1
|
Chen M, Kálai T, Cascio D, Bridges MD, Whitelegge JP, Elgeti M, Hubbell WL. A Highly Ordered Nitroxide Side Chain for Distance Mapping and Monitoring Slow Structural Fluctuations in Proteins. APPLIED MAGNETIC RESONANCE 2023; 55:251-277. [PMID: 38357006 PMCID: PMC10861403 DOI: 10.1007/s00723-023-01618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 02/16/2024]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is an established tool for exploring protein structure and dynamics. Although nitroxide side chains attached to a single cysteine via a disulfide linkage are commonly employed in SDSL-EPR, their internal flexibility complicates applications to monitor slow internal motions in proteins and to structure determination by distance mapping. Moreover, the labile disulfide linkage prohibits the use of reducing agents often needed for protein stability. To enable the application of SDSL-EPR to the measurement of slow internal dynamics, new spin labels with hindered internal motion are desired. Here, we introduce a highly ordered nitroxide side chain, designated R9, attached at a single cysteine residue via a non-reducible thioether linkage. The reaction to introduce R9 is highly selective for solvent-exposed cysteine residues. Structures of R9 at two helical sites in T4 Lysozyme were determined by X-ray crystallography and the mobility in helical sequences was characterized by EPR spectral lineshape analysis, Saturation Transfer EPR, and Saturation Recovery EPR. In addition, interspin distance measurements between pairs of R9 residues are reported. Collectively, all data indicate that R9 will be useful for monitoring slow internal structural fluctuations, and applications to distance mapping via dipolar spectroscopy and relaxation enhancement methods are anticipated. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-023-01618-8.
Collapse
Affiliation(s)
- Mengzhen Chen
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti St. 12, Pecs, 7624 Hungary
| | - Duilio Cascio
- Department of Biological Chemistry, UCLA-DOE Institute, Howard Hughes Medical Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Michael D. Bridges
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095 USA
| | - Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
- Present Address: Institute for Drug Discovery, Leipzig University Medical Center, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
2
|
Guhathakurta P, Phung LA, Prochniewicz E, Lichtenberger S, Wilson A, Thomas DD. Actin-binding compounds, previously discovered by FRET-based high-throughput screening, differentially affect skeletal and cardiac muscle. J Biol Chem 2020; 295:14100-14110. [PMID: 32788211 DOI: 10.1074/jbc.ra120.014445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Indexed: 01/21/2023] Open
Abstract
Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lien A Phung
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Lichtenberger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Wilson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA .,Photonic Pharma LLC, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Arata T. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Int J Mol Sci 2020; 21:E672. [PMID: 31968570 PMCID: PMC7014194 DOI: 10.3390/ijms21020672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this article was to document the energy-transducing and regulatory interactions in supramolecular complexes such as motor, pump, and clock ATPases. The dynamics and structural features were characterized by motion and distance measurements using spin-labeling electron paramagnetic resonance (EPR) spectroscopy. In particular, we focused on myosin ATPase with actin-troponin-tropomyosin, neural kinesin ATPase with microtubule, P-type ion-motive ATPase, and cyanobacterial clock ATPase. Finally, we have described the relationships or common principles among the molecular mechanisms of various energy-transducing systems and how the large-scale thermal structural transition of flexible elements from one state to the other precedes the subsequent irreversible chemical reactions.
