1
|
Abdel-Aal RA, Hussein OA, Elsaady RG, Abdelzaher LA. Naproxen as a potential candidate for promoting rivastigmine anti-Alzheimer activity against aluminum chloride-prompted Alzheimer's-like disease in rats; neurogenesis and apoptosis modulation as a possible underlying mechanism. Eur J Pharmacol 2022; 915:174695. [PMID: 34914971 DOI: 10.1016/j.ejphar.2021.174695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is one of the leading causes of dependence and disability among the elderly worldwide. The traditional anti-Alzheimer medication, rivastigmine, one of the cholinesterase inhibitors (ChEIs), fails to achieve a definitive cure. We tested the hypothesis that naproxen administration to the rivastigmine-treated aluminum chloride (AlCl3) Alzheimer's rat model could provide an additive neuroprotective effect compared to rivastigmine alone. MATERIALS AND METHODS The studied groups were control (Cont), AlCl3 treated (Al), rivastigmine treated (RIVA), naproxen treated (Napro), and combined rivastigmine and naproxen treated (RIVA + Napro). Rats' memory, spatial learning, and cognitive behavior were assessed followed by evaluation of hippocampal acetylcholinesterase (AChE) activity. Hippocampal and cerebellar histopathology were thoroughly examined. Activated caspase-3 and the neuroepithelial stem cells marker; nestin expressions were immunohistochemically assayed. RESULTS AD rats displayed significantly impaired memory and cognitive function, augmented hippocampal AChE activity; massive neurodegeneration associated with enhanced astrogliosis, apoptosis, and impaired neurogenesis. Except for the enhancement of neurogenesis and suppression of apoptosis, the combination therapy had no additional neuroprotective benefit over rivastigmine-only therapy. CONCLUSION Naproxen's efficacy was established by its ability to function at the cellular level, improved neurogenesis, and decreased, apoptosis without having an additional mitigating impact on cognitive impairment in rivastigmine-treated AD rats.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham G Elsaady
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
2
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
3
|
Rivera-Marrero S, Bencomo-Martínez A, Orta Salazar E, Sablón-Carrazana M, García-Pupo L, Zoppolo F, Arredondo F, Dapueto R, Daniela Santi M, Kreimerman I, Pardo T, Reyes L, Galán L, León-Chaviano S, Espinosa-Rodríguez LA, Menéndez-Soto Del Valle R, Savio E, Díaz Cintra S, Rodríguez-Tanty C. A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer's disease. Bioorg Med Chem 2020; 28:115700. [PMID: 33069076 DOI: 10.1016/j.bmc.2020.115700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
The aggregation of β-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of β-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-β-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aβ1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aβ1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal β-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Suchitil Rivera-Marrero
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Alberto Bencomo-Martínez
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Erika Orta Salazar
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico
| | - Marquiza Sablón-Carrazana
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Laura García-Pupo
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Florencia Zoppolo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Florencia Arredondo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Rosina Dapueto
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - María Daniela Santi
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ingrid Kreimerman
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Laura Reyes
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Lídice Galán
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Samila León-Chaviano
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Luis A Espinosa-Rodríguez
- Center of Genetic Engineering and Biotechnology (CIGB), Ave 31 e/ 158 and 190, Havana, CP10600, Cuba
| | - Roberto Menéndez-Soto Del Valle
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Eduardo Savio
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Sofía Díaz Cintra
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico.
| | - Chryslaine Rodríguez-Tanty
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba.
