1
|
Dürvanger Z, Bencs F, Menyhárd DK, Horváth D, Perczel A. Solvent induced amyloid polymorphism and the uncovering of the elusive class 3 amyloid topology. Commun Biol 2024; 7:968. [PMID: 39122990 PMCID: PMC11316126 DOI: 10.1038/s42003-024-06621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Aggregation-prone-motifs (APRs) of proteins are short segments, which - as isolated peptides - form diverse amyloid-like crystals. We introduce two APRs - designed variants of the incretin mimetic Exendin-4 - that both display crystal-phase polymorphism. Crystallographic and spectroscopic analysis revealed that a single amino-acid substitution can greatly reduce topological variability: while LYIQWL can form both parallel and anti-parallel β-sheets, LYIQNL selects only the former. We also found that the parallel/anti-parallel switch of LYIQWL can be induced by simply changing the crystallization temperature. One crystal form of LYIQNL was found to belong to the class 3 topology, an arrangement previously not encountered among proteinogenic systems. We also show that subtle environmental changes lead to crystalline assemblies with different topologies, but similar interfaces. Spectroscopic measurements showed that polymorphism is already apparent in the solution state. Our results suggest that the temperature-, sequence- and environmental sensitivity of physiological amyloids is reflected in assemblies of the APR segments, which, complete with the new class 3 crystal form, effectively sample all the originally proposed basic topologies of amyloid-like aggregates.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Fruzsina Bencs
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary.
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary.
| |
Collapse
|
2
|
Skamris T, Vestergaard B, Madsen KL, Langkilde AE, Foderà V. Identifying Biological and Biophysical Features of Different Maturation States of α-Synuclein Amyloid Fibrils. Methods Mol Biol 2023; 2551:321-344. [PMID: 36310213 DOI: 10.1007/978-1-0716-2597-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein aggregates, hereunder amyloid fibrils, can undergo a maturation process, whereby early formed aggregates undergo a structural and physicochemical transition leading to more mature species. In the case of amyloid-related diseases, such maturation confers distinctive biological properties of the aggregates, which may account for a range of diverse pathological subtypes. Here, we present a protocol for the preparation of α-synuclein amyloid fibrils differing in the level of their maturation. We utilize widely accessible biophysical techniques to characterize the structure and morphology and a simple thermal treatment procedure to test their thermodynamic stability. Their biological properties are probed by means of binding to native plasma membrane sheets originating from mammalian cell lines.
Collapse
Affiliation(s)
- Thomas Skamris
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
4
|
Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. A theoretical study of polymorphism in VQIVYK fibrils. Biophys J 2021; 120:1396-1416. [PMID: 33571490 DOI: 10.1016/j.bpj.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.
Collapse
Affiliation(s)
- Jaehoon Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Mithila V Agnihotri
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.
| | - Sherwin J Singer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
5
|
Amyloid Evolution: Antiparallel Replaced by Parallel. Biophys J 2020; 118:2526-2536. [PMID: 32311316 PMCID: PMC7231890 DOI: 10.1016/j.bpj.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Several atomic structures have now been found for micrometer-scale amyloid fibrils or elongated microcrystals using a range of methods, including NMR, electron microscopy, and X-ray crystallography, with parallel β-sheet appearing as the most common secondary structure. The etiology of amyloid disease, however, indicates nanometer-scale assemblies of only tens of peptides as significant agents of cytotoxicity and contagion. By combining solution X-ray with molecular dynamics, we show that antiparallel structure dominates at the first stages of aggregation for a specific set of peptides, being replaced by parallel at large length scales only. This divergence in structure between small and large amyloid aggregates should inform future design of molecular therapeutics against nucleation or intercellular transmission of amyloid. Calculations and an overview from the literature argue that antiparallel order should be the first appearance of structure in many or most amyloid aggregation processes, regardless of the endpoint. Exceptions to this finding should exist, depending inevitably on the sequence and on solution conditions.
