1
|
Rebbeck RT, Svensson B, Zhang J, Samsó M, Thomas DD, Bers DM, Cornea RL. Kinetics and mapping of Ca-driven calmodulin conformations on skeletal and cardiac muscle ryanodine receptors. Nat Commun 2024; 15:5120. [PMID: 38879623 PMCID: PMC11180167 DOI: 10.1038/s41467-024-48951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/16/2024] [Indexed: 06/19/2024] Open
Abstract
Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jingyan Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Svensson B, Nitu FR, Rebbeck RT, McGurran LM, Oda T, Thomas DD, Bers DM, Cornea RL. Molecular Mechanism of a FRET Biosensor for the Cardiac Ryanodine Receptor Pathologically Leaky State. Int J Mol Sci 2023; 24:12547. [PMID: 37628726 PMCID: PMC10454150 DOI: 10.3390/ijms241612547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Florentin R. Nitu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Robyn T. Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Lindsey M. McGurran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| |
Collapse
|
3
|
Svensson B, Nitu FR, Rebbeck RT, McGurran LM, Oda T, Thomas DD, Bers DM, Cornea RL. Molecular Mechanism of a FRET Biosensor for the Cardiac Ryanodine Receptor Pathologically Leaky State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548138. [PMID: 37461514 PMCID: PMC10350043 DOI: 10.1101/2023.07.07.548138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ca 2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide, (DPc10) detects leaky RyR2 in cardiomyocytes. Conversely, calmodulin (CaM) inhibits RyR2 leak. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. Here we used FRET to understand the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca 2+ , DPc10 decreased both FRET max (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca 2+ , DPc10 decreased FRET max without affecting CaM/RyR2 binding affinity. This correlates with analysis of fluorescence-lifetime-detected FRET indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca 2+ and lengthens D-FKBP/A-CaM distances independent of [Ca 2+ ]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, this effect being larger in micromolar vs. nanomolar Ca 2+ . Moreover, A-DPc10/RyR2 binding is cooperative in CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Florentin R. Nitu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Robyn T. Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Lindsey M. McGurran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Tetsuro Oda
- Department of Pharmacology, University of California, Davis
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| |
Collapse
|
4
|
Haji-Ghassemi O, Chen YS, Woll K, Gurrola GB, Valdivia CR, Cai W, Li S, Valdivia HH, Van Petegem F. Cryo-EM analysis of scorpion toxin binding to Ryanodine Receptors reveals subconductance that is abolished by PKA phosphorylation. SCIENCE ADVANCES 2023; 9:eadf4936. [PMID: 37224245 PMCID: PMC10208580 DOI: 10.1126/sciadv.adf4936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo-electron microscopy to reveal the binding and structural effects of imperacalcin, showing that it opens the channel pore and causes large asymmetry throughout the cytosolic assembly of the tetrameric RyR. This also creates multiple extended ion conduction pathways beyond the transmembrane region, resulting in subconductance. Phosphorylation of imperacalcin by protein kinase A prevents its binding to RyR through direct steric hindrance, showing how posttranslational modifications made by the host organism can determine the fate of a natural toxin. The structure provides a direct template for developing calcin analogs that result in full channel block, with potential to treat RyR-related disorders.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kellie Woll
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Georgina B. Gurrola
- Universidad Nacional Autónoma de México, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotechnología, Cuaernavaca, Morelos 62271, Mexico
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wenxuan Cai
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Songhua Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hector H. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Endoplasmic reticulum stress promotes nuclear translocation of calmodulin, which activates phenotypic switching of vascular smooth muscle cells. Biochem Biophys Res Commun 2022; 628:155-162. [DOI: 10.1016/j.bbrc.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
|
6
|
Rebbeck R, Ginsburg KS, Ko CY, Fasoli A, Rusch K, Cai GF, Dong X, Thomas DD, Bers DM, Cornea RL. Synergistic FRET assays for drug discovery targeting RyR2 channels. J Mol Cell Cardiol 2022; 168:13-23. [PMID: 35405106 PMCID: PMC10088286 DOI: 10.1016/j.yjmcc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
A key therapeutic target for heart failure and arrhythmia is the deleterious leak through sarcoplasmic reticulum (SR) ryanodine receptor 2 (RyR2) calcium release channels. We have previously developed methods to detect the pathologically leaky state of RyR2 in adult cardiomyocytes by monitoring RyR2 binding to either calmodulin (CaM) or a biosensor peptide (DPc10). Here, we test whether these complementary binding measurements are effective as high-throughput screening (HTS) assays to discover small molecules that target leaky RyR2. Using FRET, we developed and validated HTS procedures under conditions that mimic a pathological state, to screen the library of 1280 pharmaceutically active compounds (LOPAC) for modulators of RyR2 in cardiac SR membrane preparations. Complementary FRET assays with acceptor-labeled CaM and DPc10 were used for Hit prioritization based on the opposing binding properties of CaM vs. DPc10. This approach narrowed the Hit list to one compound, Ro 90-7501, which altered FRET to suggest increased RyR2-CaM binding and decreased DPc10 binding. Follow-up studies revealed that Ro 90-7501 does not detrimentally affect myocyte Ca2+ transients. Moreover, Ro 90-7501 partially inhibits overall Ca2+ leak, as assessed by Ca2+ sparks in permeabilized rat cardiomyocytes. Together, these results demonstrate (1) the effectiveness of our HTS approach where two complementary assays synergize for Hit ranking and (2) a drug discovery process that combines high-throughput, high-precision in vitro structural assays with in situ myocyte assays of the pathologic RyR2 leak. These provide a drug discovery platform compatible with large-scale HTS campaigns, to identify agents that inhibit RyR2 for therapeutic development.
Collapse
Affiliation(s)
- RobynT Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | | | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Anna Fasoli
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Katherine Rusch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | - George F Cai
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA
| | - Xiaoqiong Dong
- Department of Pharmacology, University of California, Davis, CA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA; Photonic Pharma LLC, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, USA; Photonic Pharma LLC, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
8
|
Calmodulin Mutations Associated with Heart Arrhythmia: A Status Report. Int J Mol Sci 2020; 21:ijms21041418. [PMID: 32093079 PMCID: PMC7073091 DOI: 10.3390/ijms21041418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular Ca2+ sensing protein that modifies gating of numerous ion channels. CaM has an extraordinarily high level of evolutionary conservation, which led to the fundamental assumption that mutation would be lethal. However, in 2012, complete exome sequencing of infants suffering from recurrent cardiac arrest revealed de novo mutations in the three human CALM genes. The correlation between mutations and pathophysiology suggests defects in CaM-dependent ion channel functions. Here, we review the current state of the field for all reported CaM mutations associated with cardiac arrhythmias, including knowledge of their biochemical and structural characteristics, and progress towards understanding how these mutations affect cardiac ion channel function.
