1
|
More KJ, Kaufman JGG, Dacks JB, Manna PT. Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways. Proc Natl Acad Sci U S A 2024; 121:e2403601121. [PMID: 39418309 PMCID: PMC11513930 DOI: 10.1073/pnas.2403601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
The major organelles of the endomembrane system were in place by the time of the last eukaryotic common ancestor (LECA) (~1.5 billion years ago). Their acquisitions were defining milestones during eukaryogenesis. Comparative cell biology and evolutionary analyses show multiple instances of homology in the protein machinery controlling distinct interorganelle trafficking routes. Resolving these homologous relationships allows us to explore processes underlying the emergence of additional, distinct cellular compartments, infer ancestral states predating LECA, and explore the process of eukaryogenesis itself. Here, we undertake a molecular evolutionary analysis (including providing a transcriptome of the jakobid flagellate Reclinomonas americana), exploring the origins of the machinery responsible for the biogenesis of lysosome-related organelles (LROs), the Biogenesis of LRO Complexes (BLOCs 1,2, and 3). This pathway has been studied only in animals and is not considered a feature of the basic eukaryotic cell plan. We show that this machinery is present across the eukaryotic tree of life and was likely in place prior to LECA, making it an underappreciated facet of eukaryotic cellular organisation. Moreover, we resolve multiple points of ancient homology between all three BLOCs and other post-endosomal retrograde trafficking machinery (BORC, CCZ1 and MON1 proteins, and an unexpected relationship with the "homotypic fusion and vacuole protein sorting" (HOPS) and "Class C core vacuole/endosomal tethering" (CORVET) complexes), offering a mechanistic and evolutionary unification of these trafficking pathways. Overall, this study provides a comprehensive account of the rise of the LROs biogenesis machinery from before the LECA to current eukaryotic diversity, integrating it into the larger mechanistic framework describing endomembrane evolution.
Collapse
Affiliation(s)
- Kiran J. More
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2N8, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2N8, Canada
| | - Jonathan G. G. Kaufman
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2N8, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2N8, Canada
- Department of Genetics, Evolution, and Environment, Centre for Life’s Origin and Evolution, University College, LondonWC1E 6BT, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis)370 05, Czech Republic
| | - Paul T. Manna
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2N8, Canada
- Department of Physiology, Gothenburg University, Gothenburg413 90, Sweden
| |
Collapse
|
2
|
Donoghue PCJ, Kay C, Spang A, Szöllősi G, Nenarokova A, Moody ERR, Pisani D, Williams TA. Defining eukaryotes to dissect eukaryogenesis. Curr Biol 2023; 33:R919-R929. [PMID: 37699353 DOI: 10.1016/j.cub.2023.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The origin of eukaryotes is among the most contentious debates in evolutionary biology, attracting multiple seemingly incompatible theories seeking to explain the sequence in which eukaryotic characteristics were acquired. Much of the controversy arises from differing views on the defining characteristics of eukaryotes. We argue that eukaryotes should be defined phylogenetically, and that doing so clarifies where competing hypotheses of eukaryogenesis agree and how we may test among aspects of disagreement. Some hypotheses make predictions about the phylogenetic origins of eukaryotic genes and are distinguishable on that basis. However, other hypotheses differ only in the order of key evolutionary steps, like mitochondrial endosymbiosis and nuclear assembly, which cannot currently be distinguished phylogenetically. Stages within eukaryogenesis may be made identifiable through the absolute dating of gene duplicates that map to eukaryotic traits, such as in genes of host or mitochondrial origin that duplicated and diverged functionally prior to emergence of the last eukaryotic common ancestor. In this way, it may finally be possible to distinguish heat from light in the debate over eukaryogenesis.