Collapse
|
6
|
Lazzaro S, Ogrinc N, Lamont L, Vecchio G, Pappalardo G, Heeren RMA. Ion mobility spectrometry combined with multivariate statistical analysis: revealing the effects of a drug candidate for Alzheimer's disease on Aβ1-40 peptide early assembly. Anal Bioanal Chem 2019; 411:6353-6363. [PMID: 31407050 PMCID: PMC6718366 DOI: 10.1007/s00216-019-02030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Inhibition of the initial stages of amyloid-β peptide self-assembly is a key approach in drug development for Alzheimer's disease, in which soluble and highly neurotoxic low molecular weight oligomers are produced and aggregate in the brain over time. Here we report a high-throughput method based on ion mobility mass spectrometry and multivariate statistical analysis to rapidly select statistically significant early-stage species of amyloid-β1-40 whose formation is inhibited by a candidate theranostic agent. Using this method, we have confirmed the inhibition of a Zn-porphyrin-peptide conjugate in the early self-assembly of Aβ40 peptide. The MS/MS fragmentation patterns of the species detected in the samples containing the Zn-porphyrin-peptide conjugate suggested a porphyrin-catalyzed oxidation at Met-35(O) of Aβ40. We introduce ion mobility MS combined with multivariate statistics as a systematic approach to perform data analytics in drug discovery/amyloid research that aims at the evaluation of the inhibitory effect on the Aβ early assembly in vitro models at very low concentration levels of Aβ peptides.
Collapse
Affiliation(s)
- Serena Lazzaro
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Paolo Gaifami N.18, 95126, Catania, Italy
| | - Nina Ogrinc
- The Maastricht Multimodal Molecular Imaging institute M4I- Division of Imaging Mass Spectrometry, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
| | - Lieke Lamont
- The Maastricht Multimodal Molecular Imaging institute M4I- Division of Imaging Mass Spectrometry, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
| | - Graziella Vecchio
- Department of Chemical Sciences, Catania University, Viale Andrea Doria, 6, 95125, Catania, Italy
| | - Giuseppe Pappalardo
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Paolo Gaifami N.18, 95126, Catania, Italy
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging institute M4I- Division of Imaging Mass Spectrometry, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Skamris T, Marasini C, Madsen KL, Foderà V, Vestergaard B. Early Stage Alpha-Synuclein Amyloid Fibrils are Reservoirs of Membrane-Binding Species. Sci Rep 2019; 9:1733. [PMID: 30741994 PMCID: PMC6370759 DOI: 10.1038/s41598-018-38271-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
The presence of αSN fibrils indisputably associates with the development of synucleinopathies. However, while certain fibril morphologies have been linked to downstream pathological phenotypes, others appear less harmful, leading to the concept of fibril strains, originally described in relation to prion disease. Indeed, the presence of fibrils does not associate directly with neurotoxicity. Rather, it has been suggested that the toxic compounds are soluble amyloidogenic oligomers, potentially co-existing with fibrils. Here, combining synchrotron radiation circular dichroism, transmission electron microscopy and binding assays on native plasma membrane sheets, we reveal distinct biological and biophysical differences between initial and matured fibrils, transformed within the timespan of few days. Immature fibrils are reservoirs of membrane-binding species, which in response to even gentle experimental changes release into solution in a reversible manner. In contrast, mature fibrils, albeit macroscopically indistinguishable from their less mature counterparts, are structurally robust, shielding the solution from the membrane active soluble species. We thus show that particular biological activity resides transiently with the fibrillating sample, distinct for one, but not the other, spontaneously formed fibril polymorph. These results shed new light on the principles of fibril polymorphism with consequent impact on future design of assays and therapeutic development.
Collapse
Affiliation(s)
- Thomas Skamris
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Carlotta Marasini
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Institute, Maersk Tower 7.5, 2200, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
9
|
Lu L, Deng Y, Li X, Li H, Karniadakis GE. Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. J Phys Chem B 2018; 122:11302-11310. [PMID: 30106299 DOI: 10.1021/acs.jpcb.8b07255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulation and aggregation of amyloid are associated with the pathogenesis of many human diseases, such as Alzheimer's disease and Type 2 diabetes mellitus. Therefore, a quantitative understanding of the molecular mechanisms causing different aggregated structures and biomechanical properties of amyloid fibrils could shed some light into the progression of these diseases. In this work, we develop coarse-grained molecular dynamics (CGMD) models to simulate the dynamic self-assembly of two types of amyloids (amylin and amyloid β (Aβ)). We investigate the structural and mechanical properties of different types of aggregated amyloid fibrils. Our simulations demonstrate that amyloid fibrils could result from longitudinal growth of protofilament bundles, confirming one of the hypotheses on the fibril formation. In addition, we find that the persistence length of amylin fibrils increases concurrently with their pitch length, suggesting that the bending stiffness of amylin fibrils becomes larger when the amylin fibrils are less twisted. Similar results are observed for Aβ fibrils. These findings quantify the connection between the structural and the biomechanical properties of the fibrils. The CGMD models developed in this work can be potentially used to examine efficacy of anti-aggregation drugs, which could help in developing new treatments.
