernando
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Ornella Turani
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Noelia Rodriguez Araujo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
6
|
von Son-de Fernex E, Zúñiga-Olivos E, Jiménez-García LF, Mendoza-de Gives P. Anthelmintic-Like Activity and Ultrastructure Changes Produced by Two Polyphenolic Combinations against Cooperia punctata Adult Worms and Infective Larvae. Pathogens 2023; 12:pathogens12050744. [PMID: 37242414 DOI: 10.3390/pathogens12050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Cooperia punctata is one of the most prevalent gastrointestinal nematodes affecting cattle under grazing conditions, and the increasing reports of anthelmintic resistance forces researchers to look for novel control measures. Previous reports have proposed the use of polyphenolic compound (PC) combinations (Coumarin:Quercetin (CuQ) and Caffeic-acid:Rutin (CaR)) against free-living stages (L3) of C. punctata. The objective of this study was to assess the in vitro motility inhibition of C. punctata adult worms and infective larvae using the Larval Motility Inhibition Assay (LMIA) and Adult Motility Inhibition Assay (AMIA), and to assess the structural and ultrastructural changes induced by both treatments using Scanning and Transmission Electron Microscopy. For the LMIA, infective larvae were incubated for 3 h in 0.8 mg mL-1 and 0.84 mg mL-1 of CuQ and CaR, respectively. For AMIA, six concentrations and five incubation periods (2, 4, 6, 12 and 24 h) were assessed using each PC combination. Cooperia punctata motility was calculated as a percentage and corrected using control motility percentages. A multiple comparisons Brown-Forsythe and Welch ANOVA test was used to compare larval motility; and to fit the dose-response in AMIA, data were analyzed with a non-linear regression four-parameter logistic equation with a variable slope, using the computer program GraphPad Prism® V.9.2.0. Although larval motility was barely affected by both treatments (p > 0.05), adult worm motility was inhibited 100% and 86.9% after 24 h incubation with CuQ and CaR, respectively (p < 0.05). The best fit EC50 for adult worm motility inhibition were 0.073 ± 0.071 mg mL-1 and 0.051 ± 0.164 mg mL-1 for CuQ and CaR, respectively. Main structural and ultrastructural lesions observed in both biological stages were: (i) L3 sheath-cuticle complex disruption, (ii) collagen fibers degradation; (iii) hypodermic detachment, (iv) seam cell apoptosis and (v) mitochondrial swelling. The alterations observed suggest that the PC combinations interfere with the anatomy and physiology of the locomotive apparatus of the nematodes.
Collapse
Affiliation(s)
- Elke von Son-de Fernex
- Teaching, Research and Extension in Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre, Veracruz 93600, Mexico
| | - Estefanía Zúñiga-Olivos
- Teaching, Research and Extension in Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre, Veracruz 93600, Mexico
| | - Luis Felipe Jiménez-García
- Department of Cellular Biology of the Sciences Faculty, National Autonomous University of Mexico, Av. Universidad 3000, Circuito Exterior s/n Alcaldía Coyoacán, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Pedro Mendoza-de Gives
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Jiutepec 62574, Mexico
| |
Collapse
|
7
|
Sridhar N, Fajrial AK, Doser RL, Hoerndli FJ, Ding X. Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of C. elegans. LAB ON A CHIP 2022; 22:4882-4893. [PMID: 36377422 PMCID: PMC10091851 DOI: 10.1039/d2lc00737a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Caenorhabditis elegans is an important genetic model for neuroscience studies, used for analyses of how genes control connectivity, neuronal function, and behavior. To date, however, most studies of neuronal function in C. elegans are incapable of obtaining microscopy imaging with subcellular resolution and behavior analysis in the same set of animals. This constraint stems from the immobilization requirement for high-resolution imaging that is incompatible with behavioral analysis using conventional immobilization techniques. Here, we present a novel microfluidic device that uses surface acoustic waves (SAW) as a non-contact method to temporarily immobilize worms for a short period (30 seconds). We optimize the SAW based protocol for rapid switching between free-swimming and immobilized states, facilitating non-invasive analysis of swimming behavior as well as high-resolution synaptic imaging in the same animal. We find that the coupling of heat and acoustic pressure play a key role in the immobilization process. We introduce a proof-of-concept longitudinal study, illustrating that the device enables repeated imaging of fluorescently tagged synaptic receptors in command interneurons and analysis of swimming behavior in the same animals for three days. This longitudinal approach provides the first correlative analysis of synaptic glutamatergic receptors and swimming behavior in aging animals. We anticipate that this device will enable further longitudinal analysis of animal motility and subcellular morphological changes during development and aging in C. elegans.
Collapse
Affiliation(s)
- Nakul Sridhar
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Apresio Kefin Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
8
|
Changes in body shape implicate cuticle stretch in C. elegans growth control. Cells Dev 2022; 170:203780. [DOI: 10.1016/j.cdev.2022.203780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022]
|
9
|
Ormerod KG, Scibelli AE, Littleton JT. Regulation of excitation-contraction coupling at the Drosophila neuromuscular junction. J Physiol 2022; 600:349-372. [PMID: 34788476 PMCID: PMC9044916 DOI: 10.1113/jp282092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic alterations effect neuromuscular transduction and muscle contractility, which ultimately dictate behavioural output. Here we develop and use a force transducer system to characterize excitation-contraction coupling at Drosophila larval neuromuscular junctions (NMJs), examining how specific neuronal and muscle manipulations disrupt muscle contractility. Muscle contraction force increased with motoneuron stimulation frequency and duration, showing considerable plasticity between 5 and 40 Hz and saturating above 50 Hz. Endogenous recordings of fictive contractions revealed average motoneuron burst frequencies of 20-30 Hz, consistent with the system operating within this plastic range of contractility. Temperature was also a key factor in muscle contractility, as force was enhanced at lower temperatures and dramatically reduced with increasing temperatures. Pharmacological and genetic manipulations of critical components of Ca2+ regulation in both pre- and postsynaptic compartments affected the strength and time course of muscle contractions. A screen for modulators of muscle contractility led to identification and characterization of the molecular and cellular pathway by which the FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to correlate synaptic dysfunction, regulation and modulation to alterations in excitation-contraction coupling. KEY POINTS: Larval muscle contraction force increases with stimulation frequency and duration, revealing substantial plasticity between 5 and 40 Hz. Fictive contraction recordings demonstrate endogenous motoneuron burst frequencies consistent with the neuromuscular system operating within the range of greatest plasticity. Genetic and pharmacological manipulations of critical components of pre- and postsynaptic Ca2+ regulation significantly affect the strength and time course of muscle contractions. A screen for modulators of the excitation-contraction machinery identified a FMRFa peptide, TPAEDFMRFa and its associated signalling pathway, that dramatically increases muscle performance. Drosophila serves as an excellent model for dissecting components of the excitation-contraction coupling machinery.