| |
Collapse
|
4
|
Rivera-Marrero S, Fernández-Maza L, León-Chaviano S, Sablón-Carrazana M, Bencomo-Martínez A, Perera-Pintado A, Prats-Capote A, Zoppolo F, Kreimerman I, Pardo T, Reyes L, Balcerzyk M, Dubed-Bandomo G, Mercerón-Martínez D, Espinosa-Rodríguez LA, Engler H, Savio E, Rodríguez-Tanty C. [ 18F]Amylovis as a Potential PET Probe for β-Amyloid Plaque: Synthesis, In Silico, In vitro and In vivo Evaluations. Curr Radiopharm 2019; 12:58-71. [PMID: 30605068 PMCID: PMC6463402 DOI: 10.2174/1874471012666190102165053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. Neuroimaging methods have widened the horizons for AD diagnosis and therapy. The goals of this work are the synthesis of 2-(3-fluoropropyl)-6-methoxynaphthalene (5) and its [18F]-radiolabeled counterpart ([18F]Amylovis), the in silico and in vitro comparative evaluations of [18F]Amylovis and [11C]Pittsburg compound B (PIB) and the in vivo preclinical evaluation of [18F]Amylovis in transgenic and wild mice. METHODS Iron-catalysis cross coupling reaction, followed by fluorination and radiofluorination steps were carried out to obtain 5 and 18F-Amylovis. Protein/Aß plaques binding, biodistribution, PET/CT Imaging and immunohistochemical studies were conducted in healthy/transgenic mice. RESULTS The synthesis of 5 was successful obtained. Comparative in silico studies predicting that 5 should have affinity to the Aβ-peptide, mainly through π-π interactions. According to a dynamic simulation study the ligand-Aβ peptide complexes are stable in simulation-time (ΔG = -5.31 kcal/mol). [18F]Amylovis was obtained with satisfactory yield, high radiochemical purity and specific activity. The [18F]Amylovis log Poct/PBS value suggests its potential ability for crossing the blood brain barrier (BBB). According to in vitro assays, [18F]Amylovis has an adequate stability in time. Higher affinity to Aβ plaques were found for [18F]Amylovis (Kd 0.16 nmol/L) than PIB (Kd 8.86 nmol/L) in brain serial sections of 3xTg-AD mice. Biodistribution in healthy mice showed that [18F]Amylovis crosses the BBB with rapid uptake (7 %ID/g at 5 min) and good washout (0.11±0.03 %ID/g at 60 min). Comparative PET dynamic studies of [18F]Amylovis in healthy and transgenic APPSwe/PS1dE9 mice, revealed a significant high uptake in the mice model. CONCLUSION The in silico, in vitro and in vivo results justify that [18F]Amylovis should be studied as a promissory PET imaging agent to detect the presence of Aβ senile plaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eduardo Savio
- Address correspondence to this author at Radiopharmacy R&D, Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay; Tel: 598-24803238; Ext: 122; E-mail:
| | - Chryslaine Rodríguez-Tanty
- Address correspondence to this author at Radiopharmacy R&D, Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay; Tel: 598-24803238; Ext: 122; E-mail:
| |
Collapse
|
5
|
Etersalate prevents the formations of 6Aβ16-22 oligomer: An in silico study. PLoS One 2018; 13:e0204026. [PMID: 30226897 PMCID: PMC6143259 DOI: 10.1371/journal.pone.0204026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022] Open
Abstract
Oligomerization of amyloid beta (Aβ) peptides has been considered as the crucially causative agent in the development of Alzheimer's disease. Etersalate, a nonsteroidal anti-inflammatory oral drug (United State Food and Drug Administration—Unique Ingredient Identifier: 653GN04T2G) was previously suggested to bind well to proto-fibrils of Aβ peptides in silico. Here, the effect of etersalate on the oligomerization of soluble Aβ16–22 hexamer (6Aβ16–22) were extensively investigated using temperature replica exchange molecular dynamics (REMD) simulations over ~16.8 μs in total for 48 replicas (350 ns per replica). The results reveal that etersalate can enter the inner space or bind on the surface of 6Aβ16–22 conformations, which destabilizes the hexamer. Etersalate was predicted to able to cross the blood brain barrier using prediction of absorption, distribution, metabolism, and excretion—toxicity (preADMET) tools. Overall, although the investigation was performed with the low concentration of trial inhibitor, the obtained results indicate that etersalate is a potential drug candidate for AD through inhibiting formation of Aβ oligomers with the average binding free energy of -11.7 kcal/mol.