Collapse
|
9
|
RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca 2+ assays. Sci Rep 2020; 10:1791. [PMID: 32019969 PMCID: PMC7000700 DOI: 10.1038/s41598-020-58461-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 11/18/2022] Open
Abstract
Elevated cytoplasmic [Ca2+] is characteristic in severe skeletal and cardiac myopathies, diabetes, and neurodegeneration, and partly results from increased Ca2+ leak from sarcoplasmic reticulum stores via dysregulated ryanodine receptor (RyR) channels. Consequently, RyR is recognized as a high-value target for drug discovery to treat such pathologies. Using a FRET-based high-throughput screening assay that we previously reported, we identified small-molecule compounds that modulate the skeletal muscle channel isoform (RyR1) interaction with calmodulin and FK506 binding protein 12.6. Two such compounds, chloroxine and myricetin, increase FRET and inhibit [3H]ryanodine binding to RyR1 at nanomolar Ca2+. Both compounds also decrease RyR1 Ca2+ leak in human skinned skeletal muscle fibers. Furthermore, we identified compound concentrations that reduced leak by > 50% but only slightly affected Ca2+ release in excitation-contraction coupling, which is essential for normal muscle contraction. This report demonstrates a pipeline that effectively filters small-molecule RyR1 modulators towards clinical relevance.
Collapse
|
10
|
Johnson CN, Pattanayek R, Potet F, Rebbeck RT, Blackwell DJ, Nikolaienko R, Sequeira V, Le Meur R, Radwański PB, Davis JP, Zima AV, Cornea RL, Damo SM, Györke S, George AL, Knollmann BC. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of Na V1.5 and RyR2 function. Cell Calcium 2019; 82:102063. [PMID: 31401388 DOI: 10.1016/j.ceca.2019.102063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM-protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.
Collapse
Affiliation(s)
- Christopher N Johnson
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Rekha Pattanayek
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Franck Potet
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Blackwell
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Remy Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville TN 37204, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jonathan P Davis
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alfred L George
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Björn C Knollmann
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
11
|
Walweel K, Gomez-Hurtado N, Rebbeck RT, Oo YW, Beard NA, Molenaar P, Dos Remedios C, van Helden DF, Cornea RL, Knollmann BC, Laver DR. Calmodulin inhibition of human RyR2 channels requires phosphorylation of RyR2-S2808 or RyR2-S2814. J Mol Cell Cardiol 2019; 130:96-106. [PMID: 30928430 DOI: 10.1016/j.yjmcc.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023]
Abstract
Calmodulin (CaM) is a Ca-binding protein that binds to, and can directly inhibit cardiac ryanodine receptor calcium release channels (RyR2). Animal studies have shown that RyR2 hyperphosphorylation reduces CaM binding to RyR2 in failing hearts, but data are lacking on how CaM regulates human RyR2 and how this regulation is affected by RyR2 phosphorylation. Physiological concentrations of CaM (100 nM) inhibited the diastolic activity of RyR2 isolated from failing human hearts by ~50% but had no effect on RyR2 from healthy human hearts. Using FRET between donor-FKBP12.6 and acceptor-CaM bound to RyR2, we determined that CaM binds to RyR2 from healthy human heart with a Kd = 121 ± 14 nM. Ex-vivo phosphorylation/dephosphorylation experiments suggested that the divergent CaM regulation of healthy and failing human RyR2 was caused by differences in RyR2 phosphorylation by protein kinase A and Ca-CaM-dependent kinase II. Ca2+-spark measurements in murine cardiomyocytes harbouring RyR2 phosphomimetic or phosphoablated mutants at S2814 and S2808 suggest that phosphorylation of residues corresponding to either human RyR2-S2808 or S2814 is both necessary and sufficient for RyR2 regulation by CaM. Our results challenge the current concept that CaM universally functions as a canonical inhibitor of RyR2 across species. Rather, CaM's biological action on human RyR2 appears to be more nuanced, with inhibitory activity only on phosphorylated RyR2 channels, which occurs during exercise or in patients with heart failure.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | - Nieves Gomez-Hurtado
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Ye Wint Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - Nicole A Beard
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia.
| | - Peter Molenaar
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, QLD 4032. Australia.
| | - Cris Dos Remedios
- Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Ca 2+-dependent calmodulin binding to cardiac ryanodine receptor (RyR2) calmodulin-binding domains. Biochem J 2019; 476:193-209. [PMID: 30530841 PMCID: PMC6340113 DOI: 10.1042/bcj20180545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
Abstract
The Ca2+ sensor calmodulin (CaM) regulates cardiac ryanodine receptor (RyR2)-mediated Ca2+ release from the sarcoplasmic reticulum. CaM inhibits RyR2 in a Ca2+-dependent manner and aberrant CaM-dependent inhibition results in life-threatening cardiac arrhythmias. However, the molecular details of the CaM–RyR2 interaction remain unclear. Four CaM-binding domains (CaMBD1a, -1b, -2, and -3) in RyR2 have been proposed. Here, we investigated the Ca2+-dependent interactions between CaM and these CaMBDs by monitoring changes in the fluorescence anisotropy of carboxytetramethylrhodamine (TAMRA)-labeled CaMBD peptides during titration with CaM at a wide range of Ca2+ concentrations. We showed that CaM bound to all four CaMBDs with affinities that increased with Ca2+ concentration. CaM bound to CaMBD2 and -3 with high affinities across all Ca2+ concentrations tested, but bound to CaMBD1a and -1b only at Ca2+ concentrations above 0.2 µM. Binding experiments using individual CaM domains revealed that the CaM C-domain preferentially bound to CaMBD2, and the N-domain to CaMBD3. Moreover, the Ca2+ affinity of the CaM C-domain in complex with CaMBD2 or -3 was so high that these complexes are essentially Ca2+ saturated under resting Ca2+ conditions. Conversely, the N-domain senses Ca2+ exactly in the transition from resting to activating Ca2+ when complexed to either CaMBD2 or -3. Altogether, our results support a binding model where the CaM C-domain is anchored to RyR2 CaMBD2 and saturated with Ca2+ during Ca2+ oscillations, while the CaM N-domain functions as a dynamic Ca2+ sensor that can bridge noncontiguous regions of RyR2 or clamp down onto CaMBD2.
