1
|
Fuentenebro Navas D, Steens JA, de Lannoy C, Noordijk B, Pfeffer M, de Ridder D, H.J. Staals R, Schmid S. Nanopores Reveal the Stoichiometry of Single Oligoadenylates Produced by Type III CRISPR-Cas. ACS NANO 2024; 18:16505-16515. [PMID: 38875527 PMCID: PMC11223493 DOI: 10.1021/acsnano.3c11769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Cyclic oligoadenylates (cOAs) are small second messenger molecules produced by the type III CRISPR-Cas system as part of the prokaryotic immune response. The role of cOAs is to allosterically activate downstream effector proteins that induce dormancy or cell death, and thus abort viral spread through the population. Interestingly, different type III systems have been reported to utilize different cOA stoichiometries (with 3 to 6 adenylate monophosphates). However, so far, their characterization has only been possible in bulk and with sophisticated equipment, while a portable assay with single-molecule resolution has been lacking. Here, we demonstrate the label-free detection of single cOA molecules using a simple protein nanopore assay. It sensitively identifies the stoichiometry of individual cOA molecules and their mixtures from synthetic and enzymatic origin. To achieve this, we trained a convolutional neural network (CNN) and validated it with a series of experiments on mono- and polydisperse cOA samples. Ultimately, we determined the stoichiometric composition of cOAs produced enzymatically by the CRISPR type III-A and III-B variants of Thermus thermophilus and confirmed the results by liquid chromatography-mass spectroscopy (LC-MS). Interestingly, both variants produce cOAs of nearly identical composition (within experimental uncertainties), and we discuss the biological implications of this finding. The presented nanopore-CNN workflow with single cOA resolution can be adapted to many other signaling molecules (including eukaryotic ones), and it may be integrated into portable handheld devices with potential point-of-care applications.
Collapse
Affiliation(s)
- David Fuentenebro Navas
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Jurre A. Steens
- Laboratory
of Microbiology, Wageningen University and
Research, Stippeneng
4, 6708WE Wageningen, The Netherlands
| | - Carlos de Lannoy
- Bioinformatics
Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Department
of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Ben Noordijk
- Bioinformatics
Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Michael Pfeffer
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Dick de Ridder
- Bioinformatics
Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Raymond H.J. Staals
- Laboratory
of Microbiology, Wageningen University and
Research, Stippeneng
4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Crnković A, Srnko M, Anderluh G. Biological Nanopores: Engineering on Demand. Life (Basel) 2021; 11:life11010027. [PMID: 33466427 PMCID: PMC7824896 DOI: 10.3390/life11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.
Collapse
|
3
|
Stachiewicz A, Molski A. Sequence-Dependent Unzipping Dynamics of DNA Hairpins in a Nanopore. J Phys Chem B 2019; 123:3199-3209. [PMID: 30920837 DOI: 10.1021/acs.jpcb.9b00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By applying an electric field to an insulating membrane, movement of charged particles through a nanopore can be induced. The measured ionic current reports on biomolecules passing through the nanopore. In this paper, we explore the sequence-dependent dynamics of DNA unzipping using our recently developed coarse-grained model. We estimated three molecular profiles (the potential of mean force, position-dependent diffusion coefficient, and position-dependent effective charge) for the DNA unzipping of four hairpins with different sequences. We found that the molecular profiles are correlated with the ionic current and molecular events. We also explored the unzipping kinetics using Brownian dynamics. We found that the effect of hairpin structure on the unzipping/translocation times is not only energetic (weaker hairpins unzip more quickly) but also kinetic (different unzipping and translocation pathways play an important role).