Collapse
Affiliation(s)
- Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | - Chris Kay
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg 1790 AB, The Netherlands
| | - Gergely Szöllősi
- Department of Biological Physics, Eötvös Lorand University, H-1117 Budapest, Hungary; MTA-ELTE "Lendü let" Evolutionary Genomics Research Group, H-1117 Budapest, Hungary; Institute of Evolution, Centre for Ecological Research, H-1113 Budapest, Hungary
| | - Anna Nenarokova
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK; Bristol Palaeobiology Group, School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
3
|
Purkanti R, Thattai M. Genome doubling enabled the expansion of yeast vesicle traffic pathways. Sci Rep 2022; 12:11213. [PMID: 35780185 PMCID: PMC9250509 DOI: 10.1038/s41598-022-15419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Vesicle budding and fusion in eukaryotes depend on a suite of protein types, such as Arfs, Rabs, coats and SNAREs. Distinct paralogs of these proteins act at distinct intracellular locations, suggesting a link between gene duplication and the expansion of vesicle traffic pathways. Genome doubling, a common source of paralogous genes in fungi, provides an ideal setting in which to explore this link. Here we trace the fates of paralog doublets derived from the 100-Ma-old hybridization event that gave rise to the whole genome duplication clade of budding yeast. We find that paralog doublets involved in specific vesicle traffic functions and pathways are convergently retained across the entire clade. Vesicle coats and adaptors involved in secretory and early-endocytic pathways are retained as doublets, at rates several-fold higher than expected by chance. Proteins involved in later endocytic steps and intra-Golgi traffic, including the entire set of multi-subunit and coiled-coil tethers, have reverted to singletons. These patterns demonstrate that selection has acted to expand and diversify the yeast vesicle traffic apparatus, across species and time.
Collapse
Affiliation(s)
- Ramya Purkanti
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
4
|
Size regulation of multiple organelles competing for a limiting subunit pool. PLoS Comput Biol 2022; 18:e1010253. [PMID: 35714135 PMCID: PMC9246132 DOI: 10.1371/journal.pcbi.1010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/30/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
How cells regulate the size of intracellular structures and organelles is a longstanding question. Recent experiments suggest that size control of intracellular structures is achieved through the depletion of a limiting subunit pool in the cytoplasm. While the limiting pool model ensures organelle-to-cell size scaling, it does not provide a mechanism for robust size control of multiple co-existing structures. Here we develop a generalized theory for size-dependent growth of intracellular structures to demonstrate that robust size control of multiple intracellular structures, competing for a limiting subunit pool, is achieved via a negative feedback between the growth rate and the size of the individual structure. This design principle captures size maintenance of a wide variety of subcellular structures, from cytoskeletal filaments to three-dimensional organelles. We identify the feedback motifs for structure size regulation based on known molecular processes, and compare our theory to existing models of size regulation in biological assemblies. Furthermore, we show that positive feedback between structure size and growth rate can lead to bistable size distribution and spontaneous size selection. Organelle size control is essential for the proper physiological functioning of eukaryotic cells, but the underlying mechanisms of size regulation remain poorly understood. By developing a general theory for organelle size control, we show that robust size control of intracellular structures and organelles is achieved via a negative feedback between individual organelle size and their net growth rates. This design principle not only describes size maintenance of single organelles, but also ensures size stability of multiple co-existing organelles that are built from a limiting pool of subunits. Our results delineate the role of limiting pool as a size scaling mechanism rather than a size control mechanism, supporting the idea that negative feedback control of organelle size via depletion of a limiting subunit pool is not sufficient to maintain the size of multiple competing organelles. In the case of positive feedback between organelle size and growth rate, our model reproduces phenomena such as bistability in organelle size distribution and spontaneous emergence of cell polarity.
