1
|
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. Nat Commun 2024; 15:5921. [PMID: 39004688 PMCID: PMC11247099 DOI: 10.1038/s41467-024-50278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.
Collapse
Affiliation(s)
- Manuel Halte
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | | | - Christian Goosmann
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Kelly T Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Marc Erhardt
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584431. [PMID: 38558991 PMCID: PMC10979839 DOI: 10.1101/2024.03.11.584431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bacterial flagellum is an organelle utilized by many Gram-negative bacteria to facilitate motility. The flagellum is composed of a several µm long, extracellular filament that is connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Composed of ∼20 structural proteins, ranging from a few subunits to several thousand building blocks, the flagellum is a paradigm of a complex macromolecular structure that utilizes a highly regulated assembly process. This process is governed by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various flagellar building blocks in order to produce a functional flagellum. Using epifluorescence, super-resolution STED and transmission electron microscopy, we discovered that in Salmonella , the absence of one periplasmic protein, FlhE, prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of the standard cell morphology resulting in cell lysis. We propose a model where FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod to prevent formation of periplasmic flagella. Our results highlight that bacteria evolved sophisticated regulatory mechanisms to control proper flagellar assembly and minor deviations from this highly regulated process can cause dramatic physiological consequences.
Collapse
|
3
|
Abe K, Koizumi N, Nakamura S. Machine learning-based motion tracking reveals an inverse correlation between adhesivity and surface motility of the leptospirosis spirochete. Nat Commun 2023; 14:7703. [PMID: 38052837 DOI: 10.1038/s41467-023-43366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Bacterial motility is often a crucial virulence factor for pathogenic species. A common approach to study bacterial motility is fluorescent labeling, which allows detection of individual bacterial cells in a population or in host tissues. However, the use of fluorescent labeling can be hampered by protein expression stability and/or interference with bacterial physiology. Here, we apply machine learning to microscopic image analysis for label-free motion tracking of the zoonotic bacterium Leptospira interrogans on cultured animal cells. We use various leptospiral strains isolated from a human patient or animals, as well as mutant strains. Strains associated with severe disease, and mutant strains lacking outer membrane proteins (OMPs), tend to display fast mobility and reduced adherence on cultured kidney cells. Our method does not require fluorescent labeling or genetic manipulation, and thus could be applied to study motility of many other bacterial species.
Collapse
Affiliation(s)
- Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Lynch MJ, Deshpande M, Kurniyati K, Zhang K, James M, Miller M, Zhang S, Passalia FJ, Wunder EA, Charon NW, Li C, Crane BR. Lysinoalanine cross-linking is a conserved post-translational modification in the spirochete flagellar hook. PNAS NEXUS 2023; 2:pgad349. [PMID: 38047041 PMCID: PMC10691653 DOI: 10.1093/pnasnexus/pgad349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Spirochetes cause Lyme disease, leptospirosis, syphilis, and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by the action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) and Lyme disease pathogen Borreliella burgdorferi (Bb) form covalent lysinoalanine (Lal) cross-links between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. In Td, Lal is unnecessary for hook assembly but is required for motility, presumably due to the stabilizing effect of the cross-link. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal cross-linked peptides in recombinant and in vivo-derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp. As was observed with Td, a mutant strain of Bb unable to form the cross-link has greatly impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans FlgE also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveal that the Lal cross-link is a conserved and necessary posttranslational modification across the spirochete phylum and may thus represent an effective target for the development of spirochete-specific antimicrobials.