Collapse
Affiliation(s)
- Kiel G Ormerod
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Mondal S, Dubey J, Awasthi A, Sure GR, Vasudevan A, Koushika SP. Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual C. elegans Neuron Using a Long-Term Growth and Imaging Microfluidic Device. eNeuro 2021; 8:ENEURO.0360-20.2021. [PMID: 34035072 PMCID: PMC8260276 DOI: 10.1523/eneuro.0360-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The long cellular architecture of neurons requires regulation in part through transport and anchoring events to distribute intracellular organelles. During development, cellular and subcellular events such as organelle additions and their recruitment at specific sites on the growing axons occur over different time scales and often show interanimal variability thus making it difficult to identify specific phenomena in population averages. To measure the variability in subcellular events such as organelle positions, we developed a microfluidic device to feed and immobilize Caenorhabditis elegans for high-resolution imaging over several days. The microfluidic device enabled long-term imaging of individual animals and allowed us to investigate organelle density using mitochondria as a testbed in a growing neuronal process in vivo Subcellular imaging of an individual neuron in multiple animals, over 36 h in our microfluidic device, shows the addition of new mitochondria along the neuronal process and an increase in the accumulation of synaptic vesicles (SVs) at synapses. Long-term imaging of individual C. elegans touch receptor neurons (TRNs) shows that the addition of new mitochondria takes place along the entire neuronal process length at a rate of ∼0.6 mitochondria/h. The threshold for the addition of a new mitochondrion occurs when the average separation between the two preexisting mitochondria exceeds 24 μm. Our assay provides a new opportunity to move beyond simple observations obtained from in vitro assays to allow the discovery of genes that regulate positioning of mitochondria in neurons.
Collapse
Affiliation(s)
- Sudip Mondal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Jyoti Dubey
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anjali Awasthi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Guruprasad Reddy Sure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Sastra University, Thirumalaisamudram, Tamil Nadu 613401, India
| | - Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
11
|
Läubli NF, Burri JT, Marquard J, Vogler H, Mosca G, Vertti-Quintero N, Shamsudhin N, deMello A, Grossniklaus U, Ahmed D, Nelson BJ. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. Nat Commun 2021; 12:2583. [PMID: 33972516 PMCID: PMC8110787 DOI: 10.1038/s41467-021-22718-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Quantitative micromechanical characterization of single cells and multicellular tissues or organisms is of fundamental importance to the study of cellular growth, morphogenesis, and cell-cell interactions. However, due to limited manipulation capabilities at the microscale, systems used for mechanical characterizations struggle to provide complete three-dimensional coverage of individual specimens. Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes. It reveals local variations in apparent stiffness for single specimens, providing previously inaccessible information and datasets on mechanical properties that serve as the basis for biophysical modelling and allow deeper insights into the biomechanics of these living systems.
Collapse
Affiliation(s)
- Nino F Läubli
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - Jan T Burri
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | | | - Hannes Vogler
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Gabriella Mosca
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Nadia Vertti-Quintero
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| | | | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Daniel Ahmed
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland.
- Acoustic Robotics Systems Lab, ETH Zurich, Rüschlikon, Switzerland.
| | | |
Collapse
|
12
|
Inhibition Underlies Fast Undulatory Locomotion in Caenorhabditis elegans. eNeuro 2021; 8:ENEURO.0241-20.2020. [PMID: 33361147 PMCID: PMC7986531 DOI: 10.1523/eneuro.0241-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contractions of antagonist muscles, whether along the body axis or within and among limbs, which often involves direct or indirect cross-inhibitory pathways. In the nematode Caenorhabditis elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low-frequency and high-frequency undulation. During low-frequency undulation, GABAergic VD and DD motoneurons show correlated activity patterns, while during high-frequency undulation, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or neuronal reset.
