1
|
Eisenberg B. Setting Boundaries for Statistical Mechanics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228017. [PMID: 36432117 PMCID: PMC9696510 DOI: 10.3390/molecules27228017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Statistical mechanics has grown without bounds in space. Statistical mechanics of noninteracting point particles in an unbounded perfect gas is widely used to describe liquids like concentrated salt solutions of life and electrochemical technology, including batteries. Liquids are filled with interacting molecules. A perfect gas is a poor model of a liquid. Statistical mechanics without spatial bounds is impossible as well as imperfect, if molecules interact as charged particles, as nearly all atoms do. The behavior of charged particles is not defined until boundary structures and values are defined because charges are governed by Maxwell's partial differential equations. Partial differential equations require boundary structures and conditions. Boundary conditions cannot be defined uniquely 'at infinity' because the limiting process that defines 'infinity' includes such a wide variety of structures and behaviors, from elongated ellipses to circles, from light waves that never decay, to dipolar fields that decay steeply, to Coulomb fields that hardly decay at all. Boundaries and boundary conditions needed to describe matter are not prominent in classical statistical mechanics. Statistical mechanics of bounded systems is described in the EnVarA system of variational mechanics developed by Chun Liu, more than anyone else. EnVarA treatment does not yet include Maxwell equations.
Collapse
Affiliation(s)
- Bob Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Schammer M, Latz A, Horstmann B. The Role of Energy Scales for the Structure of Ionic Liquids at Electrified Interfaces: A Theory-Based Approach. J Phys Chem B 2022; 126:2761-2776. [PMID: 35363492 PMCID: PMC9014416 DOI: 10.1021/acs.jpcb.2c00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ionic liquids offer unique bulk and interfacial characteristics as battery electrolytes. Our continuum approach naturally describes the electrolyte on a macroscale. An integral formulation for the molecular repulsion, which can be quantitatively determined by both experimental and theoretical methods, models the electrolyte on the nanoscale. In this article, we perform a systematic series expansion of this integral formulation, derive a description of chemical potentials in terms of higher-order concentration gradients, and rationalize the appearance of fourth-order derivative operators in modified Poisson equations, as recently proposed in this context. In this way, we formulate a rigorous multiscale methodology from atomistic quantum chemistry calculations to phenomenological continuum models. We apply our generalized framework to ionic liquids near electrified interfaces and perform analytical asymptotic analysis. Three energy scales describing electrostatic forces between ions, molecular repulsion, and thermal motion determine the shape and width of the long-ranging charged double layer. We classify the charge screening mechanisms dependent on the system parameters as dielectricity, ion size, interaction strength, and temperature. We find that the charge density of electrochemical double layers in ionic liquids either decays exponentially, for negligible molecular repulsion, or oscillates continuously. Charge ordering across several ion diameters occurs if the repulsion between molecules is comparable with thermal energy and Coulomb interactions. Eventually, phase separation of the bulk electrolyte into ionic layers emerges once the molecular repulsion becomes dominant. Our framework predicts the exact phase boundaries among these three phases as a function of temperature, dielectricity, and ion size.
Collapse
Affiliation(s)
- Max Schammer
- German Aerospace Center, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany.,Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany
| | - Arnulf Latz
- German Aerospace Center, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany.,Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany.,Universität Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Birger Horstmann
- German Aerospace Center, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany.,Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany.,Universität Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| |
Collapse
|
3
|
Abstract
In this study, we examine the spectral dielectric properties of liquid water in charged nanopores over a wide range of frequencies (0.3 GHz to 30 THz) and pore widths (0.3 to 5 nm). This has been achieved using classical molecular dynamics simulations of hydrated Na-smectite, the prototypical swelling clay mineral. We observe a drastic (20-fold) and anisotropic decrease in the static relative permittivity of the system as the pore width decreases. This large decrement in static permittivity reflects a strong attenuation of the main Debye relaxation mode of liquid water. Remarkably, this strong attenuation entails very little change in the time scale of the collective relaxation. Our results indicate that water confined in charged nanopores is a distinct solvent with a much weaker collective nature than bulk liquid water, in agreement with recent observations of water in uncharged nanopores. Finally, we observe remarkable agreement between the dielectric properties of the simulated clay system against a compiled set of soil samples at various volumetric water contents. This implies that saturation may not be the sole property dictating the dielectric properties of soil samples, rather that the pore-size distribution of fully saturated nanopores may also play a critically important role.
