1
|
Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander AD. Leveraging gene correlations in single cell transcriptomic data. BMC Bioinformatics 2024; 25:305. [PMID: 39294560 PMCID: PMC11411778 DOI: 10.1186/s12859-024-05926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data-looking for rare cell types, subtleties of cell states, and details of gene regulatory networks-there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data in which ground truth about biological variation is unknown (i.e., usually). RESULTS We approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization-a step that skews distributions, particularly for sparse data-and calculate p values associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene-gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. CONCLUSIONS New insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene-gene correlations.
Collapse
Affiliation(s)
- Kai Silkwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Emmanuel Dollinger
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Joshua Gervin
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Scott Atwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Zhou L, Chen H, Zhang J, Zhang J, Qiu H, Zhou T. Exact burst-size distributions for gene-expression models with complex promoter structure. Biosystems 2024; 246:105337. [PMID: 39299486 DOI: 10.1016/j.biosystems.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
In prokaryotic and eukaryotic cells, most genes are transcribed in a bursty fashion on one hand and complex gene regulations may lead to complex promoter structure on the other hand. This raises an unsolved issue: how does promoter structure shape transcriptional bursting kinetics characterized by burst size and frequency? Here we analyze stochastic models of gene transcription, which consider complex regulatory mechanisms. Notably, we develop an efficient method to derive exact burst-size distributions. The analytical results show that if the promoter of a gene contains only one active state, the burst size indeed follows a geometric distribution, in agreement with the previous result derived under certain limiting conditions. However, if it contains a multitude of active states, the burst size in general obeys a non-geometric distribution, which is a linearly weighted sum of geometric distributions. This superposition principle reveals the essential feature of bursting kinetics in complex cases of transcriptional regulation although it seems that there has been no direct experimental confirmation. The derived burst-size distributions not only highlight the importance of promoter structure in regulating bursting kinetics, but can be also used in the exact inference of this kinetics based on experimental data.
Collapse
Affiliation(s)
- Liying Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haowen Chen
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jinqiang Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiajun Zhang
- Key Laboratory of Computational Mathematics, Guangdong Province, PR China; School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Huahai Qiu
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, 430200, PR China.
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, PR China; School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
3
|
Zhang Q, Cao W, Wang J, Yin Y, Sun R, Tian Z, Hu Y, Tan Y, Zhang BG. Transcriptional bursting dynamics in gene expression. Front Genet 2024; 15:1451461. [PMID: 39346775 PMCID: PMC11437526 DOI: 10.3389/fgene.2024.1451461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Gene transcription is a stochastic process that occurs in all organisms. Transcriptional bursting, a critical molecular dynamics mechanism, creates significant heterogeneity in mRNA and protein levels. This heterogeneity drives cellular phenotypic diversity. Currently, the lack of a comprehensive quantitative model limits the research on transcriptional bursting. This review examines various gene expression models and compares their strengths and weaknesses to guide researchers in selecting the most suitable model for their research context. We also provide a detailed summary of the key metrics related to transcriptional bursting. We compared the temporal dynamics of transcriptional bursting across species and the molecular mechanisms influencing these bursts, and highlighted the spatiotemporal patterns of gene expression differences by utilizing metrics such as burst size and burst frequency. We summarized the strategies for modeling gene expression from both biostatistical and biochemical reaction network perspectives. Single-cell sequencing data and integrated multiomics approaches drive our exploration of cutting-edge trends in transcriptional bursting mechanisms. Moreover, we examined classical methods for parameter estimation that help capture dynamic parameters in gene expression data, assessing their merits and limitations to facilitate optimal parameter estimation. Our comprehensive summary and review of the current transcriptional burst dynamics theories provide deeper insights for promoting research on the nature of cell processes, cell fate determination, and cancer diagnosis.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Wenjie Cao
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Wang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yihao Yin
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Rui Sun
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Zunyi Tian
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yuhan Hu
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yalan Tan
- School of Bioengineering & Health, Wuhan Textile University, Wu Han, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| |
Collapse
|
4
|
Shi C, Yang X, Zhou T, Zhang J. Nascent RNA kinetics with complex promoter architecture: Analytic results and parameter inference. Phys Rev E 2024; 110:034413. [PMID: 39425372 DOI: 10.1103/physreve.110.034413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Transcription is a stochastic process that involves several downstream operations which make it difficult to model and infer transcription kinetics from mature RNA numbers in individual cell. However, recent advances in single-cell technologies have enabled a more precise measurement of the fluctuations of nascent RNA that closely reflect transcription kinetics. In this paper we introduce a general stochastic model to mimic nascent RNA kinetics with complex promoter architecture. We derive the exact distribution and moments of nascent RNA using queuing theory techniques, which provide valuable insights into the effect of the molecular memory created by the multistep activation and deactivation on the stochastic kinetics of nascent RNA. Moreover, based on the analytical results, we develop a statistical method to infer the promoter memory from stationary nascent RNA distributions. Data analysis of synthetic data and a realistic example, the HIV-1 gene, verifies the validity of this inference method.