Collapse
|
13
|
Garcia MA, Sadeghipour E, Engel L, Nelson WJ, Pruitt BL. MEMS device for applying shear and tension to an epithelium combined with fluorescent live cell imaging. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2020; 30:125004. [PMID: 34413578 PMCID: PMC8372846 DOI: 10.1088/1361-6439/abb12c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical forces play important roles in the biological function of cells and tissues. While numerous studies have probed the force response of cells and measured cell-generated forces, they have primarily focused on tensile, but not shear forces. Here, we describe the design, fabrication, and application of a silicon micromachined device that is capable of independently applying and sensing both tensile and shear forces in an epithelial cell monolayer. We integrated the device with an upright microscope to enable live cell brightfield and fluorescent imaging of cells over many hours following mechanical perturbation. Using devices of increasing stiffness and the same displacement input, we demonstrate that epithelia exhibit concomitant higher maximum resistive tensile forces and quicker force relaxation. In addition, we characterized the force response of the epithelium to cyclic shear loading. While the maximum resistive forces of epithelia under cyclic shear perturbation remained unchanged between cycles, cyclic loading led to faster relaxation of the resistive forces. The device presented here can be applied to studying the force response of other monolayer-forming cell types and is compatible with pharmacological perturbation of cell structures and functions.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, CA 94305, United States of America
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, United States of America
| | - Ehsan Sadeghipour
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States of America
| | - Leeya Engel
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305, United States of America
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States of America
- Department of Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
14
|
Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, Jeger JL, Hoffman BD, Sherwood DR. Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. Dev Cell 2020; 54:60-74.e7. [PMID: 32585132 DOI: 10.1016/j.devcel.2020.05.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Box 3709, Durham, NC 27710, USA
| | - Jonathan L Jeger
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next Initiative, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
15
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
16
|
Sanzeni A, Katta S, Petzold B, Pruitt BL, Goodman MB, Vergassola M. Somatosensory neurons integrate the geometry of skin deformation and mechanotransduction channels to shape touch sensing. eLife 2019; 8:43226. [PMID: 31407662 PMCID: PMC6692131 DOI: 10.7554/elife.43226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Touch sensation hinges on force transfer across the skin and activation of mechanosensitive ion channels along the somatosensory neurons that invade the skin. This skin-nerve sensory system demands a quantitative model that spans the application of mechanical loads to channel activation. Unlike prior models of the dynamic responses of touch receptor neurons in Caenorhabditis elegans (Eastwood et al., 2015), which substituted a single effective channel for the ensemble along the TRNs, this study integrates body mechanics and the spatial recruitment of the various channels. We demonstrate that this model captures mechanical properties of the worm’s body and accurately reproduces neural responses to simple stimuli. It also captures responses to complex stimuli featuring non-trivial spatial patterns, like extended or multiple contacts that could not be addressed otherwise. We illustrate the importance of these effects with new experiments revealing that skin-neuron composites respond to pre-indentation with increased currents rather than adapting to persistent stimulation.
Collapse
Affiliation(s)
- Alessandro Sanzeni
- Department of Physics, University of California, San Diego, La Jolla, United States.,National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, United States
| | - Samata Katta
- Neuroscience Program, Stanford University School of Medicine, Stanford, United States
| | - Bryan Petzold
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Massimo Vergassola
- Department of Physics, University of California, San Diego, La Jolla, United States
| |
Collapse
|
17
|
|
18
|
Palyanov A, Khayrulin S, Larson SD. Three-dimensional simulation of the Caenorhabditis elegans body and muscle cells in liquid and gel environments for behavioural analysis. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170376. [PMID: 30201840 PMCID: PMC6158221 DOI: 10.1098/rstb.2017.0376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
To better understand how a nervous system controls the movements of an organism, we have created a three-dimensional computational biomechanical model of the Caenorhabditis elegans body based on real anatomical structure. The body model is created with a particle system-based simulation engine known as Sibernetic, which implements the smoothed particle-hydrodynamics algorithm. The model includes an elastic body-wall cuticle subject to hydrostatic pressure. This cuticle is then driven by body-wall muscle cells that contract and relax, whose positions and shape are mapped from C. elegans anatomy, and determined from light microscopy and electron micrograph data. We show that by using different muscle activation patterns, this model is capable of producing C. elegans-like behaviours, including crawling and swimming locomotion in environments with different viscosities, while fitting multiple additional known biomechanical properties of the animal. This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Andrey Palyanov
- Laboratory of Complex Systems Simulation, A.P. Ershov Institute of Informatics Systems, Acad. Lavrentiev ave. 6, 630090 Novosibirsk, Russia
- Laboratory of Structural Bioinformatics and Molecular Modeling, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
- OpenWorm Foundation, ℅ Software Freedom Law Center, 1995 Broadway, 17th Fl., New York, NY 10023, USA
| | - Sergey Khayrulin
- Laboratory of Complex Systems Simulation, A.P. Ershov Institute of Informatics Systems, Acad. Lavrentiev ave. 6, 630090 Novosibirsk, Russia
- Laboratory of Structural Bioinformatics and Molecular Modeling, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
- OpenWorm Foundation, ℅ Software Freedom Law Center, 1995 Broadway, 17th Fl., New York, NY 10023, USA
| | - Stephen D Larson
- OpenWorm Foundation, ℅ Software Freedom Law Center, 1995 Broadway, 17th Fl., New York, NY 10023, USA
| |
Collapse
|
19
|
Denham JE, Ranner T, Cohen N. Signatures of proprioceptive control in Caenorhabditis elegans locomotion. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0208. [PMID: 30201846 DOI: 10.1098/rstb.2018.0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Jack E Denham
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Ranner
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
20
|
Mazzochette EA, Nekimken AL, Loizeau F, Whitworth J, Huynh B, Goodman MB, Pruitt BL. The tactile receptive fields of freely moving Caenorhabditis elegans nematodes. Integr Biol (Camb) 2018; 10:450-463. [PMID: 30027970 PMCID: PMC6168290 DOI: 10.1039/c8ib00045j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensory neurons embedded in skin are responsible for the sense of touch. In humans and other mammals, touch sensation depends on thousands of diverse somatosensory neurons. By contrast, Caenorhabditis elegans nematodes have six gentle touch receptor neurons linked to simple behaviors. The classical touch assay uses an eyebrow hair to stimulate freely moving C. elegans, evoking evasive behavioral responses. This assay has led to the discovery of genes required for touch sensation, but does not provide control over stimulus strength or position. Here, we present an integrated system for performing automated, quantitative touch assays that circumvents these limitations and incorporates automated measurements of behavioral responses. The Highly Automated Worm Kicker (HAWK) unites a microfabricated silicon force sensor holding a glass bead forming the contact surface and video analysis with real-time force and position control. Using this system, we stimulated animals along the anterior-posterior axis and compared responses in wild-type and spc-1(dn) transgenic animals, which have a touch defect due to expression of a dominant-negative α-spectrin protein fragment. As expected from prior studies, delivering large stimuli anterior and posterior to the mid-point of the body evoked a reversal and a speed-up, respectively. The probability of evoking a response of either kind depended on stimulus strength and location; once initiated, the magnitude and quality of both reversal and speed-up behavioral responses were uncorrelated with stimulus location, strength, or the absence or presence of the spc-1(dn) transgene. Wild-type animals failed to respond when the stimulus was applied near the mid-point. These results show that stimulus strength and location govern the activation of a characteristic motor program and that the C. elegans body surface consists of two receptive fields separated by a gap.