Collapse
Affiliation(s)
- Thomas R Underwood
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.,High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Hamilton I, Gebala M, Herschlag D, Russell R. Direct Measurement of Interhelical DNA Repulsion and Attraction by Quantitative Cross-Linking. J Am Chem Soc 2022; 144:1718-1728. [PMID: 35073489 PMCID: PMC8815069 DOI: 10.1021/jacs.1c11122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/30/2022]
Abstract
To better understand the forces that mediate nucleic acid compaction in biology, we developed the disulfide cross-linking approach xHEED (X-linking of Helices to measure Electrostatic Effects at Distance) to measure the distance-dependent encounter frequency of two DNA helices in solution. Using xHEED, we determined the distance that the electrostatic potential extends from DNA helices, the dependence of this distance on ionic conditions, and the magnitude of repulsion when two helices approach one another. Across all conditions tested, the potential falls to that of the bulk solution within 15 Å of the major groove surface. For separations of ∼30 Å, we measured a repulsion of 1.8 kcal/mol in low monovalent ion concentration (30 mM Na+), with higher Na+ concentrations ameliorating this repulsion, and 2 M Na+ or 100 mM Mg2+ eliminating it. Strikingly, we found full screening at very low Co3+ concentrations and net attraction at higher concentrations, without the higher-order DNA condensation that typically complicates studies of helical attraction. Our measurements define the relevant distances for electrostatic interactions of nucleic-acid helices in biology and introduce a new method to propel further understanding of how these forces impact biological processes.
Collapse
Affiliation(s)
- Ian Hamilton
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| | - Magdalena Gebala
- Department
of Biochemistry, Stanford University, Stanford California 94305, United States
| | - Daniel Herschlag
- Department
of Biochemistry, Stanford University, Stanford California 94305, United States
| | - Rick Russell
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Krucker-Velasquez E, Swan JW. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes. J Chem Phys 2021; 155:134903. [PMID: 34624965 DOI: 10.1063/5.0061230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The electrostatic screening length predicted by Debye-Hückel theory decreases with increasing ionic strength, but recent experiments have found that the screening length can instead increase in concentrated electrolytes. This phenomenon, referred to as underscreening, is believed to result from ion-ion correlations and short-range forces such as excluded volume interactions among ions. We use Brownian Dynamics to simulate a version of the Restrictive Primitive Model for electrolytes over a wide range of ion concentrations, ionic strengths, and ion excluded volume radii for binary electrolytes. We measure the decay of the charge-charge correlation among ions in the bulk and compare it against scaling trends found experimentally and determined in certain weak coupling theories of ion-ion correlation. Moreover, we find that additional large scale ion structures emerge at high concentrations. In this regime, the frequency of oscillations computed from the charge-charge correlation function is not dominated by electrostatic interactions but rather by excluded volume interactions and with oscillation periods on the order of the ion diameter. We also find the nearest neighbor correlation of ions sharing the same charge transitions from negative at small concentrations to positive at high concentrations, representing the formation of small, like-charge ion clusters. We conclude that the increase in local charge density due to the formation of these clusters and the topological constraints of macroscopic charged surfaces can help explain the degree of underscreening observed experimentally.
Collapse
Affiliation(s)
- Emily Krucker-Velasquez
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Sanchez-Fernandez A, Jackson AJ, Prévost SF, Doutch JJ, Edler KJ. Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents. J Am Chem Soc 2021; 143:14158-14168. [PMID: 34459188 PMCID: PMC8431340 DOI: 10.1021/jacs.1c04781] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/31/2022]
Abstract
While the traditional consensus dictates that high ion concentrations lead to negligible long-range electrostatic interactions, we demonstrate that electrostatic correlations prevail in deep eutectic solvents where intrinsic ion concentrations often surpass 2.5 M. Here we present an investigation of intermicellar interactions in 1:2 choline chloride:glycerol and 1:2 choline bromide:glycerol using small-angle neutron scattering. Our results show that long-range electrostatic repulsions between charged colloidal particles occur in these solvents. Interestingly, micelle morphology and electrostatic interactions are modulated by specific counterion condensation at the micelle interface despite the exceedingly high concentration of the native halide from the solvent. This modulation follows the trends described by the Hofmeister series for specific ion effects. The results are rationalized in terms of predominant ion-ion correlations, which explain the reduction in the effective ionic strength of the continuum and the observed specific ion effects.