Collapse
|
5
|
Graph-theoretic constraints on vesicle traffic networks. J Biosci 2022. [DOI: 10.1007/s12038-021-00252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
LUCA to LECA, the Lucacene: A model for the gigayear delay from the first prokaryote to eukaryogenesis. Biosystems 2021; 205:104415. [PMID: 33812918 DOI: 10.1016/j.biosystems.2021.104415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
It is puzzling why life on Earth consisted of prokaryotes for up to 2.5 ± 0.5 billion years (Gy) before the appearance of the first eukaryotes. This period, from LUCA (Last Universal Common Ancestor) to LECA (Last Eucaryotic Common Ancestor), we have named the Lucacene, to suggest all prokaryotic descendants of LUCA before the appearance of LECA. Here we present a simple model based on horizontal gene transfer (HGT). It is the process of HGT from Bacteria to Archaea and its reverse that we wish to simulate and estimate its duration until eukaryogenesis. Rough quantitation of its parameters shows that the model may explain the long duration of the Lucacene.
Collapse
|
7
|
Neveu E, Khalifeh D, Salamin N, Fasshauer D. Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Curr Biol 2020; 30:2468-2480.e5. [PMID: 32442459 DOI: 10.1016/j.cub.2020.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A defining feature of eukaryotic cells is the presence of numerous membrane-bound organelles that subdivide the intracellular space into distinct compartments. How the eukaryotic cell acquired its internal complexity is still poorly understood. Material exchange among most organelles occurs via vesicles that bud off from a source and specifically fuse with a target compartment. Central players in the vesicle fusion process are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. These small tail-anchored (TA) membrane proteins zipper into elongated four-helix bundles that pull membranes together. SNARE proteins are highly conserved among eukaryotes but are thought to be absent in prokaryotes. Here, we identified SNARE-like factors in the genomes of uncultured organisms of Asgard archaea of the Heimdallarchaeota clade, which are thought to be the closest living relatives of eukaryotes. Biochemical experiments show that the archaeal SNARE-like proteins can interact with eukaryotic SNARE proteins. We did not detect SNAREs in α-proteobacteria, the closest relatives of mitochondria, but identified several genes encoding for SNARE proteins in γ-proteobacteria of the order Legionellales, pathogens that live inside eukaryotic cells. Very probably, their SNAREs stem from lateral gene transfer from eukaryotes. Together, this suggests that the diverse set of eukaryotic SNAREs evolved from an archaeal precursor. However, whether Heimdallarchaeota actually have a simplified endomembrane system will only be seen when we succeed studying these organisms under the microscope.
Collapse
Affiliation(s)
- Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dany Khalifeh
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Boehm C, Field MC. Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex. Wellcome Open Res 2019; 4:112. [PMID: 31633057 PMCID: PMC6784791 DOI: 10.12688/wellcomeopenres.15142.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Background: The eukaryotic endomembrane system most likely arose
via paralogous expansions of genes encoding proteins that specify organelle identity, coat complexes and govern fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events has moulded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical components, the emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis and additional trafficking pathways and a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family. CATCHR includes the conserved oligomeric Golgi (COG) complex, homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome tethering (CORVET) complexes and several others. The exocyst is integrated into a complex GTPase signalling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist
Trypanosoma brucei, and availability of significantly increased genome sequence data, we re-examined evolution of the exocyst. Methods: We examined the evolution of exocyst components by comparative genomics, phylogenetics and structure prediction. Results: The exocyst composition is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants, Metazoa and land plants, where for the latter, massive paralog expansion of Exo70 represents an extreme and unique example. Significantly, few taxa retain a partial complex, suggesting that, in general, all subunits are probably required for functionality. Further, the ninth exocyst subunit, Exo99, is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Collapse
Affiliation(s)
- Cordula Boehm
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovic, 37005, Czech Republic
| |
Collapse
|
9
|