Collapse
Affiliation(s)
- E A Mazzochette
- Department of Electrical Engineering, Stanford University, 94305, USA
| | - A L Nekimken
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - F Loizeau
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - J Whitworth
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - B Huynh
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - M B Goodman
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - B L Pruitt
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA and Department of Bioengineering, Stanford University, 94305, USA and Department of Mechanical Engineering, University of California, Santa Barbara, 93106, USA.
| |
Collapse
|
21
|
Kim AA, Nekimken AL, Fechner S, O'Brien LE, Pruitt BL. Microfluidics for mechanobiology of model organisms. Methods Cell Biol 2018; 146:217-259. [PMID: 30037463 PMCID: PMC6418080 DOI: 10.1016/bs.mcb.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanical stimuli play a critical role in organ development, tissue homeostasis, and disease. Understanding how mechanical signals are processed in multicellular model systems is critical for connecting cellular processes to tissue- and organism-level responses. However, progress in the field that studies these phenomena, mechanobiology, has been limited by lack of appropriate experimental techniques for applying repeatable mechanical stimuli to intact organs and model organisms. Microfluidic platforms, a subgroup of microsystems that use liquid flow for manipulation of objects, are a promising tool for studying mechanobiology of small model organisms due to their size scale and ease of customization. In this work, we describe design considerations involved in developing a microfluidic device for studying mechanobiology. Then, focusing on worms, fruit flies, and zebrafish, we review current microfluidic platforms for mechanobiology of multicellular model organisms and their tissues and highlight research opportunities in this developing field.
Collapse
Affiliation(s)
- Anna A Kim
- University of California, Santa Barbara, CA, United States; Uppsala University, Uppsala, Sweden; Stanford University, Stanford, CA, United States
| | | | | | | | - Beth L Pruitt
- University of California, Santa Barbara, CA, United States; Stanford University, Stanford, CA, United States.
| |
Collapse
|
22
|
Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol 2018; 1:73. [PMID: 30271954 PMCID: PMC6123791 DOI: 10.1038/s42003-018-0079-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Imaging living organisms at high spatial resolution requires effective and innocuous immobilization. Long-term imaging places further demands on sample mounting with minimal perturbation of the organism. Here we present a simple, inexpensive method for rapid encapsulation of small animals of any developmental stage within a photo-crosslinked polyethylene glycol (PEG) hydrogel, gently restricting movement within their confined spaces. Immobilized animals maintain their original morphology in a hydrated environment compatible with chemical treatment, optical stimulation, and light-sheet microscopy. We demonstrate prolonged three-dimensional imaging of neural responses in the nematode Caenorhabditis elegans, recovery of viable organisms after 24 h, and imaging of larger squid hatchlings. We characterize a range of hydrogel and illumination conditions for immobilization quality, and identify paralytic-free conditions suitable for high-resolution single-cell imaging. Overall, PEG hydrogel encapsulation provides fast, versatile, and gentle mounting of small living organisms, from yeast to zebrafish, for continuous observation over hours. Kyra Burnett et al. present a simple and economical method to encapsulate small living organisms for long-term microscopy in a photo-crosslinked polyethylene glycol hydrogel. This method provides a fast and gentle mounting for continuous imaging over hours, and works with light-sheet microscopy and optogenetic stimulation.
Collapse
|
23
|
Determining the biomechanics of touch sensation in C. elegans. Sci Rep 2017; 7:12329. [PMID: 28951574 PMCID: PMC5615042 DOI: 10.1038/s41598-017-12190-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 11/12/2022] Open
Abstract
The sense of touch is a fundamental mechanism that nearly all organisms use to interact with their surroundings. However, the process of mechanotransduction whereby a mechanical stimulus gives rise to a neuronal response is not well understood. In this paper we present an investigation of the biomechanics of touch using the model organism C. elegans. By developing a custom micromanipulation and force sensing system around a high resolution optical microscope, we measured the spatial deformation of the organism’s cuticle and force response to controlled uniaxial indentations. We combined these experimental results with anatomical data to create a multilayer computational biomechanical model of the organism and accurately derive its material properties such as the elastic modulus and poisson’s ratio. We demonstrate the utility of this model by combining it with previously published electrophysiological data to provide quantitative insights into different biomechanical states for mechanotransduction, including the first estimate of the sensitivity of an individual mechanoreceptor to an applied stimulus (parameterised as strain energy density). We also interpret empirical behavioural data to estimate the minimum number of mechanoreceptors which must be activated to elicit a behavioural response.