Collapse
Affiliation(s)
- Toshiaki Arata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
4
|
Savich Y, Binder BP, Thompson AR, Thomas DD. Myosin lever arm orientation in muscle determined with high angular resolution using bifunctional spin labels. J Gen Physiol 2019; 151:1007-1016. [PMID: 31227551 PMCID: PMC6683674 DOI: 10.1085/jgp.201812210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/15/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023] Open
Abstract
High-resolution structural information is invaluable for understanding muscle function. Savich et al. use bifunctional spin labeling to determine the orientation of the myosin lever arm in muscle fibers at high resolution under ambient conditions, augmenting previous insights obtained from fluorescence and EM. Despite advances in x-ray crystallography, cryo-electron microscopy (cryo-EM), and fluorescence polarization, none of these techniques provide high-resolution structural information about the myosin light chain domain (LCD; lever arm) under ambient conditions in vertebrate muscle. Here, we measure the orientation of LCD elements in demembranated muscle fibers by electron paramagnetic resonance (EPR) using a bifunctional spin label (BSL) with an angular resolution of 4°. To achieve stereoselective site-directed labeling with BSL, we engineered a pair of cysteines in the myosin regulatory light chain (RLC), either on helix E or helix B, which are roughly parallel or perpendicular to the myosin lever arm, respectively. By exchanging BSL-labeled RLC onto oriented muscle fibers, we obtain EPR spectra from which the angular distributions of BSL, and thus the lever arm, can be determined with high resolution relative to the muscle fiber axis. In the absence of ATP (rigor), each of the two labeled helices exhibits both ordered (σ ∼9–11°) and disordered (σ > 38°) populations. Using these angles to determine the orientation of the lever arm (LCD combined with converter subdomain), we observe that the oriented population corresponds to a lever arm that is perpendicular to the muscle fiber axis and that the addition of ATP in the absence of Ca2+ (inducing relaxation) shifts the orientation to a much more disordered orientational distribution. Although the detected orientation of the myosin light chain lever arm is ∼33° different than predicted from a standard “lever arm down” model based on cryo-EM of actin decorated with isolated myosin heads, it is compatible with, and thus augments and clarifies, fluorescence polarization, x-ray interference, and EM data obtained from muscle fibers. These results establish feasibility for high-resolution detection of myosin LCD rotation during muscle contraction.
Collapse
Affiliation(s)
- Yahor Savich
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN.,School of Physics and Astronomy, University of Minnesota, Minneapolis, MN
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Chemistry, Augsburg University, Minneapolis, MN
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
5
|
Binder BP, Thompson AR, Thomas DD. Atomistic Models from Orientation and Distance Constraints Using EPR of a Bifunctional Spin Label. Biophys J 2019; 117:319-330. [PMID: 31301803 DOI: 10.1016/j.bpj.2019.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
We have used high-resolution orientation and distance measurements derived from electron paramagnetic resonance of a bifunctional spin label (BSL) to build and refine atomistic models of protein structure. We demonstrate this approach by investigating the effects of nucleotide binding on the structure of myosin's catalytic domain while myosin is in complex with actin. Constraints for orientation of individual helices were obtained in a previous study from continuous-wave electron paramagnetic resonance of myosin labeled at specific sites with BSLs in oriented muscle fibers. In this study, new distance constraints were derived from double electron-electron resonance on myosin constructs labeled with a BSL specifically at two sites. Using these complementary constraints together, we thoroughly characterize the BSL's rigid, highly stereoselective attachment to protein α-helices, which permits accurate measurements of orientation and distance. We also leverage these measurements to derive a novel, to our knowledge, structural model for myosin-II in complex with actin and MgADP and compare our model to other recent actomyosin structures. The described approach is applicable to any orientable complex (e.g., membranes or filaments) in which site-specific di-Cys mutation is feasible.
Collapse
Affiliation(s)
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
6
|
Bibó A, Károlyi G, Kovács M. Unrevealed part of myosin's powerstroke accounts for high efficiency of muscle contraction. Biochim Biophys Acta Gen Subj 2017; 1861:2325-2333. [DOI: 10.1016/j.bbagen.2017.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022]
|
7
|
McCaffrey JE, James ZM, Svensson B, Binder BP, Thomas DD. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:50-56. [PMID: 26720587 PMCID: PMC4716873 DOI: 10.1016/j.jmr.2015.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.