Collapse
Affiliation(s)
- Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maithili Deshpande
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kurni Kurniyati
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA
| | - Kai Zhang
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA
| | - Milinda James
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Michael Miller
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Felipe J Passalia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Nyles W Charon
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Lynch MJ, Deshpande M, Kyrniyati K, Zhang K, James M, Miller M, Zhang S, Passalia FJ, Wunder EA, Charon NW, Li C, Crane BR. Lysinoalanine crosslinking is a conserved post-translational modification in the spirochete flagellar hook. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544825. [PMID: 37398457 PMCID: PMC10312707 DOI: 10.1101/2023.06.13.544825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Spirochete bacteria cause Lyme disease, leptospirosis, syphilis and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) catalyzes the formation of covalent lysinoalanine (Lal) crosslinks between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. Although not necessary for hook assembly, Lal is required for motility of Td, presumably due to the stabilizing effect of the crosslink. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal crosslinked peptides in recombinant and in vivo -derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp.. Like with Td, a mutant strain of the Lyme disease pathogen Borreliella burgdorferi unable to form the crosslink has impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveals that the Lal crosslink is a conserved and necessary post-translational modification across the spirochete phylum and may thus represent an effective target for spirochete-specific antimicrobials. Significance Statement The phylum Spirochaetota contains bacterial pathogens responsible for a variety of diseases, including Lyme disease, syphilis, periodontal disease, and leptospirosis. Motility of these pathogens is a major virulence factor that contributes to infectivity and host colonization. The oral pathogen Treponema denticola produces a post-translational modification (PTM) in the form of a lysinoalanine (Lal) crosslink between neighboring subunits of the flagellar hook protein FlgE. Herein, we demonstrate that representative spirochetes species across the phylum all form Lal in their flagellar hooks. T. denticola and B. burgdorferi cells incapable of forming the crosslink are non-motile, thereby establishing the general role of the Lal PTM in the unusual type of flagellar motility evolved by spirochetes.
Collapse
|
6
|
Analysis of Adhesion and Surface Motility of a Spirochete Bacterium. Methods Mol Biol 2023; 2646:159-168. [PMID: 36842114 DOI: 10.1007/978-1-0716-3060-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Spirochetes are Gram-negative bacteria with helical or flat wave morphology and move using flagella residing beneath the outer membrane. Most commonly, flagellated bacteria swim in liquid. Meanwhile, some species of spirochete not only swim but keep moving after adhering to solid surfaces, and such amphibious motility is believed to be significant for pathogenicity. This chapter focuses on the zoonotic spirochete Leptospira and describes the method for measuring the spirochete adhesion and surface motility.
Collapse
|
7
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
8
|
Light dependent synthesis of a nucleotide second messenger controls the motility of a spirochete bacterium. Sci Rep 2022; 12:6825. [PMID: 35474318 PMCID: PMC9043183 DOI: 10.1038/s41598-022-10556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide second messengers are universally crucial factors for the signal transduction of various organisms. In prokaryotes, cyclic nucleotide messengers are involved in the bacterial life cycle and in functions such as virulence and biofilm formation, mainly via gene regulation. Here, we show that the swimming motility of the soil bacterium Leptospira kobayashii is rapidly modulated by light stimulation. Analysis of a loss-of-photoresponsivity mutant obtained by transposon random mutagenesis identified the novel sensory gene, and its expression in Escherichia coli through codon optimization elucidated the light-dependent synthesis of cyclic adenosine monophosphate (cAMP). GFP labeling showed the localization of the photoresponsive enzyme at the cell poles where flagellar motors reside. These findings suggest a new role for cAMP in rapidly controlling the flagella-dependent motility of Leptospira and highlight the global distribution of the newly discovered photoactivated cyclase among diverse microbial species.