Salinas-Cornejo J, Madrid-Espinoza J, Ruiz-Lara S. Identification and transcriptional analysis of SNARE vesicle fusion regulators in tomato (Solanum lycopersicum) during plant development and a comparative analysis of the response to salt stress with wild relatives. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153018. [PMID: 31472447 DOI: 10.1016/j.jplph.2019.153018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Intracellular vesicular trafficking ensures the exchange of lipids and proteins between the membranous compartments. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) play a central role in membrane fusion and they are key factors for vesicular trafficking in plants, including crops economically important such as tomato (Solanum lycopersicum). Taking advantage of the complete genome sequence available of S. lycopersicum, we identified 63 genes that encode putative SNARE proteins. Then, phylogenetic analysis allowed the classification of SNAREs in five main groups and recognizing their possible functions. A structure analysis of the genes, their syntenic relationships and their location in the chromosomes were also carried out for their characterization. In addition, the expression profiles of SNARE genes in different tissues were investigated using microarray-based analysis. The results indicated that specific SNAREs had a higher induction in leaf, root, flower and mature green fruit. S. lycopersicum is characterized for being a crop sensitive to saline stress unlike its wild relatives, such as Solanum pennellii, Solanum pimpinellifolium, Solanum habrochaites or Solanum chilense, which are tolerant. In this context, we analyzed different microarrays and evaluated and validated the transcript levels through qRT-PCR experiments. The results showed that SlGOS12.2, SlVAMP727 and SlSYP51.2 could have a positive relationship with salt stress and probably an important role in their tolerance. All these data increase our knowledge and can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in tomato.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
10
|
Boehm C, Field MC. Evolution of late steps in exocytosis: conservation, specialization. Wellcome Open Res 2019; 4:112. [DOI: 10.12688/wellcomeopenres.15142.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 11/20/2022] Open
Abstract
Background:The eukaryotic endomembrane system likely aroseviaparalogous expansion of genes encoding proteins specifying organelle identity, coat complexes and government of fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events molded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical subunits, emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis, and possibly additional pathways, and is a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family, which includes conserved oligomeric Golgi (COG), homotypic fusion and vacuole protein sorting (HOPS), class C core vacuole/endosome tethering (CORVET) and others. The exocyst is integrated into a complex GTPase signaling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protistTrypanosoma brucei,and significantly increased genome sequence data, we examined evolution of the exocyst.Methods:We examined evolution of the exocyst by comparative genomics, phylogenetics and structure prediction.Results:The exocyst is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants and Metazoa. Significantly, few taxa retain a partial complex, suggesting that, in the main, all subunits are required for functionality. Further, the ninth exocyst subunit Exo99 is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system.Conclusions:These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Collapse
|
11
|
Galati DF, Sullivan KD, Pham AT, Espinosa JM, Pearson CG. Trisomy 21 Represses Cilia Formation and Function. Dev Cell 2018; 46:641-650.e6. [PMID: 30100262 PMCID: PMC6557141 DOI: 10.1016/j.devcel.2018.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
Trisomy 21 (T21) is the most prevalent human chromosomal disorder, causing a range of cardiovascular, musculoskeletal, and neurological abnormalities. However, the cellular processes disrupted by T21 are poorly understood. Consistent with the clinical overlap between T21 and ciliopathies, we discovered that T21 disrupts cilia formation and signaling. Cilia defects arise from increased expression of Pericentrin, a centrosome scaffold and trafficking protein encoded on chromosome 21. Elevated Pericentrin is necessary and sufficient for T21 cilia defects. Pericentrin accumulates at centrosomes and dramatically in the cytoplasm surrounding centrosomes. Centrosome Pericentrin recruits more γ-tubulin and enhances microtubules, whereas cytoplasmic Pericentrin assembles into large foci that do not efficiently traffic. Moreover, the Pericentrin-associated cilia assembly factor IFT20 and the ciliary signaling molecule Smoothened do not efficiently traffic to centrosomes and cilia. Thus, increased centrosome protein dosage produces ciliopathy-like outcomes in T21 cells by decreasing trafficking between the cytoplasm, centrosomes, and cilia.