Collapse
|
24
|
Nekimken AL, Mazzochette EA, Goodman MB, Pruitt BL. Forces applied during classical touch assays for Caenorhabditis elegans. PLoS One 2017; 12:e0178080. [PMID: 28542494 PMCID: PMC5438190 DOI: 10.1371/journal.pone.0178080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/06/2017] [Indexed: 12/03/2022] Open
Abstract
For decades, Caenorhabditis elegans roundworms have been used to study the sense of touch, and this work has been facilitated by a simple behavioral assay for touch sensation. To perform this classical assay, an experimenter uses an eyebrow hair to gently touch a moving worm and observes whether or not the worm reverses direction. We used two experimental approaches to determine the manner and moment of contact between the eyebrow hair tool and freely moving animals and the forces delivered by the classical assay. Using high-speed video (2500 frames/second), we found that typical stimulus delivery events include a brief moment when the hair is contact with the worm's body and not the agar substrate. To measure the applied forces, we measured forces generated by volunteers mimicking the classical touch assay by touching a calibrated microcantilever. The mean (61 μN) and median forces (26 μN) were more than ten times higher than the 2-μN force known to saturate the probability of evoking a reversal in adult C. elegans. We also considered the eyebrow hairs as an additional source of variation. The stiffness of the sampled eyebrow hairs varied between 0.07 and 0.41 N/m and was correlated with the free length of hair. Collectively, this work establishes that the classical touch assay applies enough force to saturate the probability of evoking reversals in adult C. elegans in spite of its variability among trials and experimenters and that increasing the free length of the hair can decrease the applied force.
Collapse
Affiliation(s)
- Adam L. Nekimken
- Mechanical Engineering Department, Stanford University, Stanford, California, United States of America
| | - Eileen A. Mazzochette
- Electrical Engineering Department, Stanford University, Stanford, California, United States of America
| | - Miriam B. Goodman
- Mechanical Engineering Department, Stanford University, Stanford, California, United States of America
- Molecular and Cellular Physiology Department, Stanford University, Stanford, California, United States of America
| | - Beth L. Pruitt
- Mechanical Engineering Department, Stanford University, Stanford, California, United States of America
- Molecular and Cellular Physiology Department, Stanford University, Stanford, California, United States of America
| |
Collapse
|
25
|
Zhu Z, Zhang D, Lee H, Jin Y. Caenorhabditis elegans: An important tool for dissecting microRNA functions. ACTA ACUST UNITED AC 2016; 1:34-36. [PMID: 28529981 DOI: 10.15761/bgg.1000106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans (C. elegans), a member of the phylum Nematoda, carries the evolutionarily conserved genes comparing to mammals. Due to its short lifespan and completely sequenced genome, C. elegans becomes a potentially powerful model for mechanistic studies in human diseases. In this mini review, we will outline the current understandings on C. elegans as a model organism for microRNA (miRNA)-related research in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Ziwen Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| |
Collapse
|
26
|
Butkevich E, Klopfenstein DR, Schmidt CF. Game of Zones: how actin-binding proteins organize muscle contraction. WORM 2016; 5:e1161880. [PMID: 27383012 PMCID: PMC4911971 DOI: 10.1080/21624054.2016.1161880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
Abstract
Locomotion of C. elegans requires coordinated, efficient transmission of forces generated on the molecular scale by myosin and actin filaments in myocytes to dense bodies and the hypodermis and cuticle enveloping body wall muscles. The complex organization of the acto-myosin scaffold with its accessory proteins provides a fine-tuned machinery regulated by effectors that guarantees that sarcomere units undergo controlled, reversible cycles of contraction and relaxation. Actin filaments in sarcomeres dynamically undergo polymerization and depolymerization. In a recent study, the actin-binding protein DBN-1, the C. elegans ortholog of human drebrin and drebrin-like proteins, was discovered to stabilize actin in muscle cells. DBN-1 reversibly changes location between actin filaments and myosin-rich regions during muscle contraction. Mutations in DBN-1 result in mislocalization of other actin-binding proteins. Here we discuss implications of this finding for the regulation of sarcomere actin stability and the organization of other actin-binding proteins.
Collapse
Affiliation(s)
- Eugenia Butkevich
- Georg August University, Third Institute of Physics - Biophysics , Göttingen, Germany
| | - Dieter R Klopfenstein
- Georg August University, Third Institute of Physics - Biophysics , Göttingen, Germany
| | - Christoph F Schmidt
- Georg August University, Third Institute of Physics - Biophysics , Göttingen, Germany
| |
Collapse
|
27
|
Fang-Yen C, Alkema MJ, Samuel ADT. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140212. [PMID: 26240427 DOI: 10.1098/rstb.2014.0212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits.
Collapse
Affiliation(s)
- Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Tissue mechanics govern the rapidly adapting and symmetrical response to touch. Proc Natl Acad Sci U S A 2015; 112:E6955-63. [PMID: 26627717 DOI: 10.1073/pnas.1514138112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) in Caenorhabditis elegans nematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads. Recently, many of the protein partners that form native MeT channels in these and other somatosensory neurons have been identified. However, the biophysical mechanism of symmetric responses to the onset and offset of mechanical stimulation has eluded understanding for decades. Moreover, it is not known whether applied force or the resulting indentation activate MeT channels. Here, we introduce a system for simultaneously recording membrane current, applied force, and the resulting indentation in living C. elegans (Feedback-controlled Application of mechanical Loads Combined with in vivo Neurophysiology, FALCON) and use it, together with modeling, to study these questions. We show that current amplitude increases with indentation, not force, and that fast stimuli evoke larger currents than slower stimuli producing the same or smaller indentation. A model linking body indentation to MeT channel activation through an embedded viscoelastic element reproduces the experimental findings, predicts that the TRNs function as a band-pass mechanical filter, and provides a general mechanism for symmetrical and rapidly adapting MeT channel activation relevant to somatosensory neurons across phyla and submodalities.
Collapse
|
29
|
Rabets Y, Backholm M, Dalnoki-Veress K, Ryu WS. Direct measurements of drag forces in C. elegans crawling locomotion. Biophys J 2015; 107:1980-1987. [PMID: 25418179 DOI: 10.1016/j.bpj.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022] Open
Abstract
With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.