Collapse
|
13
|
Oda T, Yamamoto T, Kato T, Uchinoumi H, Fukui G, Hamada Y, Nanno T, Ishiguchi H, Nakamura Y, Okamoto Y, Kono M, Okuda S, Kobayashi S, Bers DM, Yano M. Nuclear translocation of calmodulin in pathological cardiac hypertrophy originates from ryanodine receptor bound calmodulin. J Mol Cell Cardiol 2018; 125:87-97. [PMID: 30359562 DOI: 10.1016/j.yjmcc.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 01/19/2023]
Abstract
In cardiac myocytes Calmodulin (CaM) bound to the ryanodine receptor (RyR2) constitutes a large pool of total myocyte CaM, but the CaM-RyR2 affinity is reduced in pathological conditions. Knock-in mice expressing RyR2 unable to bind CaM also developed hypertrophy and early death. However, it is unknown whether CaM released from this RyR2-bound pool participates in pathological cardiac hypertrophy. We found that angiotensin II (AngII) or phenylephrine (PE) both cause CaM to dissociate from the RyR2 and translocate to the nucleus. To test whether this nuclear CaM accumulation depends on CaM released from RyR2, we enhanced CaM-RyR2 binding affinity (with dantrolene), or caused CaM dissociation from RyR2 (using suramin). Dantrolene dramatically reduced AngII- and PE-induced nuclear CaM accumulation. Conversely, suramin enhanced nuclear CaM accumulation. This is consistent with nuclear CaM accumulation coming largely from the CaM-RyR2 pool. CaM lacks a nuclear localization signal (NLS), but G-protein coupled receptor kinase 5 (GRK5) binds CaM, has a NLS and translocates like CaM in response to AngII or PE. Suramin also promoted GRK5 nuclear import, and caused nuclear export of histone deacetylase 5 (HDAC5). Dantrolene prevented these effects. After 2-8 weeks of pressure overload (TAC) CaM binding to RyR2 was reduced, nuclear CaM and GRK5 were both elevated and there was enhanced nuclear export of HDAC5. Stress (acute AngII or TAC) causes CaM dissociation from RyR2 and translocation to the nucleus with GRK5 with parallel HDAC5 nuclear export. Thus CaM dissociation from RyR2 may be an important step in driving pathological hypertrophic gene transcription.
Collapse
Affiliation(s)
- Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan; Department of Pharmacology, University of California, Davis, CA, United States.
| | - Takeshi Yamamoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takayoshi Kato
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan; Department of Pharmacology, University of California, Davis, CA, United States
| | - Go Fukui
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoriomi Hamada
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takuma Nanno
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hironori Ishiguchi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoko Okamoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Michiaki Kono
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
14
|
Galice S, Xie Y, Yang Y, Sato D, Bers DM. Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. J Am Heart Assoc 2018; 7:e008724. [PMID: 29929992 PMCID: PMC6064922 DOI: 10.1161/jaha.118.008724] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ryanodine receptors (RyR) mediate sarcoplasmic reticulum calcium (Ca2+) release and influence myocyte Ca2+ homeostasis and arrhythmias. In cardiac myocytes, RyRs are found in clusters of various sizes and shapes, and RyR cluster size may critically influence normal and arrhythmogenic Ca2+ spark and wave formation. However, the actual RyR cluster sizes at specific Ca2+ spark sites have never been measured in the physiological setting. METHODS AND RESULTS Here we measured RyR cluster size and Ca2+ sparks simultaneously to assess how RyR cluster size influences Ca2+ sparks and sarcoplasmic reticulum Ca2+ leak. For small RyR cluster sizes (<50), Ca2+ spark frequency is very low but then increases dramatically at larger cluster sizes. In contrast, Ca2+ spark amplitude is nearly maximal even at relatively small RyR cluster size (≈10) and changes little at larger cluster size. These properties agreed with computational simulations of RyR gating within clusters. CONCLUSIONS Our study explains how this combination of properties may limit arrhythmogenic Ca2+ sparks and wave propagation (at many junctions) while preserving the efficacy and spatial synchronization of Ca2+-induced Ca2+-release during normal excitation-contraction coupling. However, variations in RyR cluster size among individual junctions and RyR sensitivity could exacerbate heterogeneity of local sarcoplasmic reticulum Ca2+ release and arrhythmogenesis under pathological conditions.
Collapse
Affiliation(s)
- Samuel Galice
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yuanfang Xie
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yi Yang
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA
| |
Collapse
|
15
|
Liu B, Walton SD, Ho HT, Belevych AE, Tikunova SB, Bonilla I, Shettigar V, Knollmann BC, Priori SG, Volpe P, Radwański PB, Davis JP, Györke S. Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrin-Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. J Am Heart Assoc 2018; 7:JAHA.117.008155. [PMID: 29720499 PMCID: PMC6015318 DOI: 10.1161/jaha.117.008155] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin (CASQ2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral‐mediated delivery to alleviate arrhythmias in non–CaM‐related CPVT. Methods and Results To that end, we have designed a CaM protein (GSH‐M37Q; dubbed as therapeutic CaM or T‐CaM) that exhibited a slowed N‐terminal Ca dissociation rate and prolonged RyR2 refractoriness in permeabilized myocytes derived from CPVT mice carrying the CASQ2 mutation R33Q. This T‐CaM was introduced to the heart of R33Q mice through recombinant adeno‐associated viral vector serotype 9. Eight weeks postinfection, we performed confocal microscopy to assess Ca handling and recorded surface ECGs to assess susceptibility to arrhythmias in vivo. During catecholamine stimulation with isoproterenol, T‐CaM reduced isoproterenol‐promoted diastolic Ca waves in isolated CPVT cardiomyocytes. Importantly, T‐CaM exposure abolished ventricular tachycardia in CPVT mice challenged with catecholamines. Conclusions Our results suggest that gene transfer of T‐CaM by adeno‐associated viral vector serotype 9 improves myocyte Ca handling and alleviates arrhythmias in a calsequestrin‐associated CPVT model, thus supporting the potential of a CaM‐based antiarrhythmic approach as a therapeutic avenue for genetically distinct forms of CPVT.