Collapse
|
5
|
Szavits-Nossan J, Grima R. Solving stochastic gene-expression models using queueing theory: A tutorial review. Biophys J 2024; 123:1034-1057. [PMID: 38594901 PMCID: PMC11079947 DOI: 10.1016/j.bpj.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queueing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite-server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and nonstationary distributions and/or moments of mRNA/protein numbers and bounds on the Fano factor. This approach may enable the solution of complex models that have hitherto evaded analytical solution.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Waters MR, Inkman M, Jayachandran K, Kowalchuk RM, Robinson C, Schwarz JK, Swamidass SJ, Griffith OL, Szymanski JJ, Zhang J. GAiN: An integrative tool utilizing generative adversarial neural networks for augmented gene expression analysis. PATTERNS (NEW YORK, N.Y.) 2024; 5:100910. [PMID: 38370125 PMCID: PMC10873154 DOI: 10.1016/j.patter.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024]
Abstract
Big genomic data and artificial intelligence (AI) are ushering in an era of precision medicine, providing opportunities to study previously under-represented subtypes and rare diseases rather than categorize them as variances. However, clinical researchers face challenges in accessing such novel technologies as well as reliable methods to study small datasets or subcohorts with unique phenotypes. To address this need, we developed an integrative approach, GAiN, to capture patterns of gene expression from small datasets on the basis of an ensemble of generative adversarial networks (GANs) while leveraging big population data. Where conventional biostatistical methods fail, GAiN reliably discovers differentially expressed genes (DEGs) and enriched pathways between two cohorts with limited numbers of samples (n = 10) when benchmarked against a gold standard. GAiN is freely available at GitHub. Thus, GAiN may serve as a crucial tool for gene expression analysis in scenarios with limited samples, as in the context of rare diseases, under-represented populations, or limited investigator resources.
Collapse
Affiliation(s)
- Michael R. Waters
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | - Clifford Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey J. Szymanski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics (I), Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Zhang J, Chen A, Qiu H, Zhang J, Tian T, Zhou T. Exact results for gene-expression models with general waiting-time distributions. Phys Rev E 2024; 109:024119. [PMID: 38491572 DOI: 10.1103/physreve.109.024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Complex molecular details of transcriptional regulation can be coarse-grained by assuming that reaction waiting times for promoter-state transitions, the mRNA synthesis, and the mRNA degradation follow general distributions. However, how such a generalized two-state model is analytically solved is a long-standing issue. Here we first present analytical formulas of burst-size distributions for this model. Then, we derive an iterative equation for the mRNA moment-generating function, by which mRNA raw and binomial moments of any order can be conveniently calculated. The analytical results obtained in the special cases of phase-type waiting-time distributions not only provide insights into the mechanisms of complex transcriptional regulations but also bring conveniences for experimental data-based statistical inferences.
Collapse
Affiliation(s)
- Jinqiang Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Aimin Chen
- School of Mathematics and Statistics, Henan University, Kaifeng 475004, China
| | - Huahai Qiu
- School of Mathematics and Computers, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, Guangzhou 510275, People's Republic of China
| | - Tianhai Tian
- School of Mathematics, Monash University, Clayton 3800, Australia
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, Guangzhou 510275, People's Republic of China
| |
Collapse
|
8
|
Wang X, Li Y, Jia C. Poisson representation: a bridge between discrete and continuous models of stochastic gene regulatory networks. J R Soc Interface 2023; 20:20230467. [PMID: 38016635 PMCID: PMC10684348 DOI: 10.1098/rsif.2023.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Stochastic gene expression dynamics can be modelled either discretely or continuously. Previous studies have shown that the mRNA or protein number distributions of some simple discrete and continuous gene expression models are related by Gardiner's Poisson representation. Here, we systematically investigate the Poisson representation in complex stochastic gene regulatory networks. We show that when the gene of interest is unregulated, the discrete and continuous descriptions of stochastic gene expression are always related by the Poisson representation, no matter how complex the model is. This generalizes the results obtained in Dattani & Barahona (Dattani & Barahona 2017 J. R. Soc. Interface 14, 20160833 (doi:10.1098/rsif.2016.0833)). In addition, using a simple counter-example, we find that the Poisson representation in general fails to link the two descriptions when the gene is regulated. However, for a general stochastic gene regulatory network, we demonstrate that the discrete and continuous models are approximately related by the Poisson representation in the limit of large protein numbers. These theoretical results are further applied to analytically solve many complex gene expression models whose exact distributions are previously unknown.
Collapse
Affiliation(s)
- Xinyu Wang
- Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
| | - Youming Li
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Chen Jia
- Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
| |
Collapse
|
9
|
Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander AD. Leveraging gene correlations in single cell transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532643. [PMID: 36993765 PMCID: PMC10055147 DOI: 10.1101/2023.03.14.532643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data-looking for rare cell types, subtleties of cell states, and details of gene regulatory networks-there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data when ground truth about biological variation is unknown (i.e., usually). RESULTS We approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization-a step that skews distributions, particularly for sparse data-and calculate p-values associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene-gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. CONCLUSIONS New insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene-gene correlations.