Collapse
Affiliation(s)
- Lu Lu
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - Yixiang Deng
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Xuejin Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - He Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - George Em Karniadakis
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
10
|
Choi H, Yoon T, Na S. Length-Dependent Manifestation of Vibration Modes Regulates a Specific Intermediate Morphology of Aβ17-42 in Different Environments. Chemphyschem 2018; 19:1643-1654. [PMID: 29575445 DOI: 10.1002/cphc.201800010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 12/25/2022]
Abstract
Various cytotoxic mechanisms for neurodegenerative disease are induced by specific conformations of Aβ intermediates. The efforts to understand the diverse intermediate forms of amyloid oligomers have been focused on understanding the aggregation mechanism of specific morphologies for Aβ intermediates. However, these are still not easy tasks to be accomplished because the diverse conformations of Aβ intermediates can be altered during the aggregation process, even though the same Aβ monomers are present. Thus, efforts to reveal the conformational change mechanism could be a fundamental process to understand the formation of diverse Aβ intermediate conformations. Here, we evaluate the conformational characteristics of Aβ17-42 fibrillar oligomers in different environments according to the length. We observed that Aβ fibrillar oligomers optimize their inherent hydrogen bonds and configurational entropy to stabilize their structure according to the simulation time and their length increase. In addition, we revealed the role of the expressed vibration mode shape in the fibrillar oligomers' elongation and deformation processes. Our results suggest that limitations in amyloid oligomer growth and transformations of their morphologies can be regulated and controlled by modifying the vibration features.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
11
|
Ilie IM, den Otter WK, Briels WJ. The attachment of α-synuclein to a fiber: A coarse-grain approach. J Chem Phys 2018; 146:115102. [PMID: 28330339 DOI: 10.1063/1.4978297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present simulations of the amyloidogenic core of α-synuclein, the protein causing Parkinson's disease, as a short chain of coarse-grain patchy particles. Each particle represents a sequence of about a dozen amino acids. The fluctuating secondary structure of this intrinsically disordered protein is modelled by dynamic variations of the shape and interaction characteristics of the patchy particles, ranging from spherical with weak isotropic attractions for the disordered state to spherocylindrical with strong directional interactions for a β-sheet. Flexible linkers between the particles enable sampling of the tertiary structure. This novel model is applied here to study the growth of an amyloid fibril, by calculating the free energy profile of a protein attaching to the end of a fibril. The simulation results suggest that the attaching protein readily becomes trapped in a mis-folded state, thereby inhibiting further growth of the fibril until the protein has readjusted to conform to the fibril structure, in line with experimental findings and previous simulations on small fragments of other proteins.
Collapse
Affiliation(s)
- Ioana M Ilie
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K den Otter
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wim J Briels
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Periole X, Huber T, Bonito-Oliva A, Aberg KC, van der Wel PCA, Sakmar TP, Marrink SJ. Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. J Phys Chem B 2018; 122:1081-1091. [PMID: 29254334 PMCID: PMC5857390 DOI: 10.1021/acs.jpcb.7b10233] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Amyloid fibrils are highly ordered protein aggregates associated with more than 40 human diseases. The exact conditions under which the fibrils are grown determine many types of reported fibril polymorphism, including different twist patterns. Twist-based polymorphs display unique mechanical properties in vitro, and the relevance of twist polymorphism in amyloid diseases has been suggested. We present transmission electron microscopy images of Aβ42-derived (amyloid β) fibrils, which are associated with Alzheimer's disease, demonstrating the presence of twist variability even within a single long fibril. To better understand the molecular underpinnings of twist polymorphism, we present a structural and thermodynamics analysis of molecular dynamics simulations of the twisting of β-sheet protofilaments of a well-characterized cross-β model: the GNNQQNY peptide from the yeast prion Sup35. The results show that a protofilament model of GNNQQNY is able to adopt twist angles from -11° on the left-hand side to +8° on the right-hand side in response to various external conditions, keeping an unchanged peptide structure. The potential of mean force (PMF) of this cross-β structure upon twisting revealed that only ∼2kBT per peptide are needed to stabilize a straight conformation with respect to the left-handed free-energy minimum. The PMF also shows that the canonical structural core of β-sheets, i.e., the hydrogen-bonded backbone β-strands, favors the straight conformation. However, the concerted effects of the side chains contribute to twisting, which provides a rationale to correlate polypeptide sequence, environmental growth conditions and number of protofilaments in a fibril with twist polymorphisms.