Collapse
|
6
|
Wang Y, Latshaw DC, Hall CK. Aggregation of Aβ(17–36) in the Presence of Naturally Occurring Phenolic Inhibitors Using Coarse-Grained Simulations. J Mol Biol 2017; 429:3893-3908. [DOI: 10.1016/j.jmb.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 01/09/2023]
|
7
|
Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17071035. [PMID: 27376271 PMCID: PMC4964411 DOI: 10.3390/ijms17071035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4-9) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aβ(25-35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD.
Collapse
|
8
|
Dadashpour S, Tuylu Kucukkilinc T, Unsal Tan O, Ozadali K, Irannejad H, Emami S. Design, synthesis and in vitro study of 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives as COX-2 and β-amyloid aggregation inhibitors. Arch Pharm (Weinheim) 2015; 348:179-87. [PMID: 25690564 DOI: 10.1002/ardp.201400400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/29/2022]
Abstract
In order to find novel cyclooxygenase (COX)-2 inhibitors for treating inflammatory-based diseases such as Alzheimer's disease (AD), an ethyl carboxylate side chain was added to 5-(4-chlorophenyl)-6-(4-(methylsulfonyl)phenyl)-3-(methylthio)-1,2,4-triazine (lead compound II) to maintain residual inhibition of COX-1 through interacting with Arg120. A preliminary molecular docking study on both the COX-1/COX-2 active sites truly confirmed our hypothesis. Accordingly, a series of ethyl 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives were synthesized and their chemical structures were confirmed by NMR, IR and MS spectra. Further in vitro COX-1/COX-2 evaluations revealed that compound 6c (COX-2 IC50 = 10.1 μM, COX-1 IC50 = 88.8 μM) is the most selective COX-2 inhibitor while maintaining residual inhibition of COX-1. In order to evaluate their potential use against AD, an in vitro evaluation of β-amyloid fibril formation was performed. The results indicated that the prototype compounds 6 are effective β-amyloid destabilizing agents while compound 6c could inhibit 94% of the β-amyloid fibril formation after 48 h. Finally, the in silico assessment results of their blood-brain barrier permeability were satisfactory.
Collapse
Affiliation(s)
- Sakineh Dadashpour
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | | | | | |
Collapse
|
9
|
Irannejad H, Unsal Tan O, Ozadali K, Dadashpour S, Tuylu Kucukkilinc T, Ahangar N, Ahmadnejad M, Emami S. 1,2-Diaryl-2-hydroxyiminoethanones as Dual COX-1 and β
-Amyloid Aggregation Inhibitors: Biological Evaluation and In Silico
Study. Chem Biol Drug Des 2014; 85:494-503. [DOI: 10.1111/cbdd.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Hamid Irannejad
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Hacettepe University; 06100 Ankara Turkey
| | - Keriman Ozadali
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Hacettepe University; 06100 Ankara Turkey
| | - Sakineh Dadashpour
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
- Student Research Committee; Faculty of Pharmacy; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Tuba Tuylu Kucukkilinc
- Department of Biochemistry; Faculty of Pharmacy; Hacettepe University; Sihhiye 06100 Ankara Turkey
| | - Nematollah Ahangar
- Department of Toxicology and Pharmacology; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Mahsa Ahmadnejad
- Faculty of Pharmacy; Mazandaran University of Medical Sciences-Ramsar International Branch; Ramsar Iran
| | - Saeed Emami
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| |
Collapse
|
10
|