Collapse
Affiliation(s)
- Jesse E McCaffrey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary M James
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR. Methods Enzymol 2015; 564:101-23. [PMID: 26477249 DOI: 10.1016/bs.mie.2015.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifunctional spin label (BSL) to measure muscle protein structure and dynamics. We demonstrate that bifunctional attachment eliminates nanosecond internal rotation of the spin label, thereby allowing the accurate measurement of protein backbone rotational dynamics, including microsecond-to-millisecond motions by saturation transfer EPR. BSL also allows for accurate determination of helix orientation and disorder in mechanically and magnetically aligned systems, due to the label's stereospecific attachment. Similarly, labeling with a pair of BSL greatly enhances the resolution and accuracy of distance measurements measured by double electron-electron resonance (DEER). Finally, when BSL is applied to a protein with high helical content in an assembly with high orientational order (e.g., muscle fiber or membrane), two-probe DEER experiments can be combined with single-probe EPR experiments on an oriented sample in a process we call BEER, which has the potential for ab initio high-resolution structure determination.
Collapse
|
9
|
High-resolution helix orientation in actin-bound myosin determined with a bifunctional spin label. Proc Natl Acad Sci U S A 2015; 112:7972-7. [PMID: 26056276 DOI: 10.1073/pnas.1500625112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Using electron paramagnetic resonance (EPR) of a bifunctional spin label (BSL) bound stereospecifically to Dictyostelium myosin II, we determined with high resolution the orientation of individual structural elements in the catalytic domain while myosin is in complex with actin. BSL was attached to a pair of engineered cysteine side chains four residues apart on known α-helical segments, within a construct of the myosin catalytic domain that lacks other reactive cysteines. EPR spectra of BSL-myosin bound to actin in oriented muscle fibers showed sharp three-line spectra, indicating a well-defined orientation relative to the actin filament axis. Spectral analysis indicated that orientation of the spin label can be determined within <2.1° accuracy, and comparison with existing structural data in the absence of nucleotide indicates that helix orientation can also be determined with <4.2° accuracy. We used this approach to examine the crucial ADP release step in myosin's catalytic cycle and detected reversible rotations of two helices in actin-bound myosin in response to ADP binding and dissociation. One of these rotations has not been observed in myosin-only crystal structures.
Collapse
|
10
|
Guhathakurta P, Prochniewicz E, Thomas DD. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain. Proc Natl Acad Sci U S A 2015; 112:4660-5. [PMID: 25825773 PMCID: PMC4403186 DOI: 10.1073/pnas.1420101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
11
|
Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is disrupted by estradiol deficiency. Biochem Biophys Res Commun 2015; 456:151-5. [PMID: 25446114 PMCID: PMC4276479 DOI: 10.1016/j.bbrc.2014.11.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
We have used quantitative epifluorescence microscopy of fluorescent ATP to measure single-nucleotide turnover in skinned skeletal muscle fibers from mouse models of female aging and hormone treatment. Aging causes declines in muscle strength, often leading to frailty, disability, and loss of independence for the elderly. Female muscle is additionally affected by age due to reduction of ovarian hormone production with menopause. Estradiol (E2) is the key hormonal signal to skeletal muscle in females, and strength loss is attenuated by E2 treatment. To investigate E2 mechanisms on skeletal muscle, single fibers were isolated from sham-operated or ovariectomized (OVX) mice, with or without E2 treatment, and were incubated with 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (mantATP). We measured decay of mantATP fluorescence in an ATP-chase experiment, as pioneered by Cooke and coworkers, who unveiled a novel regulated state of muscle myosin characterized by slow nucleotide turnover on the order of minutes, termed the super-relaxed state (SRX). We detected a slow phase of nucleotide turnover in a portion of the myosin heads from sham fibers, consistent with SRX. Turnover was substantially faster in OVX fibers, with a turnover time constant for the slow phase of 65 ± 8s as compared to 102 ± 7s for sham fibers. 60-days E2 treatment in OVX mice substantially reversed this effect on SRX, while acute exposure of isolated muscles from OVX mice to E2 had no effect. We conclude that E2-mediated signaling reversibly regulates slow ATP turnover by myosin. Age- and hormone-related muscle functional losses may be targetable at the level of myosin structure/function for strategies to offset weakness and metabolic changes that occur with age.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Karl J Petersen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Brittany C Collins
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Lowe
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
12
|
Moen RJ, Klein JC, Thomas DD. Electron paramagnetic resonance resolves effects of oxidative stress on muscle proteins. Exerc Sport Sci Rev 2014; 42:30-6. [PMID: 24188980 DOI: 10.1249/jes.0000000000000004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to explore the effects of oxidation on muscle function, with particular focus on the actin-myosin interaction. EPR measurements show that aging or oxidative modification causes a decrease in the fraction of myosins in the strong-binding state, which can be traced to the actin-binding cleft of the myosin catalytic domain.