Collapse
Affiliation(s)
- Kai Silkwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Emmanuel Dollinger
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
- Department of Mathematics, University of California, Irvine, Irvine CA
| | - Josh Gervin
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Scott Atwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
- Department of Mathematics, University of California, Irvine, Irvine CA
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| |
Collapse
|
10
|
Wu R, Zhou B, Wang W, Liu F. Regulatory Mechanisms for Transcriptional Bursting Revealed by an Event-Based Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0253. [PMID: 39290237 PMCID: PMC11407585 DOI: 10.34133/research.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/01/2023] [Indexed: 09/19/2024]
Abstract
Gene transcription often occurs in discrete bursts, and it can be difficult to deduce the underlying regulatory mechanisms for transcriptional bursting with limited experimental data. Here, we categorize numerous states of single eukaryotic genes and identify 6 essential transcriptional events, each comprising a series of state transitions; transcriptional bursting is characterized as a sequence of 4 events, capable of being organized in various configurations, in addition to the beginning and ending events. By associating transcriptional kinetics with mean durations and recurrence probabilities of the events, we unravel how transcriptional bursting is modulated by various regulators including transcription factors. Through analytical derivation and numerical simulation, this study reveals key state transitions contributing to transcriptional sensitivity and specificity, typical characteristics of burst profiles, global constraints on intrinsic transcriptional noise, major regulatory modes in individual genes and across the genome, and requirements for fast gene induction upon stimulation. It is illustrated how biochemical reactions on different time scales are modulated to separately shape the durations and ordering of the events. Our results suggest that transcriptional patterns are essentially controlled by a shared set of transcriptional events occurring under specific promoter architectures and regulatory modes, the number of which is actually limited.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Bangyan Zhou
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
11
|
Zhang J, Han X, Ma L, Xu S, Lin Y. Deciphering a global source of non-genetic heterogeneity in cancer cells. Nucleic Acids Res 2023; 51:9019-9038. [PMID: 37587722 PMCID: PMC10516630 DOI: 10.1093/nar/gkad666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Cell-to-cell variability within a clonal population, also known as non-genetic heterogeneity, has created significant challenges for intervening with diseases such as cancer. While non-genetic heterogeneity can arise from the variability in the expression of specific genes, it remains largely unclear whether and how clonal cells could be heterogeneous in the expression of the entire transcriptome. Here, we showed that gene transcriptional activity is globally modulated in individual cancer cells, leading to non-genetic heterogeneity in the global transcription rate. Such heterogeneity contributes to cell-to-cell variability in transcriptome size and displays both dynamic and static characteristics, with the global transcription rate temporally modulated in a cell-cycle-coupled manner and the time-averaged rate being distinct between cells and heritable across generations. Additional evidence indicated the role of ATP metabolism in this heterogeneity, and suggested its implication in intrinsic cancer drug tolerance. Collectively, our work shed light on the mode, mechanism, and implication of a global but often hidden source of non-genetic heterogeneity.
Collapse
Affiliation(s)
- Jianhan Zhang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xu Han
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Ma
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shuhui Xu
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yihan Lin
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Luo S, Zhang Z, Wang Z, Yang X, Chen X, Zhou T, Zhang J. Inferring transcriptional bursting kinetics from single-cell snapshot data using a generalized telegraph model. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221057. [PMID: 37035293 PMCID: PMC10073913 DOI: 10.1098/rsos.221057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Gene expression has inherent stochasticity resulting from transcription's burst manners. Single-cell snapshot data can be exploited to rigorously infer transcriptional burst kinetics, using mathematical models as blueprints. The classical telegraph model (CTM) has been widely used to explain transcriptional bursting with Markovian assumptions. However, growing evidence suggests that the gene-state dwell times are generally non-exponential, as gene-state switching is a multi-step process in organisms. Therefore, interpretable non-Markovian mathematical models and efficient statistical inference methods are urgently required in investigating transcriptional burst kinetics. We develop an interpretable and tractable model, the generalized telegraph model (GTM), to characterize transcriptional bursting that allows arbitrary dwell-time distributions, rather than exponential distributions, to be incorporated into the ON and OFF switching process. Based on the GTM, we propose an inference method for transcriptional bursting kinetics using an approximate Bayesian computation framework. This method demonstrates an efficient and scalable estimation of burst frequency and burst size on synthetic data. Further, the application of inference to genome-wide data from mouse embryonic fibroblasts reveals that GTM would estimate lower burst frequency and higher burst size than those estimated by CTM. In conclusion, the GTM and the corresponding inference method are effective tools to infer dynamic transcriptional bursting from static single-cell snapshot data.
Collapse
Affiliation(s)
- Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, People's Republic of China
| | - Xiaoxuan Chen
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| |
Collapse
|
13
|
Leonaviciene G, Mazutis L. RNA cytometry of single-cells using semi-permeable microcapsules. Nucleic Acids Res 2023; 51:e2. [PMID: 36268865 PMCID: PMC9841424 DOI: 10.1093/nar/gkac918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/29/2023] Open
Abstract
Analytical tools for gene expression profiling of individual cells are critical for studying complex biological systems. However, the techniques enabling rapid measurements of gene expression on thousands of single-cells are lacking. Here, we report a high-throughput RNA cytometry for digital profiling of single-cells isolated in liquid droplets enveloped by a thin semi-permeable membrane (microcapsules). Due to the selective permeability of the membrane, the desirable enzymes and reagents can be loaded, or replaced, in the microcapsule at any given step by simply changing the reaction buffer in which the microcapsules are dispersed. Therefore, complex molecular biology workflows can be readily adapted to conduct nucleic acid analysis on encapsulated mammalian cells, or other biological species. The microcapsules support sequential multi-step enzymatic reactions and remain intact under different biochemical conditions, freezing, thawing, and thermocycling. Combining microcapsules with conventional FACS provides a high-throughput approach for conducting RNA cytometry of individual cells based on their digital gene expression signature.
Collapse
Affiliation(s)
- Greta Leonaviciene
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania
| | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania
| |
Collapse
|
14
|
Full classification of dynamics for one-dimensional continuous-time Markov chains with polynomial transition rates. ADV APPL PROBAB 2022. [DOI: 10.1017/apr.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This paper provides a full classification of the dynamics for continuous-time Markov chains (CTMCs) on the nonnegative integers with polynomial transition rate functions and without arbitrary large backward jumps. Such stochastic processes are abundant in applications, in particular in biology. More precisely, for CTMCs of bounded jumps, we provide necessary and sufficient conditions in terms of calculable parameters for explosivity, recurrence versus transience, positive recurrence versus null recurrence, certain absorption, and implosivity. Simple sufficient conditions for exponential ergodicity of stationary distributions and quasi-stationary distributions as well as existence and nonexistence of moments of hitting times are also obtained. Similar simple sufficient conditions for the aforementioned dynamics together with their opposite dynamics are established for CTMCs with unbounded forward jumps. Finally, we apply our results to stochastic reaction networks, an extended class of branching processes, a general bursty single-cell stochastic gene expression model, and population processes, none of which are birth–death processes. The approach is based on a mixture of Lyapunov–Foster-type results, the classical semimartingale approach, and estimates of stationary measures.