Collapse
Affiliation(s)
- Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew T Pham
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Mani S, Thattai M. Stacking the odds for Golgi cisternal maturation. eLife 2016; 5. [PMID: 27542195 PMCID: PMC5012865 DOI: 10.7554/elife.16231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI:http://dx.doi.org/10.7554/eLife.16231.001
Collapse
Affiliation(s)
- Somya Mani
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
13
|
Dey G, Thattai M, Baum B. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype. Trends Cell Biol 2016; 26:476-485. [PMID: 27319280 PMCID: PMC4917890 DOI: 10.1016/j.tcb.2016.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 01/16/2023]
Abstract
If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although ‘Loki’ cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Eukaryotes are thought to be a product of symbiosis between archaea and bacteria. The recently discovered Lokiarchaeum (‘Loki’) encodes more Eukaryotic Signature Proteins (ESPs) than any other archaeon, making it the closest living relative to the putative ancestor of eukaryotes. Lokiarchaeum is the first prokaryote found to encode small GTPases, gelsolin, BAR domains, and longin domains, leading many to suggest that it might be compartmentalized and be capable of membrane trafficking. Many models for the evolution of eukaryotes invoke an archaeal ancestor that is capable of phagocytosis to explain the entry of the future mitochondrion into the host cell. Understanding the cell biology of Lokiarchaeum will be key to understanding the morphological transitions that characterized the evolution of eukaryotic cellular architecture, but Loki has not yet been cultured or seen.
Collapse
Affiliation(s)
- Gautam Dey
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Mukund Thattai
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bengaluru 560065, India
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Mani S, Thattai M. Wine glasses and hourglasses: Non-adaptive complexity of vesicle traffic in microbial eukaryotes. Mol Biochem Parasitol 2016; 209:58-63. [PMID: 27012485 PMCID: PMC5154330 DOI: 10.1016/j.molbiopara.2016.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
We are motivated by the diversity of vesicle traffic systems in microbial parasites. We present a mathematical model of vesicle traffic in a manner accessible to a broad audience. We show that many complex features of vesicle traffic systems arise spontaneously due to molecular interactions. Traffic features such as compartmental maturation might arise non-adaptively and later be selected for function.
Microbial eukaryotes present a stunning diversity of endomembrane organization. From specialized secretory organelles such as the rhoptries and micronemes of apicomplexans, to peroxisome-derived metabolic compartments such as the glycosomes of kinetoplastids, different microbial taxa have explored different solutions to the compartmentalization and processing of cargo. The basic secretory and endocytic system, comprising the ER, Golgi, endosomes, and plasma membrane, as well as diverse taxon-specific specialized endomembrane organelles, are coupled by a complex network of cargo transport via vesicle traffic. It is tempting to connect form to function, ascribing biochemical roles to each compartment and vesicle of such a system. Here we argue that traffic systems of high complexity could arise through non-adaptive mechanisms via purely physical constraints, and subsequently be exapted for various taxon-specific functions. Our argument is based on a Boolean mathematical model of vesicle traffic: we specify rules of how compartments exchange vesicles; these rules then generate hypothetical cells with different types of endomembrane organization. Though one could imagine a large number of hypothetical vesicle traffic systems, very few of these are consistent with molecular interactions. Such molecular constraints are the bottleneck of a metaphorical hourglass, and the rules that make it through the bottleneck are expected to generate cells with many special properties. Sampling at random from among such rules represents an evolutionary null hypothesis: any properties of the resulting cells must be non-adaptive. We show by example that vesicle traffic systems generated in this random manner are reminiscent of the complex trafficking apparatus of real cells.