Collapse
Affiliation(s)
- Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Alessandra Bonito-Oliva
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Karina C Aberg
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Patrick C A van der Wel
- Department of Structural Biology and Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet , 141 57 Huddinge, Sweden
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Groningen 9747 AG, The Netherlands
| |
Collapse
|
13
|
Pizzi A, Pigliacelli C, Gori A, Ikkala O, Demitri N, Terraneo G, Castelletto V, Hamley IW, Baldelli Bombelli F, Metrangolo P. Halogenation dictates the architecture of amyloid peptide nanostructures. NANOSCALE 2017; 9:9805-9810. [PMID: 28696473 PMCID: PMC5708343 DOI: 10.1039/c7nr03263c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Amyloid peptides yield a plethora of interesting nanostructures though difficult to control. Here we report that depending on the number, position, and nature of the halogen atoms introduced into either one or both phenylalanine benzene rings of the amyloid β peptide-derived core-sequence KLVFF, four different architectures were obtained in a controlled manner. Our findings demonstrate that halogenation may develop as a general strategy to engineer amyloidal peptide self-assembly and obtain new amyloidal nanostructures.
Collapse
Affiliation(s)
- Andrea Pizzi
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, Milano I-20131, Italy.
| | | | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare - National Research Council of Italy (ICRM-CNR), Laboratory of Peptide and Protein Chemistry, Via Mario Bianco 9, 20131 Milano, Italy
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo, FI-02150, Finland
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza - Trieste, Italy
| | - Giancarlo Terraneo
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, Milano I-20131, Italy.
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, Milano I-20131, Italy.
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, Milano I-20131, Italy. and Department of Applied Physics, Aalto University, Espoo, FI-02150, Finland and Istituto di Chimica del Riconoscimento Molecolare - National Research Council of Italy (ICRM-CNR), Laboratory of Peptide and Protein Chemistry, Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
14
|
Meric G, Robinson AS, Roberts CJ. Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions. Annu Rev Chem Biomol Eng 2017; 8:139-159. [DOI: 10.1146/annurev-chembioeng-060816-101404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gulsum Meric
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Christopher J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
15
|
Choi H, Chang HJ, Lee M, Na S. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules. Chemphyschem 2017; 18:817-827. [PMID: 28160391 DOI: 10.1002/cphc.201601327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Indexed: 11/12/2022]
Abstract
In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Joon Chang
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myeongsang Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
16
|
Lee M, Chang HJ, Baek I, Na S. Structural analysis of oligomeric and protofibrillar Aβ amyloid pair structures considering F20L mutation effects using molecular dynamics simulations. Proteins 2016; 85:580-592. [PMID: 28019690 DOI: 10.1002/prot.25232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/12/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Aβ amyloid proteins are involved in neuro-degenerative diseases such as Alzheimer's, Parkinson's, and so forth. Because of its structurally stable feature under physiological conditions, Aβ amyloid protein disrupts the normal cell function. Because of these concerns, understanding the structural feature of Aβ amyloid protein in detail is crucial. There have been some efforts on lowering the structural stabilities of Aβ amyloid fibrils by decreasing the aromatic residues characteristic and hydrophobic effect. Yet, there is a lack of understanding of Aβ amyloid pair structures considering those effects. In this study, we provide the structural characteristics of wildtype (WT) and phenylalanine residue mutation to leucine (F20L) Aβ amyloid pair structures using molecular dynamics simulation in detail. We also considered the polymorphic feature of F20L and WT Aβ pair amyloids based on the facing β-strand directions between the amyloid pairs. As a result, we were able to observe the varying effects of mutation, polymorphism, and protofibril lengths on the structural stability of pair amyloids. Furthermore, we have also found that opposite structural stability exists on a certain polymorphic Aβ pair amyloids depending on its oligomeric or protofibrillar state, which can be helpful for understanding the amyloid growth mechanism via repetitive fragmentation and elongation mechanism. Proteins 2017; 85:580-592. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myeongsang Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Joon Chang
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Inchul Baek
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
17
|
MacLea KS. What Makes a Prion: Infectious Proteins From Animals to Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:227-276. [PMID: 28109329 DOI: 10.1016/bs.ircmb.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation.