Collapse
|
15
|
Yang X, Wang Z, Wu Y, Zhou T, Zhang J. Kinetic characteristics of transcriptional bursting in a complex gene model with cyclic promoter structure. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3313-3336. [PMID: 35341253 DOI: 10.3934/mbe.2022153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While transcription often occurs in a bursty manner, various possible regulations can lead to complex promoter patterns such as promoter cycles, giving rise to an important question: How do promoter kinetics shape transcriptional bursting kinetics? Here we introduce and analyze a general model of the promoter cycle consisting of multi-OFF states and multi-ON states, focusing on the effects of multi-ON mechanisms on transcriptional bursting kinetics. The derived analytical results indicate that burst size follows a mixed geometric distribution rather than a single geometric distribution assumed in previous studies, and ON and OFF times obey their own mixed exponential distributions. In addition, we find that the multi-ON mechanism can lead to bimodal burst-size distribution, antagonistic timing of ON and OFF, and diverse burst frequencies, each further contributing to cell-to-cell variability in the mRNA expression level. These results not only reveal essential features of transcriptional bursting kinetics patterns shaped by multi-state mechanisms but also can be used to the inferences of transcriptional bursting kinetics and promoter structure based on experimental data.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yahao Wu
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Chen M, Luo S, Cao M, Guo C, Zhou T, Zhang J. Exact distributions for stochastic gene expression models with arbitrary promoter architecture and translational bursting. Phys Rev E 2022; 105:014405. [PMID: 35193181 DOI: 10.1103/physreve.105.014405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
Gene expression in individual cells is inherently variable and sporadic, leading to cell-to-cell variability in mRNA and protein levels. Recent single-cell and single-molecule experiments indicate that promoter architecture and translational bursting play significant roles in controlling gene expression noise and generating the phenotypic diversity that life exhibits. To quantitatively understand the impact of these factors, it is essential to construct an accurate mathematical description of stochastic gene expression and find the exact analytical results, which is a formidable task. Here, we develop a stochastic model of bursty gene expression, which considers the complex promoter architecture governing the variability in mRNA expression and a general distribution characterizing translational burst. We derive the analytical expression for the corresponding protein steady-state distribution and all moment statistics of protein counts. We show that the total protein noise can be decomposed into three parts: the low-copy noise of protein due to probabilistic individual birth and death events, the noise due to stochastic switching between promoter states, and the noise resulting from translational busting. The theoretical results derived provide quantitative insights into the biochemical mechanisms of stochastic gene expression.
Collapse
Affiliation(s)
- Meiling Chen
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Mengfang Cao
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Chengjun Guo
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, People's Republic of China.,School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
17
|
A Language for Modeling and Optimizing Experimental Biological Protocols. COMPUTATION 2021. [DOI: 10.3390/computation9100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Automation is becoming ubiquitous in all laboratory activities, moving towards precisely defined and codified laboratory protocols. However, the integration between laboratory protocols and mathematical models is still lacking. Models describe physical processes, while protocols define the steps carried out during an experiment: neither cover the domain of the other, although they both attempt to characterize the same phenomena. We should ideally start from an integrated description of both the model and the steps carried out to test it, to concurrently analyze uncertainties in model parameters, equipment tolerances, and data collection. To this end, we present a language to model and optimize experimental biochemical protocols that facilitates such an integrated description, and that can be combined with experimental data. We provide probabilistic semantics for our language in terms of Gaussian processes (GPs) based on the linear noise approximation (LNA) that formally characterizes the uncertainties in the data collection, the underlying model, and the protocol operations. In a set of case studies, we illustrate how the resulting framework allows for automated analysis and optimization of experimental protocols, including Gibson assembly protocols.
Collapse
|
18
|
Zhang Z, Deng Q, Wang Z, Chen Y, Zhou T. Exact results for queuing models of stochastic transcription with memory and crosstalk. Phys Rev E 2021; 103:062414. [PMID: 34271765 DOI: 10.1103/physreve.103.062414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Gene transcription is a complex multistep biochemical process, which can create memory between individual reaction events. On the other hand, many inducible genes, when activated by external cues, are often coregulated by several competitive pathways with crosstalk. This raises an unexplored question: how do molecular memory and crosstalk together affect gene expressions? To address this question, we introduce a queuing model of stochastic transcription, where two crossing signaling pathways are used to direct gene activation in response to external signals and memory functions to model multistep reaction processes involved in transcription. We first establish, based on the total probability principle, the chemical master equation for this queuing model, and then we derive, based on the binomial moment approach, exact expressions for statistical quantities (including distributions) of mRNA, which provide insights into the roles of crosstalk and memory in controlling the mRNA level and noise. We find that molecular memory of gene activation decreases the mRNA level but increases the mRNA noise, and double activation pathways always reduce the mRNA noise in contrast to a single pathway. In addition, we find that molecular memory can make the mRNA bimodality disappear.