Collapse
Affiliation(s)
- Bin Liu
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH.,Department of Biological Sciences, Mississippi State University, Starkville, MI
| | - Shane D Walton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Hsiang-Ting Ho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Svetlana B Tikunova
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Vikram Shettigar
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Vanderbilt, TN
| | - Silvia G Priori
- Division of Cardiology and Molecular Cardiology, Maugeri Foundation-University of Pavia, Italy
| | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Italy
| | - Przemysław B Radwański
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Sándor Györke
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| |
Collapse
|
16
|
Klipp RC, Li N, Wang Q, Word TA, Sibrian-Vazquez M, Strongin RM, Wehrens XHT, Abramson JJ. EL20, a potent antiarrhythmic compound, selectively inhibits calmodulin-deficient ryanodine receptor type 2. Heart Rhythm 2017; 15:578-586. [PMID: 29248564 DOI: 10.1016/j.hrthm.2017.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disorder caused by mutations in the cardiac ryanodine receptor RyR2 that increase diastolic calcium cation (Ca2+) leak from the sarcoplasmic reticulum (SR). Calmodulin (CaM) dissociation from RyR2 has been associated with diastolic Ca2+ leak in heart failure. OBJECTIVE Determine whether the tetracaine-derivative compound EL20 inhibits abnormal Ca2+ release from RyR2 in a CPVT model and investigate the underlying mechanism of inhibition. METHODS Spontaneous Ca2+ sparks in cardiomyocytes and inducible ventricular tachycardia were assessed in a CPVT mouse model, which is heterozygous for the R176Q mutation in RyR2 (R176Q/+ mice) in the presence of EL20 or vehicle. Single-channel studies using sheep cardiac SR or purified RyR2 reconstituted into proteoliposomes with and without exogenous CaM were used to assess mechanisms of inhibition. RESULTS EL20 potently inhibits abnormal Ca2+ release in R176Q/+ myocytes (half-maximal inhibitory concentration = 35.4 nM) and diminishes arrhythmia in R176Q/+ mice. EL20 inhibition of single-channel activity of purified RyR2 occurs in a similar range as seen in R176Q/+ myocytes (half-maximal inhibitory concentration = 8.2 nM). Inhibition of single-channel activity for cardiac SR or purified RyR2 supplemented with 100-nM or 1-μM CaM shows a 200- to 1000-fold reduction in potency. CONCLUSION This work provides a potential therapeutic mechanism for the development of antiarrhythmic compounds that inhibit leaky RyR2 resulting from CaM dissociation, which is often associated with failing hearts. Our data also suggest that CaM dissociation may contribute to the pathogenesis of arrhythmias with the CPVT-linked R176Q mutation.
Collapse
Affiliation(s)
- Robert C Klipp
- Department of Physics, Portland State University, Portland, Oregon
| | - Na Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas; Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qiongling Wang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Tarah A Word
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | | | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, Oregon
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas; Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas; Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
17
|
Walweel K, Oo YW, Laver DR. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol 2017; 44:135-142. [PMID: 27626620 DOI: 10.1111/1440-1681.12669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Cardiac output and rhythm depend on the release and the take-up of calcium from the sarcoplasmic reticulum (SR). Excessive diastolic calcium leak from the SR due to dysfunctional calcium release channels (RyR2) contributes to the formation of delayed after-depolarizations, which underlie the fatal arrhythmias that occur in heart failure and inherited syndromes. Calmodulin (CaM) is a calcium-binding protein that regulates target proteins and acts as a calcium sensor. CaM is comprised of two calcium-binding EF-hand domains and a flexible linker. CaM is an accessory protein that partially inhibits RyR2 channel activity. CaM is critical for normal cardiac function, and altered CaM binding and efficacy may contribute to defects in SR calcium release. The present paper reviews CaM binding to RyR2 and how it regulates RyR2 channel activity. It then goes on to review how mutations in the CaM amino acid sequence give rise to inherited syndromes such as Catecholaminergic Polymorphic Ventricular Tachychardia (CPVT) and long QT syndrome (LQTS). In addition, the role of reduced CaM binding to RyR2 that results from RyR2 phosphorylation or from oxidation of either RyR2 or CaM contributes to the progression of heart failure is reviewed. Finally, this manuscript reviews recent evidence that CaM binding to RyR2 is required for the inhibitory action of a pharmaceutical agent (dantrolene) on RyR2. Dantrolene is a clinically used muscle relaxant that has recently been found to exert antiarrhythmic effects against SR Ca2+ overload arrhythmias.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| |
Collapse
|
18
|
Gomez-Hurtado N, Boczek NJ, Kryshtal DO, Johnson CN, Sun J, Nitu FR, Cornea RL, Chazin WJ, Calvert ML, Tester DJ, Ackerman MJ, Knollmann BC. Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks. Circ Arrhythm Electrophysiol 2017; 9:CIRCEP.116.004161. [PMID: 27516456 DOI: 10.1161/circep.116.004161] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/28/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Calmodulin (CaM) mutations are associated with severe forms of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). CaM mutations are found in 13% of genotype-negative long QT syndrome patients, but the prevalence of CaM mutations in genotype-negative CPVT patients is unknown. Here, we identify and characterize CaM mutations in 12 patients with genotype-negative but clinically diagnosed CPVT. METHODS AND RESULTS We performed mutational analysis of CALM1, CALM2, and CALM3 gene-coding regions, in vitro measurement of CaM-Ca(2+) (Ca)-binding affinity, ryanodine receptor 2-CaM binding, Ca handling, L-type Ca current, and action potential duration. We identified a novel CaM mutation-A103V-in CALM3 in 1 of 12 patients (8%), a female who experienced episodes of exertion-induced syncope since age 10, had normal QT interval, and displayed ventricular ectopy during stress testing consistent with CPVT. A103V modestly lowered CaM Ca-binding affinity (3-fold reduction versus WT-CaM), but did not alter CaM binding to ryanodine receptor 2. In permeabilized cardiomyocytes, A103V-CaM (100 nmol/L) promoted spontaneous Ca wave and spark activity, a cellular phenotype of ryanodine receptor 2 activation. Even a 1:3 mixture of A103V-CaM:WT-CaM activated Ca waves, demonstrating functional dominance. Compared with long QT syndrome D96V-CaM, A103V-CaM had significantly less effects on L-type Ca current inactivation, did not alter action potential duration, and caused delayed afterdepolarizations and triggered beats in intact cardiomyocytes. CONCLUSIONS We discovered a novel CPVT mutation in the CALM3 gene that shares functional characteristics with established CPVT-associated mutations in CALM1. A small proportion of A103V-CaM is sufficient to evoke arrhythmogenic Ca disturbances via ryanodine receptor 2 dysregulation, which explains the autosomal dominant inheritance.
Collapse
Affiliation(s)
- Nieves Gomez-Hurtado
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Nicole J Boczek
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Dmytro O Kryshtal
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Christopher N Johnson
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Jennifer Sun
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Florentin R Nitu
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Razvan L Cornea
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Walter J Chazin
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Melissa L Calvert
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - David J Tester
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.)
| | - Michael J Ackerman
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.).
| | - Björn C Knollmann
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (N.G.-H., D.O.K., B.C.K.); Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., M.L.C., D.J.T., M.J.A.), Department of Cardiovascular Diseases, Division of Heart Rhythm Services (M.J.A.), and Department of Pediatrics, Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN; Departments of Biochemistry and Chemistry & Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., J.S., W.J.C.); and Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN (F.R.N., R.L.C.).
| |
Collapse
|
19
|
Cardiac Calcium Release Channel (Ryanodine Receptor 2) Regulation by Halogenated Anesthetics. Anesthesiology 2017; 126:495-506. [DOI: 10.1097/aln.0000000000001519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Halogenated anesthetics activate cardiac ryanodine receptor 2–mediated sarcoplasmic reticulum Ca2+ release, leading to sarcoplasmic reticulum Ca2+ depletion, reduced cardiac function, and providing cell protection against ischemia-reperfusion injury. Anesthetic activation of ryanodine receptor 2 is poorly defined, leaving aspects of the protective mechanism uncertain.