Collapse
|
9
|
Nakamura S. Motility of the Zoonotic Spirochete Leptospira: Insight into Association with Pathogenicity. Int J Mol Sci 2022; 23:ijms23031859. [PMID: 35163781 PMCID: PMC8837006 DOI: 10.3390/ijms23031859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic species, their motilities are a crucial virulence factor. The form of motility varies among the species. Some use flagella for swimming in liquid, and others use the cell-surface machinery to move over solid surfaces. Spirochetes are distinguished from other bacterial species by their helical or flat wave morphology and periplasmic flagella (PFs). It is believed that the rotation of PFs beneath the outer membrane causes transformation or rolling of the cell body, propelling the spirochetes. Interestingly, some spirochetal species exhibit motility both in liquid and over surfaces, but it is not fully unveiled how the spirochete pathogenicity involves such amphibious motility. This review focuses on the causative agent of zoonosis leptospirosis and discusses the significance of their motility in liquid and on surfaces, called crawling, as a virulence factor.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
10
|
Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, Guo C, Liu C, Lim J. The Transport Behavior of a Biflagellated Microswimmer before and after Cargo Loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9192-9201. [PMID: 34255525 DOI: 10.1021/acs.langmuir.1c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
Collapse
Affiliation(s)
- Xiau Jeong Teng
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Boon Seng Ooi
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Chen Guo
- State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chunzhao Liu
- State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, Affiliated Qingdao Central Hospital, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, Unites States
| |
Collapse
|
11
|
Velho Rodrigues MF, Lisicki M, Lauga E. The bank of swimming organisms at the micron scale (BOSO-Micro). PLoS One 2021; 16:e0252291. [PMID: 34111118 PMCID: PMC8191957 DOI: 10.1371/journal.pone.0252291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies.
Collapse
Affiliation(s)
- Marcos F. Velho Rodrigues
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Maciej Lisicki
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Zhou X, Roujeinikova A. The Structure, Composition, and Role of Periplasmic Stator Scaffolds in Polar Bacterial Flagellar Motors. Front Microbiol 2021; 12:639490. [PMID: 33776972 PMCID: PMC7990780 DOI: 10.3389/fmicb.2021.639490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
In the bacterial flagellar motor, the cell-wall-anchored stator uses an electrochemical gradient across the cytoplasmic membrane to generate a turning force that is applied to the rotor connected to the flagellar filament. Existing theoretical concepts for the stator function are based on the assumption that it anchors around the rotor perimeter by binding to peptidoglycan (P). The existence of another anchoring region on the motor itself has been speculated upon, but is yet to be supported by binding studies. Due to the recent advances in electron cryotomography, evidence has emerged that polar flagellar motors contain substantial proteinaceous periplasmic structures next to the stator, without which the stator does not assemble and the motor does not function. These structures have a morphology of disks, as is the case with Vibrio spp., or a round cage, as is the case with Helicobacter pylori. It is now recognized that such additional periplasmic components are a common feature of polar flagellar motors, which sustain higher torque and greater swimming speeds compared to peritrichous bacteria such as Escherichia coli and Salmonella enterica. This review summarizes the data available on the structure, composition, and role of the periplasmic scaffold in polar bacterial flagellar motors and discusses the new paradigm for how such motors assemble and function.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Abe K, Kuribayashi T, Takabe K, Nakamura S. Implications of back-and-forth motion and powerful propulsion for spirochetal invasion. Sci Rep 2020; 10:13937. [PMID: 32811890 PMCID: PMC7434897 DOI: 10.1038/s41598-020-70897-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
The spirochete Leptospira spp. can move in liquid and on a solid surface using two periplasmic flagella (PFs), and its motility is an essential virulence factor for the pathogenic species. Mammals are infected with the spirochete through the wounded dermis, which implies the importance of behaviors on the boundary with such viscoelastic milieu; however, the leptospiral pathogenicity involving motility remains unclear. We used a glass chamber containing a gel area adjoining the leptospiral suspension to resemble host dermis exposed to contaminated water and analyzed the motility of individual cells at the liquid-gel border. Insertion of one end of the cell body to the gel increased switching of the swimming direction. Moreover, the swimming force of Leptospira was also measured by trapping single cells using an optical tweezer. It was found that they can generate [Formula: see text] 17 pN of force, which is [Formula: see text] 30 times of the swimming force of Escherichia coli. The force-speed relationship suggested the load-dependent force enhancement and showed that the power (the work per unit time) for the propulsion is [Formula: see text] 3.1 × 10-16 W, which is two-order of magnitudes larger than the propulsive power of E. coli. The powerful and efficient propulsion of Leptospira using back-and-forth movements could facilitate their invasion.