Collapse
Affiliation(s)
- K S MacLea
- University of New Hampshire, Manchester, NH, United States.
| |
Collapse
|
18
|
Matthes D, Gapsys V, Brennecke JT, de Groot BL. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Sci Rep 2016; 6:33156. [PMID: 27616019 PMCID: PMC5018807 DOI: 10.1038/srep33156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
The formation of well-defined filamentous amyloid structures involves a polydisperse collection of oligomeric states for which relatively little is known in terms of structural organization. Here we use extensive, unbiased explicit solvent molecular dynamics (MD) simulations to investigate the structural and dynamical features of oligomeric aggregates formed by a number of highly amyloidogenic peptides at atomistic resolution on the μs time scale. A consensus approach has been adopted to analyse the simulations in multiple force fields, yielding an in-depth characterization of pre-fibrillar oligomers and their global and local structure properties. A collision cross section analysis revealed structurally heterogeneous aggregate ensembles for the individual oligomeric states that lack a single defined quaternary structure during the pre-nucleation phase. To gain insight into the conformational space sampled in early aggregates, we probed their substructure and found emerging β-sheet subunit layers and a multitude of ordered intermolecular β-structure motifs with growing aggregate size. Among those, anti-parallel out-of-register β-strands compatible with toxic β-barrel oligomers were particularly prevalent already in smaller aggregates and formed prior to ordered fibrillar structure elements. Notably, also distinct fibril-like conformations emerged in the oligomeric state and underscore the notion that pre-nucleated oligomers serve as a critical intermediate step on-pathway to fibrils.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Julian T Brennecke
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 2016; 45:5589-5604. [PMID: 27487936 DOI: 10.1039/c6cs00176a] [Citation(s) in RCA: 632] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | |
Collapse
|
20
|
Nucleation of polymorphic amyloid fibrils. Biophys J 2016; 108:1176-86. [PMID: 25762329 DOI: 10.1016/j.bpj.2015.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/23/2022] Open
Abstract
One and the same protein can self-assemble into amyloid fibrils with different morphologies. The phenomenon of fibril polymorphism is relevant biologically because different fibril polymorphs can have different toxicity, but there is no tool for predicting which polymorph forms and under what conditions. Here, we consider the nucleation of polymorphic amyloid fibrils occurring by direct polymerization of monomeric proteins into fibrils. We treat this process within the framework of our newly developed nonstandard nucleation theory, which allows prediction of the concentration dependence of the nucleation rate for different fibril polymorphs. The results highlight that the concentration dependence of the nucleation rate is closely linked with the protein solubility and a threshold monomer concentration below which fibril formation becomes biologically irrelevant. The relation between the nucleation rate, the fibril solubility, the threshold concentration, and the binding energies of the fibril building blocks within fibrils might prove a valuable tool for designing new experiments to control the formation of particular fibril polymorphs.
Collapse
|
21
|
Choi H, Lee M, Park HS, Na S. The effect of structural heterogeneity on the conformation and stability of Aβ–tau mixtures. RSC Adv 2016. [DOI: 10.1039/c6ra09467h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Oligomeric and fibrillar amyloids, which cause neurodegenerative diseases, are typically formed through repetitive fracture and elongation processes involving single homogeneous amyloid monomers.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Myeongsang Lee
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Harold S. Park
- Department of Mechanical Engineering
- Boston University
- Boston
- USA
| | - Sungsoo Na
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
22
|
Yoon G, Lee M, Kim K, In Kim J, Joon Chang H, Baek I, Eom K, Na S. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations. Phys Biol 2015; 12:066021. [DOI: 10.1088/1478-3975/12/6/066021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Kim JI, Lee M, Baek I, Yoon G, Na S. The mechanical response of hIAPP nanowires based on different bending direction simulations. Phys Chem Chem Phys 2015; 16:18493-500. [PMID: 25073067 DOI: 10.1039/c4cp02494j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid proteins, implicated in numerous aging-related diseases, possess remarkable mechanical properties. Polymorphism leads to different arrangements of β sheets in amyloid fibrils, which changes the characteristics of the hydrogen bond network that determines their mechanical properties and structural characteristics. We performed bending simulations using molecular dynamics methods under constant-velocity conditions in different bending directions. Two different fibril structures, parallel/homo and parallel/hetero, of hIAPP amyloids were considered. Though the bending configuration influences the toughness of the material, our results indicate that the basic material behavior is affected by the β-sheet arrangement that is determined by the type of polymorphism in amyloid fibrils.