Collapse
Affiliation(s)
- Anna Stachiewicz
- Department of Chemistry , Adam Mickiewicz University , Poznan 61-614 , Poland
| | - Andrzej Molski
- Department of Chemistry , Adam Mickiewicz University , Poznan 61-614 , Poland
| |
Collapse
|
4
|
Zhang X, Zhang D, Zhao C, Tian K, Shi R, Du X, Burcke AJ, Wang J, Chen SJ, Gu LQ. Nanopore electric snapshots of an RNA tertiary folding pathway. Nat Commun 2017; 8:1458. [PMID: 29133841 PMCID: PMC5684407 DOI: 10.1038/s41467-017-01588-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The chemical properties and biological mechanisms of RNAs are determined by their tertiary structures. Exploring the tertiary structure folding processes of RNA enables us to understand and control its biological functions. Here, we report a nanopore snapshot approach combined with coarse-grained molecular dynamics simulation and master equation analysis to elucidate the folding of an RNA pseudoknot structure. In this approach, single RNA molecules captured by the nanopore can freely fold from the unstructured state without constraint and can be programmed to terminate their folding process at different intermediates. By identifying the nanopore signatures and measuring their time-dependent populations, we can “visualize” a series of kinetically important intermediates, track the kinetics of their inter-conversions, and derive the RNA pseudoknot folding pathway. This approach can potentially be developed into a single-molecule toolbox to investigate the biophysical mechanisms of RNA folding and unfolding, its interactions with ligands, and its functions. While RNA folding is critical for its function, study of this process is challenging. Here, the authors combine nanopore single-molecule manipulation with theoretical analysis to follow the folding of an RNA pseudoknot, monitoring the intermediate states and the kinetics of their interconversion.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Dong Zhang
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Chenhan Zhao
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Kai Tian
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruicheng Shi
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Xiao Du
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Andrew J Burcke
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Li-Qun Gu
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Zhang L, Zhang K, Rauf S, Dong D, Liu Y, Li J. Single-Molecule Analysis of Human Telomere Sequence Interactions with G-quadruplex Ligand. Anal Chem 2016; 88:4533-40. [DOI: 10.1021/acs.analchem.6b00555] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ling Zhang
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Sana Rauf
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Duo Dong
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Nikoofard N, Mashaghi A. Topology sorting and characterization of folded polymers using nano-pores. NANOSCALE 2016; 8:4643-4649. [PMID: 26853059 DOI: 10.1039/c5nr08828c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we report on the translocation of folded polymers through nano-pores using molecular dynamic simulations. Two cases are studied: one in which a folded molecule unfolds upon passage and one in which the folding remains intact as the molecule passes through the nano-pore. The topology of a folded polymer chain is defined as the arrangement of the intramolecular contacts, known as circuit topology. In the case where intramolecular contacts remain intact, we show that the dynamics of passage through a nano-pore varies for molecules with differing topologies: a phenomenon that can be exploited to enrich certain topologies in mixtures. We find that the nano-pore allows reading of the topology for short chains. Moreover, when the passage is coupled with unfolding, the nano-pore enables discrimination between pure states, i.e., states in which the majority of contacts are arranged identically. In this case, as we show here, it is also possible to read the positions of the contact sites along a chain. Our results demonstrate the applicability of nano-pore technology to characterize and sort molecules based on their topology.
Collapse
Affiliation(s)
- Narges Nikoofard
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 51167-87317, Iran
| | - Alireza Mashaghi
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Stachiewicz A, Molski A. Diffusive dynamics of DNA unzipping in a nanopore. J Comput Chem 2016; 37:467-76. [PMID: 26519865 DOI: 10.1002/jcc.24236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/11/2015] [Accepted: 10/01/2015] [Indexed: 01/04/2023]
Abstract
When an electric field is applied to an insulating membrane, movement of charged particles through a nanopore is induced. The measured ionic current reports on biomolecules passing through the nanopore. In this work, we explored the kinetics of DNA unzipping in a nanopore using our coarse-grained model (Stachiewicz and Molski, J. Comput. Chem. 2015, 36, 947). Coarse graining allowed a more detailed analysis for a wider range of parameters than all-atom simulations. Dependence of the translocation mode (unzipping or distortion) on the pore diameter was examined, and the threshold voltages were estimated. We determined the potential of mean force, position-dependent diffusion coefficient, and position-dependent effective charge for the DNA unzipping. The three molecular profiles were correlated with the ionic current and molecular events. On the unzipping/translocation force profile, two energy maxima were found, one of them corresponding to the unzipping, and the other to the translocation barriers. The unzipping kinetics were further explored using Brownian dynamics.