Collapse
Affiliation(s)
- Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Toshiki Kuribayashi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kyosuke Takabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
14
|
Xu J, Koizumi N, Nakamura S. Crawling Motility on the Host Tissue Surfaces Is Associated With the Pathogenicity of the Zoonotic Spirochete Leptospira. Front Microbiol 2020; 11:1886. [PMID: 32849465 PMCID: PMC7419657 DOI: 10.3389/fmicb.2020.01886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial motility is crucial for many pathogenic species in the process of invasion and/or dissemination. The spirochete bacteria Leptospira spp. cause symptoms, such as hemorrhage, jaundice, and nephritis, in diverse mammals including humans. Although loss-of-motility attenuate the spirochete's virulence, the mechanism of the motility-dependent pathogenicity is unknown. Here, focusing on that Leptospira spp. swim in liquid and crawl on solid surfaces, we investigated the spirochetal dynamics on the host tissues by infecting cultured kidney cells from various species with pathogenic and non-pathogenic leptospires. We found that, in the case of the pathogenic leptospires, a larger fraction of bacteria attached to the host cells and persistently traveled long distances using the crawling mechanism. Our results associate the kinetics and kinematic features of the spirochetal pathogens with their virulence.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
In Situ Structural Analysis of Leptospira spp. by Electron Cryotomography. Methods Mol Biol 2020. [PMID: 32632865 DOI: 10.1007/978-1-0716-0459-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Spirochetes such as Treponema, Borrelia, and Leptospira species can rotate their bodies to swim in liquid environments by rotating periplasmic flagella or endoflagella, which are present inside the cell. Electron cryotomography (ECT) is an imaging technique that directly provides three-dimensional (3D) structures of cells and molecular complexes in their cellular environment at nanometer resolution. Here, I present a general protocol of ECT that covers the sample preparation, data collection, tilt series alignment, and tomographic reconstruction for visualization of intact periplasmic flagella in Leptospira spp. This protocol is capable of determining protein structures at resolutions high enough to visualize their individual domains and secondary structures in their cellular environment.
Collapse
|
16
|
Measurement of the Cell-Body Rotation of Leptospira. Methods Mol Biol 2020. [PMID: 32632866 DOI: 10.1007/978-1-0716-0459-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Leptospira spp. swim in liquid and crawl on surfaces with two periplasmic flagella. The periplasmic flagella attach to the protoplasmic cylinder via basal rotary motors (flagellar motors) and transform the ends of the cell body into spiral or hook shape. The rotations of the periplasmic flagella are thought to gyrate the cell body and rotate the protoplasmic cylinder for propelling the cell; however, the motility mechanism has not been fully elucidated. Since the motility is a critical virulence factor for pathogenic leptospires, the kinematic insight is valuable to understand the mechanism of infection. This chapter describes microscopic methodologies to measure the motility of Leptospira, focusing on rotation of the helical cell body.
Collapse
|
17
|
Spirochete Flagella and Motility. Biomolecules 2020; 10:biom10040550. [PMID: 32260454 PMCID: PMC7225975 DOI: 10.3390/biom10040550] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, Lyme disease, swine dysentery, and leptospirosis. Furthermore, their unique morphologies have attracted attention of structural biologists; however, the underlying physics of viscoelasticity-dependent spirochetal motility is a longstanding mystery. Elucidating the molecular basis of spirochetal invasion and interaction with hosts, resulting in the appearance of symptoms or the generation of asymptomatic reservoirs, will lead to a deeper understanding of host-pathogen relationships and the development of antimicrobials. Moreover, the mechanism of propulsion in fluids or on surfaces by the rotation of PFs within the narrow periplasmic space could be a designing base for an autonomously driving micro-robot with high efficiency. This review describes diverse morphology and motility observed among the spirochetes and further summarizes the current knowledge on their mechanisms and relations to pathogenicity, mainly from the standpoint of experimental biophysics.