Collapse
Affiliation(s)
- Yegor Rabets
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Matilda Backholm
- Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada; Laboratoire de Physico-Chimie Théorique, UMR Centre National de la Recherche Scientifique 7083 GULLIVER, ESPCI, Paris, France
| | - William S Ryu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Backholm M, Ryu WS, Dalnoki-Veress K. The nematode C. elegans as a complex viscoelastic fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:118. [PMID: 25957177 DOI: 10.1140/epje/i2015-15036-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The viscoelastic material properties of the model organism C. elegans were probed with a micropipette deflection technique and modelled with the standard linear solid model. Dynamic relaxation measurements were performed on the millimetric nematode to investigate its viscous characteristics in detail. We show that the internal properties of C. elegans can not be fully described by a simple Newtonian fluid. Instead, a power-law fluid model was implemented and shown to be in excellent agreement with experimental results. The nematode exhibits shear thinning properties and its complex fluid characteristics were quantified. The bending-rate dependence of the internal damping coefficient of C. elegans could affect its gait modulation in different external environments.
Collapse
Affiliation(s)
- Matilda Backholm
- Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
31
|
Zhen M, Samuel ADT. C. elegans locomotion: small circuits, complex functions. Curr Opin Neurobiol 2015; 33:117-26. [PMID: 25845627 DOI: 10.1016/j.conb.2015.03.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
With 302 neurons in the adult Caenorhabditis elegans nervous system, it should be possible to build models of complex behaviors spanning sensory input to motor output. The logic of the motor circuit is an essential component of such models. Advances in physiological, anatomical, and neurogenetic analysis are revealing a surprisingly complex signaling network in the worm's small motor circuit. We are progressing towards a systems level dissection of the network of premotor interneurons, motor neurons, and muscle cells that move the animal forward and backward in its environment.
Collapse
Affiliation(s)
- Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8.
| | - Aravinthan D T Samuel
- Center for Brain Science, Department of Physics, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
32
|
Abstract
The sense of touch informs us of the physical properties of our surroundings and is a critical aspect of communication. Before touches are perceived, mechanical signals are transmitted quickly and reliably from the skin's surface to mechano-electrical transduction channels embedded within specialized sensory neurons. We are just beginning to understand how soft tissues participate in force transmission and how they are deformed. Here, we review empirical and theoretical studies of single molecules and molecular ensembles thought to be involved in mechanotransmission and apply the concepts emerging from this work to the sense of touch. We focus on the nematode Caenorhabditis elegans as a well-studied model for touch sensation in which mechanics can be studied on the molecular, cellular, and systems level. Finally, we conclude that force transmission is an emergent property of macromolecular cellular structures that mutually stabilize one another.
Collapse
Affiliation(s)
- Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex Dunn
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Khare SM, Awasthi A, Venkataraman V, Koushika SP. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms. BIOMICROFLUIDICS 2015; 9:014111. [PMID: 25713693 PMCID: PMC4312341 DOI: 10.1063/1.4906905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment.
Collapse
Affiliation(s)
- Siddharth M Khare
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | | | - V Venkataraman
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | | |
Collapse
|
34
|
Zima V, Šebková K, Šimečková K, Dvořák T, Saudek V, Kostrouchová M. Prorenin Receptor Homologue VHA-20 is Critical for Intestinal pH Regulation, Ion and Water Management and Larval Development in C. elegans. Folia Biol (Praha) 2015; 61:168-77. [PMID: 26667573 DOI: 10.14712/fb2015061050168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The prorenin receptor (ATP6AP2) is a multifunctional transmembrane protein; it is a constituent of proton-translocating V-ATPase, a non-proteolytic activator of renin and an adaptor in the Wnt/β-catenin pathway. Here, we studied vha-20, one of the two prorenin receptor homologues that are identified by sequence similarity in the C. elegans genome. We show that vha-20 (R03E1.2) is prominently expressed in the intestine, in the excretory cell and in amphid neurons, tissues critical for regulation of ion and water management. The expression of vha-20 in the intestine is dependent on NHR-31, a nuclear receptor related to HNF4. VHA-20 is indispensable for normal larval development, acidification of the intestine, and is required for nutrient uptake. Inhibition of vha-20 by RNAi leads to complex deterioration of water and pH gradients at the level of the whole organism including distention of pseudocoelome cavity. This suggests new roles of prorenin receptor in the regulation of body ion and water management and in acidification of intestinal lumen in nematodes.
Collapse
Affiliation(s)
- V Zima
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - K Šebková
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - K Šimečková
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - T Dvořák
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - V Saudek
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, United Kingdom
| | - M Kostrouchová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
35
|
Greenblum A, Sznitman R, Fua P, Arratia PE, Sznitman J. Caenorhabditis elegans segmentation using texture-based models for motility phenotyping. IEEE Trans Biomed Eng 2014; 61:2278-89. [PMID: 25051545 DOI: 10.1109/tbme.2014.2298612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With widening interests in using model organisms for reverse genetic approaches and biomimmetic microrobotics, motility phenotyping of the nematode Caenorhabditis elegans is expanding across a growing array of locomotive environments. One ongoing bottleneck lies in providing users with automatic nematode segmentations of C. elegans in image sequences featuring complex and dynamic visual cues, a first and necessary step prior to extracting motility phenotypes. Here, we propose to tackle such automatic segmentation challenges by introducing a novel texture factor model (TFM). Our approach revolves around the use of combined intensity- and texture-based features integrated within a probabilistic framework. This strategy first provides a coarse nematode segmentation from which a Markov random field model is used to refine the segmentation by inferring pixels belonging to the nematode using an approximate inference technique. Finally, informative priors can then be estimated and integrated in our framework to provide coherent segmentations across image sequences. We validate our TFM method across a wide range of motility environments. Not only does TFM assure comparative performances to existing segmentation methods on traditional environments featuring static backgrounds, it importantly provides state-of-the-art C. elegans segmentations for dynamic environments such as the recently introduced wet granular media. We show how such segmentations may be used to compute nematode "skeletons" from which motility phenotypes can then be extracted. Overall, our TFM method provides users with a tangible solution to tackle the growing needs of C. elegans segmentation in challenging motility environments.