Methods
Ryanodine receptor 2 from the sheep heart was incorporated into artificial lipid bilayers, and their gating properties were measured in response to five halogenated anesthetics.
Results
Each anesthetic rapidly and reversibly activated ryanodine receptor 2, but only from the cytoplasmic side. Relative activation levels were as follows: halothane (approximately 4-fold; n = 8), desflurane and enflurane (approximately 3-fold,n = 9), and isoflurane and sevoflurane (approximately 1.5-fold, n = 7, 10). Half-activating concentrations (Ka) were in the range 1.3 to 2.1 mM (1.4 to 2.6 minimum alveolar concentration [MAC]) with the exception of isoflurane (5.3 mM, 6.6 minimum alveolar concentration). Dantrolene (10 μM with 100 nM calmodulin) inhibited ryanodine receptor 2 by 40% but did not alter the Ka for halothane activation. Halothane potentiated luminal and cytoplasmic Ca2+ activation of ryanodine receptor 2 but had no effect on Mg2+ inhibition. Halothane activated ryanodine receptor 2 in the absence and presence (2 mM) of adenosine triphosphate (ATP). Adenosine, a competitive antagonist to ATP activation of ryanodine receptor 2, did not antagonize halothane activation in the absence of ATP.
Conclusions
At clinical concentrations (1 MAC), halothane desflurane and enflurane activated ryanodine receptor 2, whereas isoflurane and sevoflurane were ineffective. Dantrolene inhibition of ryanodine receptor 2 substantially negated the activating effects of anesthetics. Halothane acted independently of the adenine nucleotide–binding site on ryanodine receptor 2. The previously observed adenosine antagonism of halothane activation of sarcoplasmic reticulum Ca2+ release was due to competition between adenosine and ATP, rather than between halothane and ATP.
Collapse
|
20
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J Mol Cell Cardiol 2016; 98:62-72. [PMID: 27318036 DOI: 10.1016/j.yjmcc.2016.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/27/2023]
Abstract
Diastolic calcium (Ca) leak via cardiac ryanodine receptors (RyR2) can cause arrhythmias and heart failure (HF). Ca/calmodulin (CaM)-dependent kinase II (CaMKII) is upregulated and more active in HF, promoting RyR2-mediated Ca leak by RyR2-Ser2814 phosphorylation. Here, we tested a mechanistic hypothesis that RyR2 phosphorylation by CaMKII increases Ca leak by promoting a pathological RyR2 conformation with reduced CaM affinity. Acute CaMKII activation in wild-type RyR2, and phosphomimetic RyR2-S2814D (vs. non-phosphorylatable RyR2-S2814A) knock-in mouse myocytes increased SR Ca leak, reduced CaM-RyR2 affinity, and caused a pathological shift in RyR2 conformation (detected via increased access of the RyR2 structural peptide DPc10). This same trio of effects was seen in myocytes from rabbits with pressure/volume-overload induced HF. Excess CaM quieted leak and restored control conformation, consistent with negative allosteric coupling between CaM affinity and DPc10 accessible conformation. Dantrolene (DAN) also restored CaM affinity, reduced DPc10 access, and suppressed RyR2-mediated Ca leak and ventricular tachycardia in RyR2-S2814D mice. We propose that a common pathological RyR2 conformational state (low CaM affinity, high DPc10 access, and elevated leak) may be caused by CaMKII-dependent phosphorylation, oxidation, and HF. Moreover, DAN (or excess CaM) can shift this pathological gating state back to the normal physiological conformation, a potentially important therapeutic approach.
Collapse
|
22
|
Rebbeck RT, Nitu FR, Rohde D, Most P, Bers DM, Thomas DD, Cornea RL. S100A1 Protein Does Not Compete with Calmodulin for Ryanodine Receptor Binding but Structurally Alters the Ryanodine Receptor·Calmodulin Complex. J Biol Chem 2016; 291:15896-907. [PMID: 27226555 DOI: 10.1074/jbc.m115.713107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
S100A1 has been suggested as a therapeutic agent to enhance myocyte Ca(2+) cycling in heart failure, but its molecular mode of action is poorly understood. Using FRET, we tested the hypothesis that S100A1 directly competes with calmodulin (CaM) for binding to intact, functional ryanodine receptors type I (RyR1) and II (RyR2) from skeletal and cardiac muscle, respectively. Our FRET readout provides an index of acceptor-labeled CaM binding near donor-labeled FKBP (FK506-binding protein 12.6) on the cytoplasmic domain of RyR in isolated sarcoplasmic reticulum vesicles. S100A1 (0.01-400 μm) partially inhibited FRET (i.e. CaM binding), with Ki > 10 μm, for both RyR1 and RyR2. The high [S100A1] required for partial effects on FRET indicates a lack of competition by S100A1 on CaM/RyR binding under normal physiological conditions. High-resolution analysis of time-resolved FRET detects two structural states of RyR-bound CaM, which respond to [Ca(2+)] and are isoform-specific. The distribution of these structural states was perturbed only by high micromolar [S100A1], which promoted a shift of bound CaM to a lower FRET orientation (without altering the amount of CaM bound to RyR). Thus, high micromolar S100A1 does alter the CaM/RyR interaction, without involving competition. Nevertheless, submicromolar S100A1 can alter RyR function, an effect that is influenced by both [Ca(2+)] and [CaM]. We conclude that CaM and S100A1 can concurrently bind to and functionally modulate RyR1 and RyR2, but this does not involve direct competition at the RyR CaM binding site.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- From the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis Minnesota 55455
| | - Florentin R Nitu
- From the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis Minnesota 55455
| | - David Rohde
- the Center for Molecular and Translational Cardiology, Department of Internal Medicine III, University of Heidelberg, INF 410, 69120, Heidelberg, Germany, and
| | - Patrick Most
- the Center for Molecular and Translational Cardiology, Department of Internal Medicine III, University of Heidelberg, INF 410, 69120, Heidelberg, Germany, and
| | - Donald M Bers
- the Department of Pharmacology, University of California, Davis, California 95616
| | - David D Thomas
- From the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis Minnesota 55455
| | - Razvan L Cornea
- From the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis Minnesota 55455,
| |
Collapse
|
23
|
Søndergaard MT, Tian X, Liu Y, Wang R, Chazin WJ, Chen SRW, Overgaard MT. Arrhythmogenic Calmodulin Mutations Affect the Activation and Termination of Cardiac Ryanodine Receptor-mediated Ca2+ Release. J Biol Chem 2015; 290:26151-62. [PMID: 26309258 DOI: 10.1074/jbc.m115.676627] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 11/06/2022] Open