Collapse
|
18
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
19
|
Abstract
Bacteria, life living at microscale, can spread only by thermal fluctuation. However, the ability of directional movement, such as swimming by rotating flagella, gliding over surfaces via mobile cell-surface adhesins, and actin-dependent movement, could be useful for thriving through searching more favorable environments, and such motility is known to be related to pathogenicity. Among diverse migration mechanisms, perhaps flagella-dependent motility would be used by most species. The bacterial flagellum is a molecular nanomachine comprising a helical filament and a basal motor, which is fueled by an electrochemical gradient of cation across the cell membrane (ion motive force). Many species, such as Escherichia coli, possess flagella on the outside of the cell body, whereas flagella of spirochetes reside within the periplasmic space. Flagellar filaments or helical spirochete bodies rotate like a screw propeller, generating propulsive force. This review article describes the current knowledge of the structure and operation mechanism of the bacterial flagellum, and flagella-dependent motility in highly viscous environments.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University
| |
Collapse
|
20
|
Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, Mohamud R, Lim J. Artificial Magnetotaxis of Microbot: Magnetophoresis versus Self-Swimming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7971-7980. [PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
Collapse
Affiliation(s)
- Wei Ming Ng
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Hui Xin Che
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Chen Guo
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Chunzhao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Siew Chun Low
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences , Universiti Sains Malaysia , 16150 Kubang Kerian , Kelantan , Malaysia
| | - JitKang Lim
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
21
|
Tahara H, Takabe K, Sasaki Y, Kasuga K, Kawamoto A, Koizumi N, Nakamura S. The mechanism of two-phase motility in the spirochete Leptospira: Swimming and crawling. SCIENCE ADVANCES 2018; 4:eaar7975. [PMID: 29854948 PMCID: PMC5976277 DOI: 10.1126/sciadv.aar7975] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/23/2018] [Indexed: 05/11/2023]
Abstract
Many species of bacteria are motile, but their migration mechanisms are considerably diverse. Whatever mechanism is used, being motile allows bacteria to search for more optimal environments for growth, and motility is a crucial virulence factor for pathogenic species. The spirochete Leptospira, having two flagella in the periplasmic space, swims in liquid but has also been previously shown to crawl over solid surfaces. The present motility assays show that the spirochete movements both in liquid and on surfaces involve a rotation of the helical cell body. Direct observations of cell-surface movement with amino-specific fluorescent dye and antibody-coated microbeads suggest that the spirochete attaches to the surface via mobile, adhesive outer membrane components, and the cell body rotation propels the cell relative to the anchoring points. Our results provide models of how the spirochete switches its motility mode from swimming to crawling.
Collapse
Affiliation(s)
- Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kyosuke Takabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuya Sasaki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kie Kasuga
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Niigata 956-8603, Japan
- Division of Medical Sciences, Graduate School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Corresponding author.
| |
Collapse
|
22
|
Sasaki Y, Kawamoto A, Tahara H, Kasuga K, Sato R, Ohnishi M, Nakamura S, Koizumi N. Leptospiral flagellar sheath protein FcpA interacts with FlaA2 and FlaB1 in Leptospira biflexa. PLoS One 2018; 13:e0194923. [PMID: 29634754 PMCID: PMC5892894 DOI: 10.1371/journal.pone.0194923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Leptospira spp. are spirochete bacteria that possess periplasmic flagella (PFs) underneath the outer membrane; each flagellum is attached to each end of the protoplasmic cylinder. PFs of Leptospira have a coiled shape that bends the end of the cell body. However, the molecular mechanism by which multiple flagellar proteins organize to form the distinctively curled PF of Leptospira remains unclear. Here we obtained a slow-motility mutant of L. biflexa MD4-3 by random insertion mutagenesis using a Himar1 transposon. In MD4-3, the gene encoding the flagellar sheath protein, flagellar-coiling protein A (FcpA), which was recently identified in L. interrogans, was inactivated. As with L. interrogans ΔfcpA strains, the L. biflexa ΔfcpA strain lacked a distinct curvature at both ends of the cell body, and its motility was significantly reduced as compared with that of the wild-type strain. PFs isolated from the ΔfcpA strain were straight and were thinner than those isolated from the wild-type strain. Western blot analysis revealed that flagellar proteins FlaA1, FlaA2, FlaB1, and FlaB2 were expressed in the ΔfcpA strain but the flagellar proteins, except for FlaB2 were not incorporated in its PFs. Immunoprecipitation assay using anti-FcpA antiserum demonstrated that FcpA associates with FlaA2 and FlaB1. The association between FcpA and FlaA2 was also verified using pull-down assay. The regions of FlaA2 and FlaB1 interacting with FcpA were determined using a bacterial two-hybrid assay. These results suggest that FcpA together with FlaA2, produces coiling of PF of the Leptospira, and the interaction between the sheath and core filament may be mediated by FcpA and FlaB1.