Collapse
Affiliation(s)
- Somya Mani
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
15
|
A multi-functional tubulovesicular network as the ancestral eukaryotic endomembrane system. BIOLOGY 2015; 4:264-81. [PMID: 25811639 PMCID: PMC4498299 DOI: 10.3390/biology4020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
The origin of the eukaryotic endomembrane system is still the subject of much speculation. We argue that the combination of two recent hypotheses addressing the eukaryotic endomembrane's early evolution supports the possibility that the ancestral membranes were organised as a multi-functional tubulovesicular network. One of the potential selective advantages provided by this organisation was the capacity to perform endocytosis. This possibility is illustrated by membrane organisations observed in current organisms in the three domains of life. Based on this, we propose a coherent model of autogenous eukaryotic endomembrane system evolution in which mitochondria are involved at a late stage.
Collapse
|
16
|
Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc Natl Acad Sci U S A 2015; 112:2800-5. [PMID: 25691734 DOI: 10.1073/pnas.1407163112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Eukaryotic cells use dynamins-mechano-chemical GTPases--to drive the division of endosymbiotic organelles. Here we probe early steps of mitochondrial and chloroplast endosymbiosis by tracing the evolution of dynamins. We develop a parsimony-based phylogenetic method for protein sequence reconstruction, with deep time resolution. Using this, we demonstrate that dynamins diversify through the punctuated transformation of sequence segments on the scale of secondary-structural elements. We find examples of segments that have remained essentially unchanged from the 1.8-billion-y-old last eukaryotic common ancestor to the present day. Stitching these together, we reconstruct three ancestral dynamins: The first is nearly identical to the ubiquitous mitochondrial division dynamins of extant eukaryotes, the second is partially preserved in the myxovirus-resistance--like dynamins of metazoans, and the third gives rise to the cytokinetic dynamins of amoebozoans and plants and to chloroplast division dynamins. The reconstructed sequences, combined with evolutionary models and published functional data, suggest that the ancestral mitochondrial division dynamin also mediated vesicle scission. This bifunctional protein duplicated into specialized mitochondrial and vesicle variants at least three independent times--in alveolates, green algae, and the ancestor of fungi and metazoans-accompanied by the loss of the ancient prokaryotic mitochondrial division protein FtsZ. Remarkably, many extant species that retain FtsZ also retain the predicted ancestral bifunctional dynamin. The mitochondrial division apparatus of such organisms, including amoebozoans, red algae, and stramenopiles, seems preserved in a near-primordial form.
Collapse
|
17
|
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 2014; 6:a016048. [PMID: 25274701 PMCID: PMC4176009 DOI: 10.1101/cshperspect.a016048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
18
|
Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends Cell Biol 2014; 24:435-42. [DOI: 10.1016/j.tcb.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 01/20/2023]
|
19
|
Wideman JG, Leung KF, Field MC, Dacks JB. The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb Perspect Biol 2014; 6:a016998. [PMID: 24478384 DOI: 10.1101/cshperspect.a016998] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolutionary cell biology can afford an interdisciplinary comparative view that gives insights into both the functioning of modern cells and the origins of cellular systems, including the endocytic organelles. Here, we explore several recent evolutionary cell biology studies, highlighting investigations into the origin and diversity of endocytic systems in eukaryotes. Beginning with a brief overview of the eukaryote tree of life, we show how understanding the endocytic machinery in a select, but diverse, array of organisms provides insights into endocytic system origins and predicts the likely configuration in the last eukaryotic common ancestor (LECA). Next, we consider three examples in which a comparative approach yielded insight into the function of modern cellular systems. First, using ESCRT-0 as an example, we show how comparative cell biology can discover both lineage-specific novelties (ESCRT-0) as well as previously ignored ancient proteins (Tom1), likely of both evolutionary and functional importance. Second, we highlight the power of comparative cell biology for discovery of previously ignored but potentially ancient complexes (AP5). Finally, using examples from ciliates and trypanosomes, we show that not all organisms possess canonical endocytic pathways, but instead likely evolved lineage-specific mechanisms. Drawing from these case studies, we conclude that a comparative approach is a powerful strategy for advancing knowledge about the general mechanisms and functions of endocytic systems.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|