Collapse
Affiliation(s)
| | - Andrew J. Jackson
- European
Spallation Source, Box
176, 221 00 Lund, Sweden
- Department
of Physical Chemistry, Lund University, Lund, SE-221 00, Sweden
| | | | - James J. Doutch
- ISIS
Neutron and Muon Source, Science and Technology
Facilities Council, Rutherford Appleton
Laboratory, Didcot, OX11 0QX, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
| |
Collapse
|
7
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|
8
|
Groves TS, Perez-Martinez CS, Lhermerout R, Perkin S. Surface Forces and Structure in a Water-in-Salt Electrolyte. J Phys Chem Lett 2021; 12:1702-1707. [PMID: 33560858 DOI: 10.1021/acs.jpclett.0c03718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-in-salt electrolytes are a fascinating new class of highly concentrated aqueous solutions with wide electrochemical stability windows that make them viable as aqueous battery electrolytes. However, the high ion concentration of water-in-salt electrolytes means that these systems are poorly understood when compared to more dilute electrolyte solutions. Here, we present direct surface force measurements across thin films of a water-in-salt electrolyte at several concentrations. We find that the electrolyte adopts a layered structure at charged interfaces composed of a nanostructure of a hydrated cation and nonaqueous anion-rich domains. These observations will aid in the interpretation of capacitance and double-layer behavior of water-in-salt electrolytes with consequences for their use in energy storage devices.
Collapse
Affiliation(s)
- Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 2JD, U.K
| | | | - Romain Lhermerout
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 2JD, U.K
| |
Collapse
|
9
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Zhu Y, Xu S, Eisenberg RS, Huang H. A Bidomain Model for Lens Microcirculation. Biophys J 2019; 116:1171-1184. [PMID: 30850115 DOI: 10.1016/j.bpj.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022] Open
Abstract
There exists a large body of research on the lens of the mammalian eye over the past several decades. The objective of this work is to provide a link between the most recent computational models and some of the pioneering work in the 1970s and 80s. We introduce a general nonelectroneutral model to study the microcirculation in the lens of the eye. It describes the steady-state relationships among ion fluxes, between water flow and electric field inside cells, and in the narrow extracellular spaces between cells in the lens. Using asymptotic analysis, we derive a simplified model based on physiological data and compare our results with those in the literature. We show that our simplified model can be reduced further to the first-generation models, whereas our full model is consistent with the most recent computational models. In addition, our simplified model captures in its equations the main features of the full computational models. Our results serve as a useful link intermediate between the computational models and the first-generation analytical models. Simplified models of this sort may be particularly helpful as the roles of similar osmotic pumps of microcirculation are examined in other tissues with narrow extracellular spaces, such as cardiac and skeletal muscle, liver, kidney, epithelia in general, and the narrow extracellular spaces of the central nervous system, the "brain." Simplified models may reveal the general functional plan of these systems before full computational models become feasible and specific.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Shixin Xu
- Centre for Quantitative Analysis and Modelling, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada.
| | - Robert S Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois; Department of Physiology and Biophysics, Rush University, Chicago, Illinois
| | - Huaxiong Huang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada; Centre for Quantitative Analysis and Modelling, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Liu JL, Eisenberg B. Poisson-Fermi modeling of ion activities in aqueous single and mixed electrolyte solutions at variable temperature. J Chem Phys 2018; 148:054501. [PMID: 29421887 DOI: 10.1063/1.5021508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.