Collapse
Affiliation(s)
- Anna Stachiewicz
- Department of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Molski
- Department of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Palyulin VV, Ala-Nissila T, Metzler R. Polymer translocation: the first two decades and the recent diversification. SOFT MATTER 2014; 10:9016-37. [PMID: 25301107 DOI: 10.1039/c4sm01819b] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.
Collapse
Affiliation(s)
- Vladimir V Palyulin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
9
|
Ding Y, Fleming AM, White HS, Burrows CJ. Internal vs fishhook hairpin DNA: unzipping locations and mechanisms in the α-hemolysin nanopore. J Phys Chem B 2014; 118:12873-82. [PMID: 25333648 PMCID: PMC4234443 DOI: 10.1021/jp5101413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Studies
on the interaction of hairpin DNA with the α-hemolysin
(α-HL) nanopore have determined hairpin unzipping kinetics,
thermodynamics, and sequence-dependent DNA/protein interactions. Missing
from these results is a systematic study comparing the unzipping process
for fishhook (one-tail) vs internal (two-tail) hairpins when they
are electrophoretically driven from the cis to the trans side of α-HL via a 30-mer single-stranded tail.
In the current studies, fishhook hairpins showed long unzipping times
with one deep blockage current level. In contrast, the internal hairpins
demonstrated relatively fast unzipping and a characteristic pulse-like
current pattern. These differences were further explored with respect
to stem length and sequence context. Further, a series of internal
hairpins with asymmetric tails were studied, for which it was determined
that a second tail longer than 12 nucleotides results in internal
hairpin unzipping behavior, while tail lengths of 6 nucleotides behaved
like fishhook hairpins. Interestingly, these studies were able to
resolve a current difference of ∼6% between hairpin DNA immobilized
in the nanopore waiting to unzip vs the translocating unzipped DNA,
with the latter showing a deeper current blockage level. This demonstration
of different currents for immobilized and translocating DNA has not
been described previously. These results were interpreted as fishhook
hairpins unzipping inside the vestibule, while the internal hairpins
unzip outside the vestibule of α-HL. Lastly, we used this knowledge
to study the unzipping of a long double-stranded DNA (>50 base
pairs)
outside the vestibule of α-HL. The conclusions drawn from these
studies are anticipated to be beneficial in future application of
nanopore analysis of nucleic acids.
Collapse
Affiliation(s)
- Yun Ding
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | | | |
Collapse
|
10
|
Arnaut V, Langecker M, Simmel FC. Nanopore force spectroscopy of aptamer-ligand complexes. Biophys J 2014; 105:1199-207. [PMID: 24010663 DOI: 10.1016/j.bpj.2013.07.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/07/2023] Open
Abstract
The stability of aptamer-ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans-cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer-target interactions in this case, the stability of the ligand-free aptamer-containing G-quadruplexes-is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified.
Collapse
Affiliation(s)
- Vera Arnaut
- Lehrstuhl für Bioelektronik, Physik Department, Technische Universität München, Garching, Germany
| | | | | |
Collapse
|
11
|
Buchsbaum SF, Mitchell N, Martin H, Wiggin M, Marziali A, Coveney PV, Siwy Z, Howorka S. Disentangling steric and electrostatic factors in nanoscale transport through confined space. NANO LETTERS 2013; 13:3890-3896. [PMID: 23819625 DOI: 10.1021/nl401968r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The voltage-driven passage of biological polymers through nanoscale pores is an analytically, technologically, and biologically relevant process. Despite various studies on homopolymer translocation there are still several open questions on the fundamental aspects of pore transport. One of the most important unresolved issues revolves around the passage of biopolymers which vary in charge and volume along their sequence. Here we exploit an experimentally tunable system to disentangle and quantify electrostatic and steric factors. This new, fundamental framework facilitates the understanding of how complex biopolymers are transported through confined space and indicates how their translocation can be slowed down to enable future sensing methods.