Sil S, Goswami AR, Dutta G, Ghosh T. Effects of naproxen on immune responses in a colchicine-induced rat model of Alzheimer's disease. Neuroimmunomodulation 2014; 21:304-21. [PMID: 24662962 DOI: 10.1159/000357735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The components of the immune system have been indicated to be linked with the neurotoxicity in Alzheimer's disease (AD). The participation of the immune system in the neurodegeneration in a rat model of colchicine-induced AD has not been explored. METHODS In the present study, hippocampal neurodegeneration along with reactive oxygen species (ROS), nitrite and TNF-α in the hippocampus and some systemic immune responses were measured after 15 and 21 days of intracerebroventricular colchicine injection in rats and again after oral administration of different doses of the anti-inflammatory drug naproxen in AD rats. RESULTS Chromatolysis and amyloid plaques were found along with higher ROS, nitrite and TNF-α levels in the hippocampus of colchicine-induced AD rats, and these changes were prevented by naproxen in a dose-dependent manner. Alterations in immunological parameters [increased phagocytic activity of white blood cells and splenic polymorphonuclear cells (PMN), increased cytotoxicity and decreased leucocyte adhesive inhibition index (LAI) of splenic mononuclear cells (MNC)] were also observed in colchicine-injected rats, which showed a dose-dependent recovery after oral administration of naproxen in AD rats. The number of plaques, chromatolysis of Nissl granules, TNF-α, nitrite and ROS levels in the hippocampus, phagocytic activity of splenic PMN and LAI of splenic MNC in AD rats showed greater changes in the 21- than in the 15-day study, and the recovery of these parameters after administration of naproxen differed between the two study durations. CONCLUSION The present study shows that colchicine-induced neurodegeneration is time dependent and mediated by cyclooxygenase-induced neuroinflammation, which is reflected in the systemic immunological responses.
Collapse
Affiliation(s)
- Susmita Sil
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| | | | | | | |
Collapse
|
11
|
Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide. Biophys J 2013; 103:2341-51. [PMID: 23283233 DOI: 10.1016/j.bpj.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/29/2012] [Accepted: 10/03/2012] [Indexed: 12/28/2022] Open
Abstract
All-atom explicit solvent model and replica exchange molecular dynamics were used to investigate binding of Alzheimer's biomarker FDDNP to the Aβ(10-40) monomer. At low and high concentrations, FDDNP binds with high affinity to two sites in the Aβ(10-40) monomer located near the central hydrophobic cluster and in the C-terminal. Analysis of ligand- Aβ(10-40) interactions at both concentrations identifies hydrophobic effect as a main binding factor. However, with the increase in ligand concentration the interactions between FDDNP molecules also become important due to strong FDDNP self-aggregation propensity and few specific binding locations. As a result, FDDNP ligands partially penetrate the core of the Aβ(10-40) monomer, forming large self-aggregated clusters. Ligand self-aggregation does not affect hydrophobic interactions as a main binding factor or the location of binding sites in Aβ(10-40). Using the Aβ(10-40) conformational ensemble in ligand-free water as reference, we show that FDDNP induces minor changes in the Aβ(10-40) secondary structure at two ligand concentrations studied. At the same time, FDDNP significantly alters the peptide tertiary fold in a concentration-dependent manner by redistributing long-range, side-chain interactions. We argue that because FDDNP does not change Aβ(10-40) secondary structure, its antiaggregation effect is likely to be weak. Our study raises the possibility that FDDNP may serve as a biomarker of not only Aβ fibril species, but of monomers as well.