Abstract
The intracellular Ca(2+) sensor calmodulin (CaM) regulates the cardiac Ca(2+) release channel/ryanodine receptor 2 (RyR2), and mutations in CaM cause arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT) and long QT syndrome. Here, we investigated the effect of CaM mutations causing CPVT (N53I), long QT syndrome (D95V and D129G), or both (CaM N97S) on RyR2-mediated Ca(2+) release. All mutations increased Ca(2+) release and rendered RyR2 more susceptible to store overload-induced Ca(2+) release (SOICR) by lowering the threshold of store Ca(2+) content at which SOICR occurred and the threshold at which SOICR terminated. To obtain mechanistic insights, we investigated the Ca(2+) binding of the N- and C-terminal domains (N- and C-domain) of CaM in the presence of a peptide corresponding to the CaM-binding domain of RyR2. The N53I mutation decreased the affinity of Ca(2+) binding to the N-domain of CaM, relative to CaM WT, but did not affect the C-domain. Conversely, mutations N97S, D95V, and D129G had little or no effect on Ca(2+) binding to the N-domain but markedly decreased the affinity of the C-domain for Ca(2+). These results suggest that mutations D95V, N97S, and D129G alter the interaction between CaM and the CaMBD and thus RyR2 regulation. Because the N53I mutation minimally affected Ca(2+) binding to the C-domain, it must cause aberrant regulation via a different mechanism. These results support aberrant RyR2 regulation as the disease mechanism for CPVT associated with CaM mutations and shows that CaM mutations not associated with CPVT can also affect RyR2. A model for the CaM-RyR2 interaction, where the Ca(2+)-saturated C-domain is constitutively bound to RyR2 and the N-domain senses increases in Ca(2+) concentration, is proposed.
Collapse
Affiliation(s)
- Mads T Søndergaard
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark, the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Xixi Tian
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Yingjie Liu
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Ruiwu Wang
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Walter J Chazin
- the Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Michael T Overgaard
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark,
| |
Collapse
|
24
|
FRET-based trilateration of probes bound within functional ryanodine receptors. Biophys J 2015; 107:2037-48. [PMID: 25418089 DOI: 10.1016/j.bpj.2014.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.
Collapse
|
25
|
Oo YW, Gomez-Hurtado N, Walweel K, van Helden DF, Imtiaz MS, Knollmann BC, Laver DR. Essential Role of Calmodulin in RyR Inhibition by Dantrolene. Mol Pharmacol 2015; 88:57-63. [PMID: 25920678 PMCID: PMC4468648 DOI: 10.1124/mol.115.097691] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Dantrolene is the first line therapy of malignant hyperthermia. Animal studies suggest that dantrolene also protects against heart failure and arrhythmias caused by spontaneous Ca(2+) release. Although dantrolene inhibits Ca(2+) release from the sarcoplasmic reticulum of skeletal and cardiac muscle preparations, its mechanism of action has remained controversial, because dantrolene does not inhibit single ryanodine receptor (RyR) Ca(2+) release channels in lipid bilayers. Here we test the hypothesis that calmodulin (CaM), a physiologic RyR binding partner that is lost during incorporation into lipid bilayers, is required for dantrolene inhibition of RyR channels. In single channel recordings (100 nM cytoplasmic [Ca(2+)] + 2 mM ATP), dantrolene caused inhibition of RyR1 (rabbit skeletal muscle) and RyR2 (sheep) with a maximal inhibition of Po (Emax) to 52 ± 4% of control only after adding physiologic [CaM] = 100 nM. Dantrolene inhibited RyR2 with an IC50 of 0.16 ± 0.03 µM. Mutant N98S-CaM facilitated dantrolene inhibition with an IC50 = 5.9 ± 0.3 nM. In mouse cardiomyocytes, dantrolene had no effect on cardiac Ca(2+) release in the absence of CaM, but reduced Ca(2+) wave frequency (IC50 = 0.42 ± 0.18 µM, Emax = 47 ± 4%) and amplitude (IC50 = 0.19 ± 0.04 µM, Emax = 66 ± 4%) in the presence of 100 nM CaM. We conclude that CaM is essential for dantrolene inhibition of RyR1 and RyR2. Its absence explains why dantrolene inhibition of single RyR channels has not been previously observed.
Collapse
Affiliation(s)
- Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Nieves Gomez-Hurtado
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Mohammad S Imtiaz
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Bjorn C Knollmann
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| |
Collapse
|
26
|
Oxidation of ryanodine receptor (RyR) and calmodulin enhance Ca release and pathologically alter, RyR structure and calmodulin affinity. J Mol Cell Cardiol 2015; 85:240-8. [PMID: 26092277 DOI: 10.1016/j.yjmcc.2015.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022]
Abstract
Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in heart failure (HF) and arrhythmias. Altered RyR2 domain-domain interaction (domain unzipping) and calmodulin (CaM) binding affinity are allosterically coupled indices of RyR2 conformation. In HF RyR2 exhibits reduced CaM binding, increased domain unzipping and greater SR Ca leak, and dantrolene can reverse these changes. However, effects of oxidative stress on RyR2 conformation and leak in myocytes are poorly understood. We used fluorescent CaM, FKBP12.6, and domain-peptide biosensor (F-DPc10) to measure, directly in cardiac myocytes, (1) RyR2 activation by hydrogen peroxide (H2O2)-induced oxidation, (2) RyR2 conformation change caused by oxidation, (3) CaM-RyR2 and FK506-binding protein (FKBP12.6)-RyR2 interaction upon oxidation, and (4) whether dantrolene affects 1-3. H2O2 was used to mimic oxidative stress. H2O2 significantly increased the frequency of Ca(2+) sparks and spontaneous Ca(2+) waves, and dantrolene almost completely blocked these effects. H2O2 pretreatment significantly reduced CaM-RyR2 binding, but had no effect on FKBP12.6-RyR2 binding. Dantrolene restored CaM-RyR2 binding but had no effect on intracellular and RyR2 oxidation levels. H2O2 also accelerated F-DPc10-RyR2 association while dantrolene slowed it. Thus, H2O2 causes conformational changes (sensed by CaM and DPc10 binding) associated with Ca leak, and dantrolene reverses these RyR2 effects. In conclusion, in cardiomyocytes, H2O2 treatment markedly reduces the CaM-RyR2 affinity, has no effect on FKBP12.6-RyR2 affinity, and causes domain unzipping. Dantrolene can correct domain unzipping, restore CaM-RyR2 affinity, and quiet pathological RyR2 channel gating. F-DPc10 and CaM are useful biosensors of a pathophysiological RyR2 state.