Collapse
Affiliation(s)
- Steven F Buchsbaum
- School of Physical Sciences, University of California, Irvine, California 92697, United States
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A theoretical study on entropy-driven polymer translocation through a finite-sized nanochannel. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.02.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Stoloff DH, Wanunu M. Recent trends in nanopores for biotechnology. Curr Opin Biotechnol 2012; 24:699-704. [PMID: 23266100 DOI: 10.1016/j.copbio.2012.11.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
Nanopore technology employs a nanoscale hole in an insulating membrane to stochastically sense with high throughput individual biomolecules in solution. The generality of the nanopore detection principle and the ease of single-molecule detection suggest many potential applications of nanopores in biotechnology. Recent progress has been made with nanopore fabrication and sophistication, as well as with applications in DNA/protein mapping, biomolecular structure analysis, protein detection, and DNA sequencing. In addition, concepts for DNA sequencing devices have been suggested, and computational efforts have been made. The state of the nanopore field is maturing and given the right type of nanopore and operating conditions, nearly every application could revolutionize medicine in terms of speed, cost, and quality. In this review, we summarize progress in nanopores for biotechnological applications over the past 2-3 years.
Collapse
Affiliation(s)
- Daniel H Stoloff
- Department of Physics, Northeastern University, Boston, MA, United States
| | | |
Collapse
|
14
|
Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 2012; 338:932-6. [PMID: 23161995 DOI: 10.1126/science.1225624] [Citation(s) in RCA: 566] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We created nanometer-scale transmembrane channels in lipid bilayers by means of self-assembled DNA-based nanostructures. Scaffolded DNA origami was used to create a stem that penetrated and spanned a lipid membrane, as well as a barrel-shaped cap that adhered to the membrane, in part via 26 cholesterol moieties. In single-channel electrophysiological measurements, we found similarities to the response of natural ion channels, such as conductances on the order of 1 nanosiemens and channel gating. More pronounced gating was seen for mutations in which a single DNA strand of the stem protruded into the channel. Single-molecule translocation experiments show that the synthetic channels can be used to discriminate single DNA molecules.
Collapse
Affiliation(s)
- Martin Langecker
- Lehrstuhl für Bioelektronik, Physics Department and ZNN/WSI, Technische Universität München, 85748 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin J, Fabian M, Sonenberg N, Meller A. Nanopore detachment kinetics of poly(A) binding proteins from RNA molecules reveals the critical role of C-terminus interactions. Biophys J 2012; 102:1427-34. [PMID: 22455926 DOI: 10.1016/j.bpj.2012.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022] Open
Abstract
The ubiquitous and abundant cytoplasmic poly(A) binding protein (PABP) is a highly conserved multifunctional protein, many copies of which bind to the poly(A) tail of eukaryotic mRNAs to promote translation initiation. The N-terminus of PABP is responsible for the high binding specificity and affinity to poly(A), whereas the C-terminus is known to stimulate PABP multimerization on poly(A). Here, we use single-molecule nanopore force spectroscopy to directly measure interactions between poly(A) and PABPs. Both electrical and biochemical results show that the C-C domain interaction between two consecutive PABPs promotes cooperative binding. Up to now, investigators have not been able to probe the detailed polarity configuration (i.e., the internal arrangement of two PABPs on a poly(A) streak in which the C-termini face toward or away from each other). Our nanopore force spectroscopy system is able to distinguish the cooperative binding conformation from the noncooperative one. The ∼50% cooperative binding conformation of wild-type PABPs indicates that the C-C domain interaction doubles the cooperative binding probability. Moreover, the longer dissociation time of a cooperatively bound poly(A)/PABP complex as compared with a noncooperatively bound one indicates that the cooperative mode is the most stable conformation for PABPs binding onto the poly(A). However, ∼50% of the poly(A)/PABP complexes exhibit a noncooperative binding conformation, which is in line with previous studies showing that the PABP C-terminal domain also interacts with additional protein cofactors.
Collapse
Affiliation(s)
- Jianxun Lin
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|