Collapse
Affiliation(s)
- Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiqi Deng
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiren Chen
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Chen M, Zhou T, Zhang J. Correlation between external regulators governs the mean-noise relationship in stochastic gene expression. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4713-4730. [PMID: 34198461 DOI: 10.3934/mbe.2021239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gene transcription in single cells is inherently a probabilistic process. The relationship between variance ($ \sigma^{2} $) and mean expression ($ \mu $) is of paramount importance for investigations into the evolutionary origins and consequences of noise in gene expression. It is often formulated as $ \log \left({{{\sigma}^{2}}}/{{{\mu}^{2}}}\; \right) = \beta\log\mu+\log\alpha $, where $ \beta $ is a key parameter since its sign determines the qualitative dependence of noise on mean. We reveal that the sign of $ \beta $ is controlled completely by external regulation, but independent of promoter structure. Specifically, it is negative if regulators as stochastic variables are independent but positive if they are correlated. The essential mechanism revealed here can well interpret diverse experimental phenomena underlying expression noise. Our results imply that external regulation rather than promoter sequence governs the mean-noise relationship.
Collapse
Affiliation(s)
- Meiling Chen
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Shi C, Jiang Y, Zhou T. Queuing Models of Gene Expression: Analytical Distributions and Beyond. Biophys J 2020; 119:1606-1616. [PMID: 32966761 DOI: 10.1016/j.bpj.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Activation of a gene is a multistep biochemical process, involving recruitments of transcription factors and histone kinases as well as modification of histones. Many of these intermediate reaction steps would have been unspecified by experiments. Therefore, classical two-state models of gene expression established based on the memoryless (or Markovian) assumption would not well describe the reality in gene expression. Recent experimental data have indicated that the inactive phases of gene promoters are differently distributed, showing strong memory. Here, we use a nonexponential waiting-time distribution to model the complex activation process of a gene, and then analyze a queuing model of stochastic transcription. We successfully derive the analytical expression of the stationary mRNA distribution, which provides insight into the effect of molecular memory created by complex activating events on the mRNA expression. We find that the reduction in the waiting-time noise may result in the increase in the mRNA noise, contrary to the previous conclusion. Based on the derived distribution, we also develop a method to infer the waiting-time distribution from a known mRNA distribution. Data analysis on a realistic example verifies the validity of this method.
Collapse
Affiliation(s)
- Changhong Shi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China.
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Tianshou Zhou
- School of Mathematics and Computational Science and Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Lasri A, Juric V, Verreault M, Bielle F, Idbaih A, Kel A, Murphy B, Sturrock M. Phenotypic selection through cell death: stochastic modelling of O-6-methylguanine-DNA methyltransferase dynamics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191243. [PMID: 32874597 PMCID: PMC7428254 DOI: 10.1098/rsos.191243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 06/17/2020] [Indexed: 05/11/2023]
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumour with a median overall survival of 15 months. To treat GBM, patients currently undergo a surgical resection followed by exposure to radiotherapy and concurrent and adjuvant temozolomide (TMZ) chemotherapy. However, this protocol often leads to treatment failure, with drug resistance being the main reason behind this. To date, many studies highlight the role of O-6-methylguanine-DNA methyltransferase (MGMT) in conferring drug resistance. The mechanism through which MGMT confers resistance is not well studied-particularly in terms of computational models. With only a few reasonable biological assumptions, we were able to show that even a minimal model of MGMT expression could robustly explain TMZ-mediated drug resistance. In particular, we showed that for a wide range of parameter values constrained by novel cell growth and viability assays, a model accounting for only stochastic gene expression of MGMT coupled with cell growth, division, partitioning and death was able to exhibit phenotypic selection of GBM cells expressing MGMT in response to TMZ. Furthermore, we found this selection allowed the cells to pass their acquired phenotypic resistance onto daughter cells in a stable manner (as long as TMZ is provided). This suggests that stochastic gene expression alone is enough to explain the development of chemotherapeutic resistance.
Collapse
Affiliation(s)
- Ayoub Lasri
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| | - Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| | - Maité Verreault
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Alexander Kel
- Department of Research and Development, geneXplain GmbH, Wolfenbüttel 38302, Germany
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Brona Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| |
Collapse
|
22
|
Wang Z, Zhang Z, Zhou T. Analytical results for non-Markovian models of bursty gene expression. Phys Rev E 2020; 101:052406. [PMID: 32575237 DOI: 10.1103/physreve.101.052406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/24/2020] [Indexed: 11/07/2022]
Abstract
Modeling stochastic gene expression has long relied on Markovian hypothesis. In recent years, however, this hypothesis is challenged by the increasing availability of time-resolved data. Correspondingly, there is considerable interest in understanding how non-Markovian reaction kinetics of gene expression impact protein variations across a population of genetically identical cells. Here, we analyze a stochastic model of gene expression with arbitrary waiting-time distributions, which includes existing gene models as its special cases. We find that stationary probabilistic behavior of this non-Markovian system is exactly the same as that of an equivalent Markovian system with the same substrates. Based on this fact, we derive analytical results, which provide insight into the roles of feedback regulation and molecular memory in controlling the protein noise and properties of the steady states, which are inaccessible via existing methodology. Our results also provide quantitative insight into diverse cellular processes involving stochastic sources of gene expression and molecular memory.
Collapse
Affiliation(s)
- Zihao Wang
- Guangdong Province Key Laboratory of Computational Science School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Qiu B, Zhou T, Zhang J. Molecular-memory-driven phenotypic switching in a genetic toggle switch without cooperative binding. Phys Rev E 2020; 101:022409. [PMID: 32168703 DOI: 10.1103/physreve.101.022409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
A genetic toggle switch would involve multistep reaction processes (e.g., complex promoter activation), creating memories between individual reaction events. Revealing the effect of this molecular memory is important for understanding intracellular processes such as cellular decision making. We propose a generalized genetic toggle switch model and use a generalized chemical master equation theory to account for the memory effect. Interestingly, we find that molecular memory can induce bimodality in this memory system although the corresponding memoryless counterpart is not bimodal. This finding implies a plausible alternative mechanism for phenotypic switching that is driven by molecular memory rather than by ultrasensitivity or cooperative binding as shown in previous studies. We also find that unbalanced memories arising from the processes by which mutually inhibiting transcription factors are produced can give rise to asymmetric bimodality without changing the positions of two peaks in the bimodal protein distribution. Given the prevalence of molecular memory in gene regulation, our findings would provide insights into cell fate decisions in growth and development.