Collapse
Affiliation(s)
- Jinn-Liang Liu
- Institute of Computational and Modeling Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bob Eisenberg
- Department of Physiology and Biophysics, Rush University, Chicago, Illinois 60612, USA and Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
12
|
Pache D, Schmid R. Molecular Dynamics Investigation of the Dielectric Decrement of Ion Solutions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dennis Pache
- Computational Materials Chemistry Research Group, Department of Inorganic Chemistry II; Ruhr University Bochum; Germany
| | - Rochus Schmid
- Computational Materials Chemistry Research Group, Department of Inorganic Chemistry II; Ruhr University Bochum; Germany
| |
Collapse
|
13
|
Eisenberg B, Liu W. Relative dielectric constants and selectivity ratios in open ionic channels. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2017. [DOI: 10.1515/mlbmb-2017-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract We investigate the effects of the relative dielectric coefficient on ionic flows in open ion channels, using mathematical analysis of reasonably general Poisson-Nernst-Planck type models that can include the finite sizes of ions. The value of the relative dielectric coefficient is of course a crucial parameter for ionic behavior in general. Using the powerful theory of singularly perturbed problems in applied mathematics, we show that some properties of open channels are quite insensitive to variation in the relative dielectric coefficient, thereby explaining such effects seen unexpectedly in simulations. The ratio between the total number of one ion species and that of another ion species, and the ratio between the flux of one ion species and that of another ion species do not depend significantly on the relative dielectric coefficient.
Collapse
Affiliation(s)
- Bob Eisenberg
- 1Department of Molecular Biophysics and Physiology, Rush Medical Center, 1759 Harrison St., Chicago, Illinois 60612, USA
| | - Weishi Liu
- 2Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Room 405, Lawrence, Kansas 66045, USA
| |
Collapse
|
14
|
Eisenberg B, Oriols X, Ferry D. Dynamics of Current, Charge and Mass. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2017. [DOI: 10.1515/mlbmb-2017-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the Maxwell equations, like convection and diffusion. These movements and forces produce crucial currents that cannot be described as classical conduction or classical polarization. Derivations of conservation of current involve oversimplified treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in that simple way-not even approximately-classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved inside atoms. We show that current is conserved exactly in any material no matter how complex are the properties of dielectric, polarization, or conduction currents. Electricity has a special role because conservation of current is a universal law.Most models of chemical reactions do not conserve current and need to be changed to do so. On the macroscopic scale of life, conservation of current necessarily links far spread boundaries to each other, correlating inputs and outputs, and thereby creating devices.We suspect that correlations created by displacement current link all scales and allow atoms to control the machines and organisms of life. Conservation of current has a special role in our lives and life, as well as in physics. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.We surely need successful models as we try to control macroscopic functions by atomic interventions, in technology, life, and medicine. Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.
Collapse
Affiliation(s)
- Bob Eisenberg
- 1Department of Applied Mathematics, Illinois Institute of Technology, Illinois,USA
- 2Department of Physiology and Biophysics, Rush University, USA
| | - Xavier Oriols
- 3Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Spain
| | - David Ferry
- 4School of Electrical, Computer, and Energy Engineering, Arizona State University, USA
| |
Collapse
|
15
|
Abstract
The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.
Collapse
|
16
|
Gebbie MA, Smith AM, Dobbs HA, Lee AA, Warr GG, Banquy X, Valtiner M, Rutland MW, Israelachvili JN, Perkin S, Atkin R. Long range electrostatic forces in ionic liquids. Chem Commun (Camb) 2017; 53:1214-1224. [DOI: 10.1039/c6cc08820a] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Experimental evidence for long range surface forces in ionic liquids is collated and examined, key outstanding questions are identified, and possible mechanisms underpinning these long range forces are explored.
Collapse
Affiliation(s)
- Matthew A. Gebbie
- Geballe Laboratory for Advanced Materials
- Stanford University
- Stanford
- USA
| | - Alexander M. Smith
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Howard A. Dobbs
- Department of Chemical Engineering
- University of California
- Santa Barbara
- UK
| | - Alpha A. Lee
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Gregory G. Warr
- School of Chemistry
- F11
- The University of Sydney
- NSW 2006
- Australia
| | - Xavier Banquy
- Faculty of Pharmacy
- Universite de Montreal
- Montreal
- Canada
| | - Markus Valtiner
- Interface Chemistry and Surface Engineering
- Max Planck Institut fur Eisenforschung GmbH
- Dusseldorf
- Germany
| | - Mark W. Rutland
- Surface and Corrosion Science
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
- SP Chemistry Materials and Surfaces
| | | | - Susan Perkin
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Rob Atkin
- Priority Research Centre for Advanced Fluid Interfaces
- Newcastle Institute for Energy and Resources
- The University of Newcastle
- Australia
| |
Collapse
|
17
|
Naranjo D, Moldenhauer H, Pincuntureo M, Díaz-Franulic I. Pore size matters for potassium channel conductance. J Gen Physiol 2016; 148:277-91. [PMID: 27619418 PMCID: PMC5037345 DOI: 10.1085/jgp.201611625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance.