Collapse
Affiliation(s)
- Rebecca J Moen
- 1Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN; 2Department of Chemistry and Geology, Minnesota State University, Mankato, Mankato, MN; and 3Department of Biology, University of Wisconsin, Lacrosse, Lacrosse, WI
| | | | | |
Collapse
|
13
|
Moen RJ, Thomas DD, Klein JC. Conformationally trapping the actin-binding cleft of myosin with a bifunctional spin label. J Biol Chem 2012; 288:3016-24. [PMID: 23250750 DOI: 10.1074/jbc.m112.428565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have trapped the catalytic domain of Dictyostelium (Dicty) myosin II in a weak actin-binding conformation by chemically crosslinking two engineered cysteines across the actin-binding cleft, using a bifunctional spin label (BSL). By connecting the lower and upper 50 kDa domains of myosin, the crosslink restricts the conformation of the actin-binding cleft. Crosslinking has no effect on the basal ATPase activity of isolated myosin, but it impairs rigor actin binding and actin-activation of myosin ATPase. EPR spectra of BSL provide insight into actomyosin structural dynamics. BSL is highly immobilized within the actin-binding cleft and is thus exquisitely sensitive to the global orientation and rotational motions of the myosin head. Conventional EPR shows that myosin heads bound to oriented actin filaments are highly disordered with respect to the actin filament axis, in contrast to the nearly crystalline order of myosin heads in rigor. This disorder is similar to that of weakly bound heads induced by ATP, but saturation transfer EPR shows that the disorder of crosslinked myosin is at least 100 times slower. Thus this cleft-crosslinked myosin is remarkably similar, in both actin affinity and rotational dynamics, to SH1-SH2 crosslinked BSL-myosin S1. We conclude that, whether myosin is trapped at the actin-myosin interface or in the force-generating region between the active site and lever arm, the structural state of myosin is intermediate between the weak-binding state preceding phosphate release and the strong-binding state that succeeds it. We propose that it represents the threshold of force generation.
Collapse
Affiliation(s)
- Rebecca J Moen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
14
|
Guhathakurta P, Prochniewicz E, Muretta JM, Titus MA, Thomas DD. Allosteric communication in Dictyostelium myosin II. J Muscle Res Cell Motil 2012; 33:305-12. [PMID: 22752265 DOI: 10.1007/s10974-012-9304-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
Myosin's affinities for nucleotides and actin are reciprocal. Actin-binding substantially reduces the affinity of ATP for myosin, but the effect of actin on myosin's ADP affinity is quite variable among myosin isoforms, serving as the principal mechanism for tuning the actomyosin system to specific physiological purposes. To understand the structural basis of this variable relationship between actin and ADP binding, we studied several constructs of the catalytic domain of Dictyostelium myosin II, varying their length (from the N-terminal origin) and cysteine content. The constructs varied considerably in their actin-activated ATPase activity and in the effect of actin on ADP affinity. Actin had no significant effect on ADP affinity for a single-cysteine catalytic domain construct, a double-cysteine construct partially restored the actin-dependence of ADP binding, and restoration of all native Cys restored it further, but full restoration of function (similar to that of skeletal muscle myosin II) was obtained only by adding all native Cys and an artificial lever arm extension. Pyrene-actin fluorescence confirmed these effects on ADP binding to actomyosin. We conclude that myosin's Cys content and lever arm both allosterically modulate the reciprocal affinities of myosin for ADP and actin, a key determinant of the biological functions of myosin isoforms.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|