Collapse
Affiliation(s)
- Baohua Qiu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
24
|
Dessalles R, Fromion V, Robert P. Models of protein production along the cell cycle: An investigation of possible sources of noise. PLoS One 2020; 15:e0226016. [PMID: 31945071 PMCID: PMC6964835 DOI: 10.1371/journal.pone.0226016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
In this article, we quantitatively study, through stochastic models, the effects of several intracellular phenomena, such as cell volume growth, cell division, gene replication as well as fluctuations of available RNA polymerases and ribosomes. These phenomena are indeed rarely considered in classic models of protein production and no relative quantitative comparison among them has been performed. The parameters for a large and representative class of proteins are determined using experimental measures. The main important and surprising conclusion of our study is to show that despite the significant fluctuations of free RNA polymerases and free ribosomes, they bring little variability to protein production contrary to what has been previously proposed in the literature. After verifying the robustness of this quite counter-intuitive result, we discuss its possible origin from a theoretical view, and interpret it as the result of a mean-field effect.
Collapse
Affiliation(s)
- Renaud Dessalles
- Dept. of Biomathematics, UCLA, Los Angeles, CA, United States of America
| | - Vincent Fromion
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | | |
Collapse
|
25
|
de Gunst M, Knapik B, Mandjes M, Sollie B. Parameter estimation for a discretely observed population process under Markov-modulation. Comput Stat Data Anal 2019. [DOI: 10.1016/j.csda.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks. J Math Biol 2019; 80:959-994. [DOI: 10.1007/s00285-019-01445-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/22/2019] [Indexed: 11/26/2022]
|
27
|
Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc Natl Acad Sci U S A 2019; 116:23542-23550. [PMID: 31685609 PMCID: PMC6876203 DOI: 10.1073/pnas.1913926116] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many cellular processes are governed by stochastic reaction events. These events do not necessarily occur in single steps of individual molecules, and, conversely, each birth or death of a macromolecule (e.g., protein) could involve several small reaction steps, creating a memory between individual events and thus leading to nonmarkovian reaction kinetics. Characterizing this kinetics is challenging. Here, we develop a systematic approach for a general reaction network with arbitrary intrinsic waiting-time distributions, which includes the stationary generalized chemical-master equation (sgCME), the stationary generalized Fokker-Planck equation, and the generalized linear-noise approximation. The first formulation converts a nonmarkovian issue into a markovian one by introducing effective transition rates (that explicitly decode the effect of molecular memory) for the reactions in an equivalent reaction network with the same substrates but without molecular memory. Nonmarkovian features of the reaction kinetics can be revealed by solving the sgCME. The latter 2 formulations can be used in the fast evaluation of fluctuations. These formulations can have broad applications, and, in particular, they may help us discover new biological knowledge underlying memory effects. When they are applied to generalized stochastic models of gene-expression regulation, we find that molecular memory is in effect equivalent to a feedback and can induce bimodality, fine-tune the expression noise, and induce switch.
Collapse
|
28
|
Iida K, Obata N, Kimura Y. Quantifying heterogeneity of stochastic gene expression. J Theor Biol 2019; 465:56-62. [PMID: 30611711 DOI: 10.1016/j.jtbi.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
The heterogeneity of stochastic gene expression, which refers to the temporal fluctuation in a gene product and its cell-to-cell variation, has attracted considerable interest from biologists, physicists, and mathematicians. The dynamics of protein production and degradation have been modeled as random processes with transition probabilities. However, there is a gap between theory and phenomena, particularly in terms of analytical formulation and parameter estimation. In this study, we propose a theoretical framework in which we present a basic model of a gene regulatory system, derive a steady-state solution, and provide a Bayesian approach for estimating the model parameters from single-cell experimental data. The proposed framework is demonstrated to be applicable for various scales of single-cell experiments at both the mRNA and protein levels and is useful for comparing kinetic parameters across species, genomes, and cell strains.
Collapse
Affiliation(s)
- Keita Iida
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | - Nobuaki Obata
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan.
| | - Yoshitaka Kimura
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
29
|
Bisschops MMM, Luttik MAH, Doerr A, Verheijen PJT, Bruggeman F, Pronk JT, Daran-Lapujade P. Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:231-242. [PMID: 27818273 DOI: 10.1016/j.bbamcr.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G1 phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.
Collapse
Affiliation(s)
- Markus M M Bisschops
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anne Doerr
- Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Peter J T Verheijen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Frank Bruggeman
- Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
30
|
Jędrak J, Ochab-Marcinek A. Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process. Phys Rev E 2016; 94:032401. [PMID: 27739798 DOI: 10.1103/physreve.94.032401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 06/06/2023]
Abstract
We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the nth cumulant of the protein number distribution depends on the nth moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies proportionality of protein number variance to the mean squared.