Collapse
Affiliation(s)
- David Naranjo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Matías Pincuntureo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Programa de Doctorado en Ciencias, mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile Fraunhofer Chile Research, Las Condes 7550296, Chile
| |
Collapse
|
18
|
Xie D, Liu JL, Eisenberg B. Nonlocal Poisson-Fermi model for ionic solvent. Phys Rev E 2016; 94:012114. [PMID: 27575084 DOI: 10.1103/physreve.94.012114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 06/06/2023]
Abstract
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Collapse
Affiliation(s)
- Dexuan Xie
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201-0413, USA
| | - Jinn-Liang Liu
- Department of Applied Mathematics, National Hsinchu University of Education, Hsinchu 300, Taiwan
| | - Bob Eisenberg
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612, USA
| |
Collapse
|
19
|
Sawada A. Introduction of effective dielectric constant to the Poisson-Nernst-Planck model. Phys Rev E 2016; 93:052608. [PMID: 27300952 DOI: 10.1103/physreve.93.052608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 06/06/2023]
Abstract
The Poisson-Nernst-Planck (PNP) model has been widely used for analyzing impedance or dielectric spectra observed for dilute electrolytic cells. In the analysis, the behavior of mobile ions in the cell under an external electric field has been explained by a conductive nature regardless of ionic concentrations. However, if the cell has parallel-plate blocking electrodes, the mobile ions may also play a role as a dielectric medium in the cell by the effect of space-charge polarization when the ionic concentration is sufficiently low. Thus the mobile ions confined between the blocking electrodes can have conductive and dielectric natures simultaneously, and their intensities are affected by the ionic concentration and the adsorption of solvent molecules on the electrodes. The balance of the conductive and dielectric natures is quantitatively determined by introducing an effective dielectric constant to the PNP model in the data analysis. The generalized PNP model with the effective dielectric constant successfully explains the anomalous frequency-dependent dielectric behaviors brought about by the mobile ions in dilute electrolytic cells, for which the conventional PNP model fails in interpretation.
Collapse
Affiliation(s)
- Atsushi Sawada
- Performance Materials Advanced Technologies, Merck Ltd., Aikawa, Kanagawa 243-0303, Japan
| |
Collapse
|
20
|
Liu JL, Eisenberg B. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012711. [PMID: 26274207 DOI: 10.1103/physreve.92.012711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 05/17/2023]
Abstract
Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca(2+) may cause more unstable discrete Ca(2+) fluxes than that of monovalent Na(+). Two different methods-called the SMIB and multiscale methods-are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are known. The experimental data of both channels are then used to verify and explain novel features of PNPF as compared with previous PNP models. The PNPF currents are in accord with the experimental I-V (V for applied voltages) data of the gramicidin A channel and I-C (C for bath concentrations) data of the calcium channel with 10(-8)-fold bath concentrations that pose severe challenges in theoretical simulations.
Collapse
Affiliation(s)
- Jinn-Liang Liu
- Department of Applied Mathematics, National Hsinchu University of Education, Hsinchu 300, Taiwan
| | - Bob Eisenberg
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612, USA
| |
Collapse
|
21
|
Gavish N, Promislow K. Systematic interpretation of differential capacitance data. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012321. [PMID: 26274175 DOI: 10.1103/physreve.92.012321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Differential capacitance (DC) data have been widely used to characterize the structure of electrolyte solutions near charged interfaces and as experimental validation of models for electrolyte structure. Fixing a large class of models of electrolyte free energy that incorporate finite-volume effects, a reduction is identified which permits the identification of all free energies within that class that return identical DC data. The result is an interpretation of DC data through the equivalence classes of nonideality terms, and associated boundary layer structures, that cannot be differentiated by DC data. Specifically, for binary salts, DC data, even if measured over a range of ionic concentrations, are unable to distinguish among models which exhibit charge asymmetry, charge reversal, and even ion crowding. The reduction applies to capacitors which are much wider than the associated Debye length and to finite-volume terms that are algebraic in charge density. However, within these restrictions the free energy is shown to be uniquely identified if the DC data are supplemented with measurements of the excess chemical potential of the system in the bulk state.