Collapse
|
27
|
Vocke K, Dauner K, Hahn A, Ulbrich A, Broecker J, Keller S, Frings S, Möhrlen F. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. ACTA ACUST UNITED AC 2014; 142:381-404. [PMID: 24081981 PMCID: PMC3787769 DOI: 10.1085/jgp.201311015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
Collapse
Affiliation(s)
- Kerstin Vocke
- Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hwang HS, Nitu FR, Yang Y, Walweel K, Pereira L, Johnson CN, Faggioni M, Chazin WJ, Laver D, George AL, Cornea RL, Bers DM, Knollmann BC. Divergent regulation of ryanodine receptor 2 calcium release channels by arrhythmogenic human calmodulin missense mutants. Circ Res 2014; 114:1114-24. [PMID: 24563457 DOI: 10.1161/circresaha.114.303391] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Calmodulin (CaM) mutations are associated with an autosomal dominant syndrome of ventricular arrhythmia and sudden death that can present with divergent clinical features of catecholaminergic polymorphic ventricular tachycardia (CPVT) or long QT syndrome (LQTS). CaM binds to and inhibits ryanodine receptor (RyR2) Ca release channels in the heart, but whether arrhythmogenic CaM mutants alter RyR2 function is not known. OBJECTIVE To gain mechanistic insight into how human CaM mutations affect RyR2 Ca channels. METHODS AND RESULTS We studied recombinant CaM mutants associated with CPVT (N54I and N98S) or LQTS (D96V, D130G, and F142L). As a group, all LQTS-associated CaM mutants (LQTS-CaMs) exhibited reduced Ca affinity, whereas CPVT-associated CaM mutants (CPVT-CaMs) had either normal or modestly lower Ca affinity. In permeabilized ventricular myocytes, CPVT-CaMs at a physiological intracellular concentration (100 nmol/L) promoted significantly higher spontaneous Ca wave and spark activity, a typical cellular phenotype of CPVT. Compared with wild-type CaM, CPVT-CaMs caused greater RyR2 single-channel open probability and showed enhanced binding affinity to RyR2. Even a 1:8 mixture of CPVT-CaM:wild-type-CaM activated Ca waves, demonstrating functional dominance. In contrast, LQTS-CaMs did not promote Ca waves and exhibited either normal regulation of RyR2 single channels (D96V) or lower RyR2-binding affinity (D130G and F142L). None of the CaM mutants altered Ca/CaM binding to CaM-kinase II. CONCLUSIONS A small proportion of CPVT-CaM is sufficient to evoke arrhythmogenic Ca disturbances, whereas LQTS-CaMs do not. Our findings explain the clinical presentation and autosomal dominant inheritance of CPVT-CaM mutations and suggest that RyR2 interactions are unlikely to explain arrhythmogenicity of LQTS-CaM mutations.
Collapse
Affiliation(s)
- Hyun Seok Hwang
- From the Departments of Medicine (H.S.H., M.F., A.L.G., B.C.K.), Biochemistry (C.N.J., W.J.C.), Chemistry (W.J.C.), and Pharmacology (A.L.G., B.C.K.), Vanderbilt University, Nashville, TN; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis (F.R.N., R.L.C.); Department of Pharmacology, University of California, Davis (Y.Y., L.P., D.M.B.); and Department of School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia (K.W., D.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang Y, Guo T, Oda T, Chakraborty A, Chen L, Uchinoumi H, Knowlton AA, Fruen BR, Cornea RL, Meissner G, Bers DM. Cardiac myocyte Z-line calmodulin is mainly RyR2-bound, and reduction is arrhythmogenic and occurs in heart failure. Circ Res 2013; 114:295-306. [PMID: 24186966 DOI: 10.1161/circresaha.114.302857] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Calmodulin (CaM) associates with cardiac ryanodine receptor type-2 (RyR2) as an important regulator. Defective CaM-RyR2 interaction may occur in heart failure, cardiac hypertrophy, and catecholaminergic polymorphic ventricular tachycardia. However, the in situ binding properties for CaM-RyR2 are unknown. OBJECTIVE We sought to measure the in situ binding affinity and kinetics for CaM-RyR2 in normal and heart failure ventricular myocytes, estimate the percentage of Z-line-localized CaM that is RyR2-bound, and test cellular function of defective CaM-RyR2 interaction. METHODS AND RESULTS Using fluorescence resonance energy transfer in permeabilized myocytes, we specifically resolved RyR2-bound CaM from other potential binding targets and measured CaM-RyR2 binding affinity in situ (Kd=10-20 nmol/L). Using RyR2(ADA/+) knock-in mice, in which half of the CaM-RyR2 binding is suppressed, we estimated that >90% of Z-line CaM is RyR2-bound. Functional tests indicated a higher propensity for Ca2+ wave production and stress-induced ventricular arrhythmia in RyR2(ADA/+) mice. In a post-myocardial infarction rat heart failure model, we detected a decrease in the CaM-RyR2 binding affinity (Kd≈51 nmol/L; ≈3-fold increase) and unaltered RyR2 affinity for the FK506-binding protein FKBP12.6 (Kd~0.8 nmol/L). CONCLUSIONS CaM binds to RyR2 with high affinity in cardiac myocytes. Physiologically, CaM is bound to >70% of RyR2 monomers and inhibits sarcoplasmic reticulum Ca2+ release. RyR2 is the major binding site for CaM along the Z-line in cardiomyocytes, and dissociating CaM from RyR2 can cause severe ventricular arrhythmia. In heart failure, RyR2 shows decreased CaM affinity, but unaltered FKBP 12.6 affinity.
Collapse
Affiliation(s)
- Yi Yang
- From the Department of Pharmacology (Y.Y., T.G., T.O., H.U., A.A.K., D.M.B.), and Molecular and Cellular Cardiology Division, Department of Medicine (L.C., A.A.K.), University of California, Davis, CA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC (A.C., G.M.); and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN (B.R.F., R.L.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. J Mol Med (Berl) 2013; 91:907-16. [PMID: 23775230 DOI: 10.1007/s00109-013-1060-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Calcium (Ca(2+)) has long been recognized as a crucial intracellular messenger attaining stimuli-specific cellular outcomes via localized signaling. Ca(2+)-binding proteins, such as calmodulin (CaM), and its target proteins are key to the segregation and refinement of these Ca(2+)-dependent signaling events. This review not only summarizes the recent technological advances enabling the study of subcellular Ca(2+)-CaM and Ca(2+)-CaM-dependent protein kinase (CaMKII) signaling events but also highlights the outstanding challenges in the field.