Collapse
Affiliation(s)
- Jakub Jędrak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Ochab-Marcinek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
31
|
Lloyd-Price J, Startceva S, Kandavalli V, Chandraseelan JG, Goncalves N, Oliveira SMD, Häkkinen A, Ribeiro AS. Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA Res 2016; 23:203-14. [PMID: 27026687 PMCID: PMC4909308 DOI: 10.1093/dnares/dsw009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/11/2016] [Indexed: 02/01/2023] Open
Abstract
We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that the closed complex formation usually occurs multiple times prior to each successful initiation event. Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s. This is shown to arise from the intermittent repression of the promoter by LacI. The methods employed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro dynamics.
Collapse
Affiliation(s)
- Jason Lloyd-Price
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Sofia Startceva
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Vinodh Kandavalli
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Jerome G Chandraseelan
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Nadia Goncalves
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Samuel M D Oliveira
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Antti Häkkinen
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, PO Box 553, Office TC336, 33101 Tampere, Finland
| |
Collapse
|
32
|
Applications and implications of the exponentially modified gamma distribution as a model for time variabilities related to cell proliferation and gene expression. J Theor Biol 2016; 393:203-17. [PMID: 26780652 DOI: 10.1016/j.jtbi.2015.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
A panel of published distributions of cell interdivision times (IDT) comprising 77 datasets related to 16 cell types, some studied under different conditions, was used to evaluate their conformance to the exponentially modified gamma distribution (EMGD) in comparison with distributions suggested for IDT data earlier. Lognormal, gamma, inverse Gaussian, and shifted Weibull and gamma distributions were found to be generally inferior to EMGD. Exponentially modified Gaussian (EMG) performed equally well. Although EMGD or EMG may be worse than some other distributions in specific cases, the reason that IDT distributions must be generated by a common mechanism of the cell cycle makes it unlikely that they differ essentially in different cell types. Therefore, exponentially modified peak functions, such as EMGD or EMG, are most appropriate if the use of a single distribution for IDT data is reasonable. EMGD is also shown to be the best descriptive tool for published data on the distribution of times between the bursts of mRNA synthesis at defined genes in single cells. EMG is inadequate to such data because its Gaussian component markedly extends to the negative time domain. The applicability of EMGD to comparable features of cells and genes behaviors are discussed to support the validity of the transition probability model and to relate the exponential component of EMGD to the times of cell dwelling in the restriction point of the cell cycle.
Collapse
|
33
|
|
34
|
|
35
|
Schwabe A, Bruggeman FJ. Contributions of cell growth and biochemical reactions to nongenetic variability of cells. Biophys J 2015; 107:301-313. [PMID: 25028872 DOI: 10.1016/j.bpj.2014.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cell-to-cell variability in the molecular composition of isogenic, steady-state growing cells arises spontaneously from the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the total variance in the copy number per cell of a particular molecule. It quantifies the individual contributions made by processes associated with cell growth, biochemical reactions, and their control. We decompose the growth contribution further into variance contributions of random partitioning of molecules at cell division, mother-cell heterogeneity, and variation in cell-cycle progression. The contribution made by biochemical reactions is expressed in variance generated by molecule synthesis, degradation, and their regulation. We use this theory to study the influence of different growth and reaction-related processes, such as DNA replication, variable molecule-partitioning probability, and synthesis bursts, on stochastic cell-to-cell variability. Using simulations, we characterize the impact of noise in the generation-time on cell-to-cell variability. This article offers a widely-applicable theory on the influence of biochemical reactions and cellular growth on the phenotypic variability of growing, isogenic cells. The theory aids the design and interpretation of experiments involving single-molecule counting or real-time imaging of fluorescent reporter constructs.
Collapse
Affiliation(s)
- Anne Schwabe
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Rybakova KN, Bruggeman FJ, Tomaszewska A, Moné MJ, Carlberg C, Westerhoff HV. Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism. PLoS Comput Biol 2015; 11:e1004236. [PMID: 25909187 PMCID: PMC4409292 DOI: 10.1371/journal.pcbi.1004236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/11/2015] [Indexed: 12/12/2022] Open
Abstract
Activation of eukaryotic transcription is an intricate process that relies on a multitude of regulatory proteins forming complexes on chromatin. Chromatin modifications appear to play a guiding role in protein-complex assembly on chromatin. Together, these processes give rise to stochastic, often bursting, transcriptional activity. Here we present a model of eukaryotic transcription that aims to integrate those mechanisms. We use stochastic and ordinary-differential-equation modeling frameworks to examine various possible mechanisms of gene regulation by multiple transcription factors. We find that the assembly of large transcription factor complexes on chromatin via equilibrium-binding mechanisms is highly inefficient and insensitive to concentration changes of single regulatory proteins. An alternative model that lacks these limitations is a cyclic ratchet mechanism. In this mechanism, small protein complexes assemble sequentially on the promoter. Chromatin modifications mark the completion of a protein complex assembly, and sensitize the local chromatin for the assembly of the next protein complex. In this manner, a strict order of protein complex assemblies is attained. Even though the individual assembly steps are highly stochastic in duration, a sequence of them gives rise to a remarkable precision of the transcription cycle duration. This mechanism explains how transcription activation cycles, lasting for tens of minutes, derive from regulatory proteins residing on chromatin for only tens of seconds. Transcriptional bursts are an inherent feature of such transcription activation cycles. Bursting transcription can cause individual cells to remain in synchrony transiently, offering an explanation of transcriptional cycling as observed in cell populations, both on promoter chromatin status and mRNA levels.