Collapse
Affiliation(s)
- J I Kim
- Department of Mechanical Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
24
|
Langkilde AE, Morris KL, Serpell LC, Svergun DI, Vestergaard B. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:882-95. [PMID: 25849399 PMCID: PMC4388266 DOI: 10.1107/s1399004715001674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/25/2015] [Indexed: 11/12/2022]
Abstract
Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.
Collapse
Affiliation(s)
- Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kyle L. Morris
- School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg, Germany
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Wineman-Fisher V, Atsmon-Raz Y, Miller Y. Orientations of residues along the β-arch of self-assembled amylin fibril-like structures lead to polymorphism. Biomacromolecules 2014; 16:156-65. [PMID: 25420121 DOI: 10.1021/bm501326y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amylin is an endocrine hormone peptide that consists of 37 residues and is the main component of extracellular amyloid deposits found in the pancreas of most type 2 diabetes patients. Amylin peptides are self-assembled to form oligomers and fibrils. So far, four different molecular structures of the self-assembled amylin fibrils have been observed experimentally: two ssNMR models and two crystal models. This study reveals, for the first time, that there are four self-assembled amylin forms that differ in the orientations of the side chains along the β-arch and are all derived from the two ssNMR models. The two ssNMR models are composed of these four different self-assembled forms of amylin, and the two crystal models are composed of two different self-assembled forms of amylin. This study illustrates at the atomic level the differences among the four experimental models and proposes eight new models of self-assembled amylin that are also composed of the four different self-assembled forms of amylin. Our results show polymorphism of the self-assembled fibril-like amylin, with a slight preference of some of the newly constructed models over the experimental models. Finally, we propose that two different self-assembled fibril-like forms of amylin can interact to form a new fibril-like amylin. We investigated this argument and found that some fibril-like amylin prefers to interact to form stable fibril-like structures, whereas others disfavor it. Our work provides new insights that may suggest strategies for future pharmacological studies that aim to find ways to ameliorate the interactions between polymorphic oligomers and fibrils of amylin.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
26
|
Berhanu WM, Hansmann UHE. Stability of amyloid oligomers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:113-41. [PMID: 25443956 DOI: 10.1016/bs.apcsb.2014.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Molecular simulations are now commonly used to complement experimental techniques in investigating amyloids and their role in human diseases. In this chapter, we will summarize techniques and approaches often used in amyloid simulations and will present recent success stories. Our examples will be focused on lessons learned from molecular dynamics simulations in aqueous environments that start from preformed aggregates. These studies explore the limitations that arise from the choice of force field, the role of mutations in the growth of amyloid aggregates, segmental polymorphism, and the importance of cross-seeding. Furthermore, they give evidence for potential toxicity mechanisms. We finally discuss the role of molecular simulations in the search for aggregation inhibitors.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
27
|
Yang YI, Gao YQ. Computer Simulation Studies of Aβ37–42 Aggregation Thermodynamics and Kinetics in Water and Salt Solution. J Phys Chem B 2014; 119:662-70. [DOI: 10.1021/jp502169b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Y. Isaac Yang
- Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
|
29
|
Lara C, Reynolds NP, Berryman JT, Xu A, Zhang A, Mezzenga R. ILQINS Hexapeptide, Identified in Lysozyme Left-Handed Helical Ribbons and Nanotubes, Forms Right-Handed Helical Ribbons and Crystals. J Am Chem Soc 2014; 136:4732-9. [DOI: 10.1021/ja500445z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cecile Lara
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| | - Nicholas P. Reynolds
- Materials
Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic 3169, Australia
| | - Joshua T. Berryman
- Faculty
of Science Technology and Communication, University of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg
| | - Anqiu Xu
- Department
of Polymer Materials, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Department
of Polymer Materials, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Raffaele Mezzenga
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| |
Collapse
|
30
|
Yoon G, Lee M, Kim JI, Na S, Eom K. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils. PLoS One 2014; 9:e88502. [PMID: 24551113 PMCID: PMC3925137 DOI: 10.1371/journal.pone.0088502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/13/2014] [Indexed: 11/25/2022] Open
Abstract
Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.