Collapse
|
12
|
Lockhart C, Kim S, Klimov DK. Explicit Solvent Molecular Dynamics Simulations of Aβ Peptide Interacting with Ibuprofen Ligands. J Phys Chem B 2012; 116:12922-32. [DOI: 10.1021/jp306208n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Seongwon Kim
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
13
|
Ngo ST, Li MS. Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. J Phys Chem B 2012; 116:10165-75. [PMID: 22877239 DOI: 10.1021/jp302506a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Binding of curcumin, naproxen, and ibuprofen to Aβ1-40 peptide and its fibrils is studied by docking method and all-atom molecular dynamics simulations. The Gromos96 43a1 force field and simple point charge model of water have been used for molecular dynamics simulations. It is shown that if the receptor is a monomer then naproxen and ibuprofen are bound to the same place that is different from the binding position of curcumin. However all of three ligands have the same binding pocket in fibrillar structures. The binding mechanism is studied in detail showing that the van der Waals interaction between ligand and receptor dominates over the electrostatic interaction. The binding free energies obtained by the molecular mechanic-Poisson-Boltzmann surface area method indicate that curcumin displays higher binding affinity than nonsteroidal anti-inflammatory drugs. Our results are in good agreement with the experiments.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and
| | | |
Collapse
|
14
|
Combining conformational sampling and selection to identify the binding mode of zinc-bound amyloid peptides with bifunctional molecules. J Comput Aided Mol Des 2012; 26:963-76. [PMID: 22829296 DOI: 10.1007/s10822-012-9588-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/05/2012] [Indexed: 01/12/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been suggested to be related with the aggregation of amyloid β (Aβ) peptides. Metal ions (e.g. Cu, Fe, and Zn) are supposed to induce the aggregation of Aβ. Recent development of bifunctional molecules that are capable of interacting with Aβ and chelating biometal ions provides promising therapeutics to AD. However, the molecular mechanism for how Aβ, metal ions, and bifunctional molecules interact with each other is still elusive. In this study, the binding mode of Zn(2+)-bound Aβ with bifunctional molecules was investigated by the combination of conformational sampling of full-length Aβ peptides using replica exchange molecular dynamics simulations (REMD) and conformational selection using molecular docking and classical MD simulations. We demonstrate that Zn(2+)-bound Aβ((1-40)) and Aβ((1-42)) exhibit different conformational ensemble. Both Aβ peptides can adopt various conformations to recognize typical bifunctional molecules with different binding affinities. The bifunctional molecules exhibit their dual functions by first preferentially interfering with hydrophobic residues 17-21 and/or 30-35 of Zn(2+)-bound Aβ. Additional interactions with residues surrounding Zn(2+) could possibly disrupt interactions between Zn(2+) and Aβ, which then facilitate these small molecules to chelate Zn(2+). The binding free energy calculations further demonstrate that the association of Aβ with bifunctional molecules is driven by enthalpy. Our results provide a feasible approach to understand the recognition mechanism of disordered proteins with small molecules, which could be helpful to the design of novel AD drugs.
Collapse
|
15
|
Chebaro Y, Jiang P, Zang T, Mu Y, Nguyen PH, Mousseau N, Derreumaux P. Structures of Aβ17-42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure. J Phys Chem B 2012; 116:8412-22. [PMID: 22283547 DOI: 10.1021/jp2118778] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The amyloid-β protein (Aβ) oligomers are believed to be the main culprits in the cytoxicity of Alzheimer's disease (AD) and p3 peptides (Aβ17-42 fragments) are present in AD amyloid plaques. Many small-molecule or peptide-based inhibitors are known to slow down Aβ aggregation and reduce the toxicity in vitro, but their exact modes of action remain to be determined since there has been no atomic level of Aβ(p3)-drug oligomers. In this study, we have determined the structure of Aβ17-42 trimers both in aqueous solution and in the presence of five small-molecule inhibitors using a multiscale computational study. These inhibitors include 2002-H20, curcumin, EGCG, Nqtrp, and resveratrol. First, we used replica exchange molecular dynamics simulations coupled to the coarse-grained (CG) OPEP force field. These CG simulations reveal that the conformational ensemble of Aβ17-42 trimer can be described by 14 clusters with each peptide essentially adopting turn/random coil configurations, although the most populated cluster is characterized by one peptide with a β-hairpin at Phe19-Leu31. Second, these 14 dominant clusters and the less-frequent fibril-like state with parallel register of the peptides were subjected to atomistic Autodock simulations. Our analysis reveals that the drugs have multiple binding modes with different binding affinities for trimeric Aβ17-42 although they interact preferentially with the CHC region (residues 17-21). The compounds 2002-H20 and Nqtrp are found to be the worst and best binders, respectively, suggesting that the drugs may interfere at different stages of Aβ oligomerization. Finally, explicit solvent molecular dynamics of two predicted Nqtrp-Aβ17-42 conformations describe at atomic level some possible modes of action for Nqtrp.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Laboratoire de Biochimie Théorique, UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Li G, Rauscher S, Baud S, Pomès R. Binding of inositol stereoisomers to model amyloidogenic peptides. J Phys Chem B 2011; 116:1111-9. [PMID: 22091989 DOI: 10.1021/jp208567n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-aggregation of proteins into amyloid fibrils is a pathological hallmark of numerous incurable diseases such as Alzheimer's disease. scyllo-Inositol is a stereochemistry-dependent in vitro inhibitor of amyloid formation. As the first step to elucidate its mechanism of action, we present molecular dynamics simulations of scyllo-inositol and its inactive stereoisomer, chiro-inositol, with simple peptide models, alanine dipeptide (ADP) and (Gly-Ala)(4). We characterize molecular interactions and compute equilibrium binding constants between inositol and ADP as well as, successively, monomers, amorphous aggregates, and fibril-like β-sheet aggregates of (Gly-Ala)(4). Inositol interacts weakly with all peptide systems considered, with millimolar to molar affinities, and displaces the conformational equilibria of ADP but not of the (Gly-Ala)(4) systems. However, scyllo- and chiro-inositol adopt different binding modes on the surface of β-sheet aggregates. These results suggest that inositol does not inhibit amyloid formation by breaking up preformed aggregates but rather by binding to the surface of prefibrillar aggregates.