Collapse
Affiliation(s)
- Nir Gavish
- Department of Mathematics, Technion - Israeli Institute of Technology, Haifa 3200003, Israel
| | - Keith Promislow
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
22
|
Abstract
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.
Collapse
|
23
|
Horn R, Roux B, Åqvist J. Permeation redux: thermodynamics and kinetics of ion movement through potassium channels. Biophys J 2014; 106:1859-63. [PMID: 24806917 DOI: 10.1016/j.bpj.2014.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022] Open
Abstract
The fundamental biophysics underlying the selective movement of ions through ion channels was launched by George Eisenman in the 1960s, using glass electrodes. This minireview examines the insights from these early studies and the explosive progress made since then.
Collapse
Affiliation(s)
- Richard Horn
- Department of Molecular Physiology and Biophysics, Jefferson Medical College, Philadelphia, Pennsylvania.
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
24
|
Liu JL, Eisenberg B. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. J Chem Phys 2014; 141:22D532. [DOI: 10.1063/1.4902973] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jinn-Liang Liu
- Department of Applied Mathematics, National Hsinchu University of Education, Hsinchu 300, Taiwan
| | - Bob Eisenberg
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612, USA
| |
Collapse
|
25
|
Liu JL, Eisenberg B. Analytical models of calcium binding in a calcium channel. J Chem Phys 2014; 141:075102. [DOI: 10.1063/1.4892839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Hansen N, van Gunsteren WF. Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 2014; 10:2632-47. [PMID: 26586503 DOI: 10.1021/ct500161f] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Free-energy calculations in the framework of classical molecular dynamics simulations are nowadays used in a wide range of research areas including solvation thermodynamics, molecular recognition, and protein folding. The basic components of a free-energy calculation, that is, a suitable model Hamiltonian, a sampling protocol, and an estimator for the free energy, are independent of the specific application. However, the attention that one has to pay to these components depends considerably on the specific application. Here, we review six different areas of application and discuss the relative importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the many pitfalls present in free energy calculations.
Collapse
Affiliation(s)
- Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany.,Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| |
Collapse
|
27
|
Qiao Y, Tu B, Lu B. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations. J Chem Phys 2014; 140:174102. [DOI: 10.1063/1.4872330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Abstract
Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid-ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid-ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid-ion interactions.
Collapse
Affiliation(s)
- Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands;
| | | | | | | |
Collapse
|
29
|
Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective? PLoS One 2013; 8:e81063. [PMID: 24324661 PMCID: PMC3855693 DOI: 10.1371/journal.pone.0081063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 12/24/2022] Open
Abstract
Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.
Collapse
|
30
|
Kaufman I, Luchinsky DG, Tindjong R, McClintock PVE, Eisenberg RS. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052712. [PMID: 24329301 DOI: 10.1103/physreve.88.052712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Indexed: 06/03/2023]
Abstract
We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.
Collapse
Affiliation(s)
- I Kaufman
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - D G Luchinsky
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom and Mission Critical Technologies Inc., 2041 Rosecrans Ave. Suite 225 El Segundo, California 90245, USA
| | - R Tindjong
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - R S Eisenberg
- Department of Molecular Biophysics and Physiology, Rush Medical College, 1750 West Harrison, Chicago, Illinois 60612, USA
| |
Collapse
|
31
|
Electrical current profile of a confined isotropic liquid sample: Biological systems and liquid crystals applications. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Boda D, Henderson D, Gillespie D. The role of solvation in the binding selectivity of the L-type calcium channel. J Chem Phys 2013; 139:055103. [DOI: 10.1063/1.4817205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|