Collapse
Affiliation(s)
- Gwonchan Yoon
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Myeongsang Lee
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jae In Kim
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- * E-mail: (KE); (SN)
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
- * E-mail: (KE); (SN)
| |
Collapse
|
31
|
Molecular Dynamics Studies on Amyloidogenic Proteins. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Ndlovu H, Ashcroft AE, Radford SE, Harris SA. Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2013; 4:429-440. [PMID: 23946911 PMCID: PMC3740767 DOI: 10.3762/bjnano.4.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.
Collapse
Affiliation(s)
- Hlengisizwe Ndlovu
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
33
|
|
34
|
Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits. Prog Neurobiol 2012; 99:226-45. [DOI: 10.1016/j.pneurobio.2012.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
|
35
|
Ma B, Nussinov R. Selective molecular recognition in amyloid growth and transmission and cross-species barriers. J Mol Biol 2012; 421:172-84. [PMID: 22119878 PMCID: PMC6407624 DOI: 10.1016/j.jmb.2011.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
Abstract
Mutual conformational selection and population shift followed by minor induced-fit optimization is the key mechanism in biomolecular recognition, and monomers and small oligomers binding to amyloid seeds in fibril growth is a molecular recognition event. Here, we describe amyloid aggregation, preferred species, cross-species barriers and transmission within the broad framework of molecular recognition. Cross-seeding of amyloid species is governed by conformational selection of compatible (complementary) states. If the dominant conformations of two species are similar, they can cross-seed each other; on the other hand, if they are sufficiently different, they will grow into different fibrils, reflecting species barriers. Such a scenario has recently been observed for the tau protein, which has four repeats. While a construct consisting of repeats 1, 3 and 4 can serve as a seed for the entire four-repeat tau segment, the inverse does not hold. On the other hand, the tau protein repeats with the characteristic U-turn shape can cross-seed Alzheimer's amyloid β and, similarly, the islet amyloid polypeptide. Within this framework, we suggest that the so-called "central dogma" of amyloid formation, where aggregation takes place through nonspecific backbone hydrogen bonding interactions, which are common to all peptides and proteins, is a simple reflection of the heterogeneous, polymorphic free-energy landscape of amyloid species. Here, we review available data and make some propositions addressing this key problem. In particular, we argue that recent theoretical and experimental observations support the key role of selective molecular recognition in amyloidosis and in determining cross-species barriers and transmission.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
36
|
Invernizzi G, Papaleo E, Sabate R, Ventura S. Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 2012; 44:1541-54. [PMID: 22713792 DOI: 10.1016/j.biocel.2012.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/27/2012] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying protein misfolding and aggregation has become a central issue in biology and medicine. Compelling evidence show that the formation of amyloid aggregates has a negative impact in cell function and is behind the most prevalent human degenerative disorders, including Alzheimer's Parkinson's and Huntington's diseases or type 2 diabetes. Surprisingly, the same type of macromolecular assembly is used for specialized functions by different organisms, from bacteria to human. Here we address the conformational properties of these aggregates, their formation pathways, their role in human diseases, their functional properties and how bioinformatics tools might be of help to study these protein assemblies.