Collapse
|
36
|
Lainé V, Ségor JR, Zhan H, Bessereau JL, Jospin M. Hyperactivation of L-type voltage-gated Ca2+ channels in Caenorhabditis elegans striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the α1 subunit. ACTA ACUST UNITED AC 2014; 217:3805-14. [PMID: 25214488 DOI: 10.1242/jeb.106732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several human diseases, including hypokalemic periodic paralysis and Timothy syndrome, are caused by mutations in voltage-gated calcium channels. The effects of these mutations are not always well understood, partially because of difficulties in expressing these channels in heterologous systems. The use of Caenorhabditis elegans could be an alternative approach to determine the effects of mutations on voltage-gated calcium channel function because all the main types of voltage-gated calcium channels are found in C. elegans, a large panel of mutations already exists and efficient genetic tools are available to engineer customized mutations in any gene. In this study, we characterize the effects of two gain-of-function mutations in egl-19, which encodes the L-type calcium channel α1 subunit. One of these mutations, ad695, leads to the replacement of a hydrophobic residue in the IIIS4 segment. The other mutation, n2368, changes a conserved glycine of IS6 segment; this mutation has been identified in patients with Timothy syndrome. We show that both egl-19 (gain-of-function) mutants have defects in locomotion and morphology that are linked to higher muscle tone. Using in situ electrophysiological approaches in striated muscle cells, we provide evidence that this high muscle tone is due to a shift of the voltage dependency towards negative potentials, associated with a decrease of the inactivation rate of the L-type Ca(2+) current. Moreover, we show that the maximal conductance of the Ca(2+) current is decreased in the strongest mutant egl-19(n2368), and that this decrease is correlated with a mislocalization of the channel.
Collapse
Affiliation(s)
- Viviane Lainé
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| | - Jean Rony Ségor
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| | - Hong Zhan
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| | | | - Maelle Jospin
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| |
Collapse
|
37
|
Why do sleeping nematodes adopt a hockey-stick-like posture? PLoS One 2014; 9:e101162. [PMID: 25025212 PMCID: PMC4099128 DOI: 10.1371/journal.pone.0101162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022] Open
Abstract
A characteristic posture is considered one of the behavioral hallmarks of sleep, and typically includes functional features such as support for the limbs and shielding of sensory organs. The nematode C. elegans exhibits a sleep-like state during a stage termed lethargus, which precedes ecdysis at the transition between larval stages. A hockey-stick-like posture is commonly observed during lethargus. What might its function be? It was previously noted that during lethargus, C. elegans nematodes abruptly rotate about their longitudinal axis. Plausibly, these “flips” facilitate ecdysis by assisting the disassociation of the old cuticle from the new one. We found that body-posture during lethargus was established using a stereotypical motor program and that body bends during lethargus quiescence were actively maintained. Moreover, flips occurred almost exclusively when the animals exhibited a single body bend, preferentially in the anterior or mid section of the body. We describe a simple biomechanical model that imposes the observed lengths of the longitudinally directed body-wall muscles on an otherwise passive elastic rod. We show that this minimal model is sufficient for generating a rotation about the anterior-posterior body axis. Our analysis suggests that posture during lethargus quiescence may serve a developmental role in facilitating flips and that the control of body wall muscles in anterior and posterior body regions are distinct.
Collapse
|
38
|
Gjorgjieva J, Biron D, Haspel G. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand? Bioscience 2014; 64:476-486. [PMID: 26955070 PMCID: PMC4776678 DOI: 10.1093/biosci/biu058] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thrust during locomotion. In this Overview, we concentrate on the generation of either forward- or backward-directed motion during crawling and swimming. We describe locomotion behavior, the parts constituting the locomotion system, and the relevant neuronal connectivity. Because it is not yet fully understood how these components combine to generate locomotion, we discuss competing hypotheses and models.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Julijana Gjorgjieva is a postdoctoral research fellow at the Center for Brain Science of Harvard University, in Cambridge, Massachusetts. She uses theoretical and numerical tools to understand how developing neural circuits wire to perform a particular function, from the mammalian visual system to the motor system of small invertebrates. David Biron is a physicist at the University of Chicago, Illinois. He studies the sleep of the roundworm Caenorhabditis elegans and related problems in biological physics. Gal Haspel ( ) is a neuroethologist at the New Jersey Institute of Technology, in Newark. He studies the activity, connectivity and recovery from injury of the neuronal network that underlie locomotion in the nematode Caenorhabditis elegans
| | - David Biron
- Julijana Gjorgjieva is a postdoctoral research fellow at the Center for Brain Science of Harvard University, in Cambridge, Massachusetts. She uses theoretical and numerical tools to understand how developing neural circuits wire to perform a particular function, from the mammalian visual system to the motor system of small invertebrates. David Biron is a physicist at the University of Chicago, Illinois. He studies the sleep of the roundworm Caenorhabditis elegans and related problems in biological physics. Gal Haspel ( ) is a neuroethologist at the New Jersey Institute of Technology, in Newark. He studies the activity, connectivity and recovery from injury of the neuronal network that underlie locomotion in the nematode Caenorhabditis elegans
| | - Gal Haspel
- Julijana Gjorgjieva is a postdoctoral research fellow at the Center for Brain Science of Harvard University, in Cambridge, Massachusetts. She uses theoretical and numerical tools to understand how developing neural circuits wire to perform a particular function, from the mammalian visual system to the motor system of small invertebrates. David Biron is a physicist at the University of Chicago, Illinois. He studies the sleep of the roundworm Caenorhabditis elegans and related problems in biological physics. Gal Haspel ( ) is a neuroethologist at the New Jersey Institute of Technology, in Newark. He studies the activity, connectivity and recovery from injury of the neuronal network that underlie locomotion in the nematode Caenorhabditis elegans
| |
Collapse
|
39
|
Hernando G, Bouzat C. Caenorhabditis elegans neuromuscular junction: GABA receptors and ivermectin action. PLoS One 2014; 9:e95072. [PMID: 24743647 PMCID: PMC3990606 DOI: 10.1371/journal.pone.0095072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/23/2014] [Indexed: 11/25/2022] Open
Abstract
The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their combination is a good strategy to overcome the increasing resistance of parasites, an issue of global concern for human and animal health.