Collapse
Affiliation(s)
- Grace Li
- Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | | | | | | |
Collapse
|
17
|
Convertino M, Vitalis A, Caflisch A. Disordered binding of small molecules to Aβ(12-28). J Biol Chem 2011; 286:41578-41588. [PMID: 21969380 PMCID: PMC3308868 DOI: 10.1074/jbc.m111.285957] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/23/2011] [Indexed: 11/06/2022] Open
Abstract
In recent years, an increasing number of small molecules and short peptides have been identified that interfere with aggregation and/or oligomerization of the Alzheimer β-amyloid peptide (Aβ). Many of them possess aromatic moieties, suggesting a dominant role for those in interacting with Aβ along various stages of the aggregation process. In this study, we attempt to elucidate whether interactions of such aromatic inhibitors with monomeric Aβ(12-28) point to a common mechanism of action by performing atomistic molecular dynamics simulations at equilibrium. Our results suggest that, independently of the presence of inhibitors, monomeric Aβ(12-28) populates a partially collapsed ensemble that is largely devoid of canonical secondary structure at 300 K and neutral pH. The small molecules have different affinities for Aβ(12-28) that can be partially rationalized by the balance of aromatic and charged moieties constituting the molecules. There are no predominant binding modes, although aggregation inhibitors preferentially interact with the N-terminal portion of the fragment (residues 13-20). Analysis of the free energy landscape of Aβ(12-28) reveals differences highlighted by altered populations of a looplike conformer in the presence of inhibitors. We conclude that intrinsic disorder of Aβ persists at the level of binding small molecules and that inhibitors can significantly alter properties of monomeric Aβ via multiple routes of differing specificity.
Collapse
Affiliation(s)
- Marino Convertino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Tuffery P, Derreumaux P. Flexibility and binding affinity in protein-ligand, protein-protein and multi-component protein interactions: limitations of current computational approaches. J R Soc Interface 2011; 9:20-33. [PMID: 21993006 DOI: 10.1098/rsif.2011.0584] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recognition process between a protein and a partner represents a significant theoretical challenge. In silico structure-based drug design carried out with nothing more than the three-dimensional structure of the protein has led to the introduction of many compounds into clinical trials and numerous drug approvals. Central to guiding the discovery process is to recognize active among non-active compounds. While large-scale computer simulations of compounds taken from a library (virtual screening) or designed de novo are highly desirable in the post-genomic area, many technical problems remain to be adequately addressed. This article presents an overview and discusses the limits of current computational methods for predicting the correct binding pose and accurate binding affinity. It also presents the performances of the most popular algorithms for exploring binary and multi-body protein interactions.
Collapse
Affiliation(s)
- Pierre Tuffery
- INSERM UMR-S 973, Université Paris Diderot, 35 rue Hélène Brion, 75251 Paris cedex, France
| | | |
Collapse
|