Collapse
Affiliation(s)
- Gaetano Invernizzi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Ye W, Chen Y, Wang W, Yu Q, Li Y, Zhang J, Chen HF. Insight into the stability of cross-β amyloid fibril from VEALYL short peptide with molecular dynamics simulation. PLoS One 2012; 7:e36382. [PMID: 22590535 PMCID: PMC3349666 DOI: 10.1371/journal.pone.0036382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/30/2012] [Indexed: 12/13/2022] Open
Abstract
Amyloid fibrils are found in many fatal neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, type II diabetes, and prion disease. The VEALYL short peptide from insulin has been confirmed to aggregate amyloid-like fibrils. However, the aggregation mechanism of amyloid fibril is poorly understood. Here, we utilized molecular dynamics simulation to analyse the stability of VEALYL hexamer. The statistical results indicate that hydrophobic residues play key roles in stabilizing VEALYL hexamer. Single point and two linkage mutants confirmed that Val1, Leu4, and Tyr5 of VEALYL are key residues. The consistency of the results for the VEALYL oligomer suggests that the intermediate states might be trimer (3-0) and pentamer(3-2). These results can help us to obtain an insight into the aggregation mechanism of amyloid fibril. These methods can be used to study the stability of amyloid fibril from other short peptides.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yue Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Qingfen Yu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (HC); (YL); (JZ)
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (HC); (YL); (JZ)
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (HC); (YL); (JZ)
| |
Collapse
|
38
|
Berhanu WM, Hansmann UHE. Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One 2012; 7:e41479. [PMID: 22911797 PMCID: PMC3404032 DOI: 10.1371/journal.pone.0041479] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/21/2012] [Indexed: 11/23/2022] Open
Abstract
It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer's disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dynamics simulations and find that the segmental polymorphic models of Aβ retain a U-shaped architecture. Our results demonstrate the importance of inter-sheet side chain-side chain contacts, hydrophobic contacts among the strands (β1 and β2) and of salt bridges in stabilizing the aggregates. Residues in β-sheet regions have smaller fluctuation while those at the edge and loop region are more mobile. The inter-peptide salt bridges between Asp23 and Lys28 are strong compared to intra-chain salt bridge and there is an exchange of the inter-chain salt-bridge with intra-chain salt bridge. As our results suggest that Aβ exists under physiological conditions as an ensemble of distinct segmental polymorphs, it may be necessary to account in the development of therapeutics for Alzheimer's disease the differences in structural stability and aggregation behavior of the various Aβ polymorphic forms.
Collapse
Affiliation(s)
- Workalemahu M. Berhanu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
39
|
Buck PM, Kumar S, Wang X, Agrawal NJ, Trout BL, Singh SK. Computational methods to predict therapeutic protein aggregation. Methods Mol Biol 2012; 899:425-451. [PMID: 22735968 DOI: 10.1007/978-1-61779-921-1_26] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein based biotherapeutics have emerged as a successful class of pharmaceuticals. However, these macromolecules endure a variety of physicochemical degradations during manufacturing, shipping, and storage, which may adversely impact the drug product quality. Of these degradations, the irreversible self-association of therapeutic proteins to form aggregates is a major challenge in the formulation of these molecules. Tools to predict and mitigate protein aggregation are, therefore, of great interest to biopharmaceutical research and development. In this chapter, a number of such computational tools developed to understand and predict the various steps involved in protein aggregation are described. These tools can be grouped into three general classes: unfolding kinetics and native state thermal stability, colloidal stability, and sequence/structure based aggregation liabilities. Chapter sections introduce each class by discussing how these predictive tools provide insight into the molecular events leading to protein aggregation. The computational methods are then explained in detail along with their advantages and limitations.
Collapse
Affiliation(s)
- Patrick M Buck
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
40
|
Berhanu WM, Masunov AE. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics. Biopolymers 2011; 98:131-44. [PMID: 22020870 DOI: 10.1002/bip.21731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 10/14/2011] [Indexed: 12/13/2022]
Abstract
Amyloid aggregates have been implicated in the pathogenesis of diseases such as type 2 diabetes, Alzheimer's, Parkinson's, and prion disease. Recently determined microcrystal structures of several short peptide segments derived from fibril-forming proteins revealed coexistence of alternative aggregation modes (amyloid polymorphism) formed by the same segment. This polymorphism may help in understanding the influence of the side chain packing on the amyloid stability. Here we use molecular dynamics (MD) simulation to analyze the stability of five pairs of polar and nonpolar polymorphic oligomers. MD simulation shows polymorphs with steric zipper interface containing large polar and/or aromatic side chains (GNNQQNY, and NNQNTF) are more stable than steric zipper interfaces made of small or hydrophobic residues (SSTNGVG, VQIVYK, and MVGGVV). Several geometric analyses revealed that larger sheet to sheet interface of the dry steric zipper through polar Q/N rich side chains holds the sheets together. Mutant simulations (Q/N→G) show substitutions with glycine disrupt the steric zipper, leading to unstable oligomers. Stability of Q/N rich oligomers was found to result from the large average number of hydrogen bonds. The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method reports the nonpolar component of free energy to be favorable, while electrostatic solvation is unfavorable for β-sheet association. Knowledge of structural properties of these fibrils might be useful for developing therapeutic agents against amyloidoses as well as for developing biomaterials. © 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 131-144, 2012.
Collapse
|
41
|
Abstract
The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.
Collapse
Affiliation(s)
- Kyle S MacLea
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
42
|
Abstract
The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.
Collapse
|