Collapse
Affiliation(s)
- Katja N. Rybakova
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Aleksandra Tomaszewska
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Martijn J. Moné
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hans V. Westerhoff
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
- Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, United Kingdom
- Synthetic Systems Biology, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Huang L, Yuan Z, Liu P, Zhou T. Effects of promoter leakage on dynamics of gene expression. BMC SYSTEMS BIOLOGY 2015; 9:16. [PMID: 25888718 PMCID: PMC4384279 DOI: 10.1186/s12918-015-0157-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Background Quantitative analysis of simple molecular networks is an important step forward understanding fundamental intracellular processes. As network motifs occurring recurrently in complex biological networks, gene auto-regulatory circuits have been extensively studied but gene expression dynamics remain to be fully understood, e.g., how promoter leakage affects expression noise is unclear. Results In this work, we analyze a gene model with auto regulation, where the promoter is assumed to have one active state with highly efficient transcription and one inactive state with very lowly efficient transcription (termed as promoter leakage). We first derive the analytical distribution of gene product, and then analyze effects of promoter leakage on expression dynamics including bursting kinetics. Interestingly, we find that promoter leakage always reduces expression noise and that increasing the leakage rate tends to simplify phenotypes. In addition, higher leakage results in fewer bursts. Conclusions Our results reveal the essential role of promoter leakage in controlling expression dynamics and further phenotype. Specifically, promoter leakage is a universal mechanism of reducing expression noise, controlling phenotypes in different environments and making the gene produce generate fewer bursts. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0157-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lifang Huang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China. .,Institute of Computational Mathematics, Department of Mathematics, Hunan University of Science and Engineering, Youzhou, 425100, PR China.
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Peijiang Liu
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
38
|
Huang L, Yuan Z, Liu P, Zhou T. Feedback-induced counterintuitive correlations of gene expression noise with bursting kinetics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052702. [PMID: 25493811 DOI: 10.1103/physreve.90.052702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 06/04/2023]
Abstract
Previous studies showed that a higher frequency of bursting results in lower expression noise whereas a larger size of bursting leads to higher expression noise. Here, we show counterintuitive correlations of expression noise with bursting kinetics due to the effect of feedback. Specifically, in the case of increasing the negative feedback strength but keeping the mean expression fixed, both the mean burst frequency and the mean burst size are invariant if the off-switching rate decreases, but expression noise is reduced; or the mean burst frequency is invariant and the burst size decreases if the transcription rate increases, but expression noise is amplified. Similarly, in the case of increasing the positive feedback strength but keeping the mean expression fixed, both the mean burst frequency and the mean burst size are invariant if the on-switching rate decreases; or the mean burst frequency increases and the mean burst size is invariant if the leakage rate decreases, but expression noise is amplified. In addition, we find that the previous conclusion that a larger burst size results in the lower noise in burst size needs to be modified in the case of feedback. Our results not only clarify the confusing relationship between feedback and expression noise but also imply that the mRNA or protein noise is no longer a simple sum of the internal noise and the promoter noise as shown in the case of no feedback.
Collapse
Affiliation(s)
- Lifang Huang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, Peoples' Republic of China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, Peoples' Republic of China
| | - Peijiang Liu
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, Peoples' Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, Peoples' Republic of China
| |
Collapse
|
39
|
Schwabe A, Bruggeman FJ. Single yeast cells vary in transcription activity not in delay time after a metabolic shift. Nat Commun 2014; 5:4798. [DOI: 10.1038/ncomms5798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022] Open
|
40
|
Wang Y, Liu F, Li J, Wang W. Reconciling the concurrent fast and slow cycling of proteins on gene promoters. J R Soc Interface 2014; 11:20140253. [PMID: 24806708 DOI: 10.1098/rsif.2014.0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During gene transcription, proteins appear to cycle on and off some gene promoters with both long (tens of minutes) and short periods (no more than several minutes). The essence of these phenomena still remains unclear. Here, we propose a stochastic model for the state evolution of promoters in terms of DNA-protein interactions. The model associates the characteristics of microscopic molecular interactions with macroscopic measurable quantities. Through theoretical derivation, we reconcile the contradictory viewpoints on the concurrent fast and slow cycling; both the cycling phenomena are further reproduced by fitting simulation results to the experimental data on the pS2 gene. Our results suggest that the fast cycling dictates how the proteins behave on the promoter and that stable binding hardly occurs. Different kinds of proteins rapidly bind/unbind the promoter at distinct transcriptional stages fulfilling specific functions; this feature is essentially manifested as the slow cycling of proteins when detected by chromatin immunoprecipitation assays. Thus, the slow cycling represents neither stable binding of proteins nor external modulation of the fast cycling. This work also reveals the relationship between the essence and measurement of transcriptional dynamics.
Collapse
Affiliation(s)
- Yaolai Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, , Nanjing 210093, People's Republic of China
| | | | | | | |
Collapse
|
41
|
A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue. Methodol Comput Appl Probab 2014. [DOI: 10.1007/s11009-014-9405-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Blom J, De Turck K, Mandjes M. Rare Event Analysis of Markov-Modulated Infinite-Server Queues: A Poisson Limit. STOCH MODELS 2013. [DOI: 10.1080/15326349.2013.838511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Schwabe A, Maarleveld TR, Bruggeman FJ. Exploration of the spontaneous fluctuating activity of single enzyme molecules. FEBS Lett 2013; 587:2744-52. [PMID: 23850890 DOI: 10.1016/j.febslet.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
Abstract
Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as transcription, replication, translation, and histone modifications. Here we introduce the main theoretical concepts of stochastic single-enzyme activity starting from the Michaelis-Menten enzyme mechanism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme kinetics and stochasticity to a wider audience of biochemists and systems biologists.
Collapse
Affiliation(s)
- Anne Schwabe
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
44
|
Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet 2013; 14:572-84. [PMID: 23835438 DOI: 10.1038/nrg3484] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time- and energy-dependence at the molecular level.
Collapse
|
45
|
|