Collapse
|
31
|
Fessenden JD, Mahalingam M. Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs. PLoS One 2013; 8:e64686. [PMID: 23724080 PMCID: PMC3665623 DOI: 10.1371/journal.pone.0064686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/16/2013] [Indexed: 12/02/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel that mediates skeletal muscle excitation contraction coupling. While the overall shape of RyR1 has been elucidated using cryo electron microscopic reconstructions, fine structural details remain elusive. To better understand the structure of RyR1, we have previously used a cell-based fluorescence resonance energy transfer (FRET) method using a fused green fluorescent protein (GFP) donor and a fluorescent acceptor, Cy3NTA that binds specifically to short poly-histidine ‘tags’ engineered into RyR1. However, the need to permeabilize cells to allow Cy3NTA entry as well as the noncovalent binding of Cy3NTA to the His tag limits future applications of this technique for studying conformational changes of the RyR. To overcome these problems, we used a dodecapeptide sequence containing a tetracysteine (Tc) motif to target the biarsenical fluorophores, FlAsH and ReAsH to RyR1. These compounds freely cross intact cell membranes where they then bind covalently to the tetracysteine motif. First, we used this system to conduct FRET measurements in intact cells by fusing a yellow fluorescent protein (YFP) FRET donor to the N-terminus of RyR1 and then targeting the FRET acceptor, ReAsH to an adjacent Tc tag. Moderate energy transfer (∼33%) was observed whereas ReAsH incubation of a YFPRyR1 fusion protein lacking the Tc tag resulted in no detectable FRET. We also developed a FRET-based system that did not require RyR fluorescent protein fusions by labeling N-terminal Tc-tagged RyR1 with FlAsH, a FRET donor and then targeting the FRET acceptor Cy3NTA to an adjacent decahistidine (His10) tag. A high degree of energy transfer (∼66%) indicated proper binding of both compounds to these unique recognition sequences in RyR1. Thus, these two systems should provide unprecedented flexibility in future FRET-based structural determinations of RyR1.
Collapse
Affiliation(s)
- James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
| | | |
Collapse
|
32
|
Girgenrath T, Mahalingam M, Svensson B, Nitu FR, Cornea RL, Fessenden JD. N-terminal and central segments of the type 1 ryanodine receptor mediate its interaction with FK506-binding proteins. J Biol Chem 2013; 288:16073-84. [PMID: 23585572 DOI: 10.1074/jbc.m113.463299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca(2+) leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) "tags" placed within N-terminal (amino acid residues 76-619) or central (residues 2157-2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.
Collapse
Affiliation(s)
- Tanya Girgenrath
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Oda T, Yang Y, Nitu FR, Svensson B, Lu X, Fruen BR, Cornea RL, Bers DM. In cardiomyocytes, binding of unzipping peptide activates ryanodine receptor 2 and reciprocally inhibits calmodulin binding. Circ Res 2012; 112:487-97. [PMID: 23233753 DOI: 10.1161/circresaha.111.300290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE One hypothesis for elevated Ca(2+) leak through cardiac ryanodine receptors (ryanodine receptor 2 [RyR2]) in heart failure is interdomain unzipping that can enhance aberrant channel activation. A peptide (domain peptide corresponding to RyR2 residues 2460-2495 [DPc10]) corresponding to RyR2 central domain residues 2460-2495 recapitulates this arrhythmogenic RyR2 leakiness by unzipping N-terminal and central domains. Calmodulin (CaM) and FK506-binding protein (FKBP12.6) bind to RyR2 and stabilize the closed channel. Little is known about DPc10 binding to the RyR2 and how that may interact with binding (and effects) of CaM and FKBP12.6 to RyR2. OBJECTIVE To measure, directly in cardiac myocytes, the kinetics and binding affinity of DPc10 to RyR2 and how that affects RyR2 interaction with FKBP12.6 and CaM. METHODS AND RESULTS We used permeabilized rat ventricular myocytes and fluorescently labeled DPc10, FKBP12.6, and CaM. DPc10 access to its binding site is extremely slow in resting RyR2 but is accelerated by promoting RyR opening or unzipping (by unlabeled DPc10). RyR2-bound CaM (but not FKBP12.6) drastically slowed DPc10 binding. Conversely, DPc10 binding significantly reduced CaM (but not FKBP12.6) binding to the RyR2. Fluorescence resonance energy transfer measurements indicate that DPc10-binding and CaM-binding sites are separate and allow triangulation of the structural DPc10 binding locus on RyR2 vs FKBP12.6-binding and CaM-binding sites. CONCLUSIONS DPc10-RyR2 binding is sterically limited by the resting zipped RyR2 state. CaM binding to RyR2 stabilizes this zipped state, whereas RyR2 activation or prebound DPc10 enhances DPc10 access. DPc10-binding and CaM-binding sites are distinct but are allosterically interacting RyR2 sites. Neither DPc10 nor FKBP12.6 influences RyR2 binding of the other.
Collapse
Affiliation(s)
- Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang X, Fruen B, Farrington DT, Wagenknecht T, Liu Z. Calmodulin-binding locations on the skeletal and cardiac ryanodine receptors. J Biol Chem 2012; 287:30328-35. [PMID: 22773841 DOI: 10.1074/jbc.m112.383109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ryanodine receptor types 1 (RyR1) and 2 (RyR2) are calcium release channels that are highly enriched in skeletal and cardiac muscle, respectively, where they play an essential role in excitation-contraction coupling. Apocalmodulin (apo-CaM) weakly activates RyR1 but inhibits RyR2, whereas Ca(2+)-calmodulin inhibits both isoforms. Previous cryo-EM studies showed distinctly different binding locations on RyR1 for the two states of CaM. However, recent studies employing FRET appear to challenge these findings. Here, using cryo-EM, we have determined that a CaM mutant that is incapable of binding calcium binds to RyR1 at the apo site, regardless of the calcium concentration. We have also re-determined the location of RyR1-bound Ca(2+)-CaM using uniform experimental conditions. Our results show the existence of the two overlapping but distinct binding sites for CaM in RyR1 and imply that the binding location switch is due to Ca(2+) binding to CaM, as opposed to direct effects of Ca(2+) on RyR1. We also discuss explanations that could resolve the apparent conflict between the cryo-EM and FRET results. Interestingly, apo-CaM binds to RyR2 at a similar binding location to that of Ca(2+)-CaM on RyR1, in seeming agreement with the inhibitory effects of these two forms of CaM on their respective receptors.
Collapse
Affiliation(s)
- Xiaojun Huang
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|