Collapse
Affiliation(s)
- Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca-Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca-Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
40
|
Petzold BC, Park SJ, Mazzochette EA, Goodman MB, Pruitt BL. MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation. Integr Biol (Camb) 2014; 5:853-64. [PMID: 23598612 DOI: 10.1039/c3ib20293c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces <1 μN and indentation depths <1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans.
Collapse
Affiliation(s)
- Bryan C Petzold
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA
| | | | | | | | | |
Collapse
|
41
|
Johari S, Nock V, Alkaisi MM, Wang W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. LAB ON A CHIP 2013; 13:1699-707. [PMID: 23511608 DOI: 10.1039/c3lc41403e] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The understanding of force interplays between an organism and its environment is imperative in biological processes. Noticeably scarce from the study of C. elegans locomotion is the measurement of the nematode locomotion forces together with other important locomotive metrics. To bridge the current gap, we present the investigation of C. elegans muscular forces and locomotion metrics (speed, amplitude and wavelength) in one single assay. This assay uses polydimethylsiloxane (PDMS) micropillars as force sensing elements and, by variation of the pillar arrangement, introduces microstructure. To show the usefulness of the assay, twelve wild-type C. elegans sample worms were tested to obtain a total of 4665 data points. The experimental results lead to several key findings. These include: (1) maximum force is exerted when the pillar is in contact with the middle part of the worm body, (2) C. elegans locomotion forces are highly dependent on the structure of the surrounding environment, (3) the worms' undulation frequency and locomotion speed increases steadily from the narrow spacing of 'honeycomb' design to the wider spacing of 'lattice' pillar arrangement, and (4) C. elegans maintained their natural sinusoidal movement in the microstructured device, despite the existence of PDMS micropillars. The assay presented here focuses on wild type C. elegans, but the method can be easily applied to its mutants and other organisms. In addition, we also show that, by inverting the measurement device, worm locomotion behaviour can be studied in various substrate environments normally unconducive to flexible pillar fabrication. The quantitative measurements demonstrated in this work further improve the understanding of C. elegans mechanosensation and locomotion.
Collapse
Affiliation(s)
- Shazlina Johari
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
42
|
Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm. Proc Natl Acad Sci U S A 2013; 110:4528-33. [PMID: 23460699 DOI: 10.1073/pnas.1219965110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Undulatory motion is common to many creatures across many scales, from sperm to snakes. These organisms must push off against their external environment, such as a viscous medium, grains of sand, or a high-friction surface; additionally they must work to bend their own body. A full understanding of undulatory motion, and locomotion in general, requires the characterization of the material properties of the animal itself. The material properties of the model organism Caenorhabditis elegans were studied with a micromechanical experiment used to carry out a three-point bending measurement of the worm. Worms at various developmental stages (including dauer) were measured and different positions along the worm were probed. From these experiments we calculated the viscoelastic properties of the worm, including the effective spring constant and damping coefficient of bending. C. elegans moves by propagating sinusoidal waves along its body. Whereas previous viscoelastic approaches to describe the undulatory motion have used a Kelvin-Voigt model, where the elastic and viscous components are connected in parallel, our measurements show that the Maxwell model, where the elastic and viscous components are in series, is more appropriate. The viscous component of the worm was shown to be consistent with a non-Newtonian, shear-thinning fluid. We find that as the worm matures it is well described as a self-similar elastic object with a shear-thinning damping term and a stiffness that becomes smaller as one approaches the tail.
Collapse
|
43
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
44
|
Boyle JH, Berri S, Cohen N. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front Comput Neurosci 2012; 6:10. [PMID: 22408616 PMCID: PMC3296079 DOI: 10.3389/fncom.2012.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/07/2012] [Indexed: 11/13/2022] Open
Abstract
Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. We present a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimental predictions, in particular with respect to non-linearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body.
Collapse
Affiliation(s)
| | | | - Netta Cohen
- School of Computing, University of LeedsLeeds, UK
- Institute of Membrane and Systems Biology, University of LeedsLeeds, UK
| |
Collapse
|
45
|
Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 2011; 108:17504-9. [PMID: 21969584 PMCID: PMC3198358 DOI: 10.1073/pnas.1108673108] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many animals, including humans, select alternate forms of motion (gaits) to move efficiently in different environments. However, it is unclear whether primitive animals, such as nematodes, also use this strategy. We used a multifaceted approach to study how the nematode Caenorhabditis elegans freely moves into and out of water. We demonstrate that C. elegans uses biogenic amines to switch between distinct crawling and swimming gaits. Dopamine is necessary and sufficient to initiate and maintain crawling after swimming. Serotonin is necessary and sufficient to transition from crawling to swimming and to inhibit a set of crawl-specific behaviors. Further study of locomotory switching in C. elegans and its dependence on biogenic amines may provide insight into how gait transitions are performed in other animals.
Collapse
Affiliation(s)
- Andrés Vidal-Gadea
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Stephen Topper
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Layla Young
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Ashley Crisp
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Leah Kressin
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Erin Elbel
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Thomas Maples
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Martin Brauner
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Karen Erbguth
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Abram Axelrod
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712; and
| | - Alexander Gottschalk
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dionicio Siegel
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712; and
| | | |
Collapse
|