Collapse
Affiliation(s)
- Yuya Sasaki
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Kie Kasuga
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, Japan
- Division of Medical Sciences, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Abstract
Spirochetes are bacteria distinguished by an undulate or helical cell body and intracellular flagellar called periplasmic flagella or endoflagella. Spirochetes translate by rotating the cell body. In this chapter, we show a method for simultaneous measurement of the cell body rotation and swimming speed in individual spirochete cells. We also describe a simple chemotaxis assay capable of observing the response of spirochete in real time under a microscope and quantitatively evaluating the response magnitude to attractants and repellents.
Collapse
|
24
|
Takabe K, Kawamoto A, Tahara H, Kudo S, Nakamura S. Implications of coordinated cell-body rotations for Leptospira motility. Biochem Biophys Res Commun 2017; 491:1040-1046. [PMID: 28780349 DOI: 10.1016/j.bbrc.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/05/2023]
Abstract
The spirochete Leptospira has a coiled cell body and two periplasmic flagella (PFs) that reside beneath the outer sheath. PFs extend from each end of the cell body and are attached to the right-handed spiral protoplasmic cylinder (PC) via a connection with the flagellar motor embedded in the inner membrane. PFs bend each end of the cell body into left-handed spiral (S) or planar hook (H) shapes, allowing leptospiral cells to swim using combined anterior S-end and posterior H-end gyrations with PC rotations. As a plausible mechanism for motility, S- and H-end gyrations by PFs and PC rotations by PF countertorque imply mutual influences among the three parts. Here we show a correlation between H-end gyration and PC rotation from the time records of rotation rates and rotational directions of individual swimming cells. We then qualitatively explain the observed correlation using a simple rotation model based on the measurements of motility and intracellular arrangements of PFs revealed by cryo-electron microscopy and electron cryotomography.
Collapse
Affiliation(s)
- Kyosuke Takabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier BioSciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
25
|
Takabe K, Tahara H, Islam MS, Affroze S, Kudo S, Nakamura S. Viscosity-dependent variations in the cell shape and swimming manner of Leptospira. MICROBIOLOGY-SGM 2017; 163:153-160. [PMID: 28036244 DOI: 10.1099/mic.0.000420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spirochaetes are spiral or flat-wave-shaped Gram-negative bacteria that have periplasmic flagella between the peptidoglycan layer and outer membrane. Rotation of the periplasmic flagella transforms the cell body shape periodically, allowing the cell to swim in aqueous environments. Because the virulence of motility-deficient mutants of pathogenic species is drastically attenuated, motility is thought to be an essential virulence factor in spirochaetes. However, it remains unknown how motility practically contributes to the infection process. We show here that the cell body configuration and motility of the zoonotic spirochaete Leptospira changes depending on the viscosity of the medium. Leptospira swim and reverse the swimming direction by transforming the cell body. Motility analysis showed that the frequency of cell shape transformation was increased by increasing the viscosity of the medium. The increased cell body transformation induced highly frequent reversal of the swimming direction. A simple kinetic model based on the experimental results shows that the viscosity-induced increase in reversal limits cell migration, resulting in the accumulation of cells in high-viscosity regions. This behaviour could facilitate the colonization of the spirochaete on host tissues covered with mucosa.
Collapse
Affiliation(s)
- Kyosuke Takabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Md Shafiqul Islam
- Present address: Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Samia Affroze
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
26
|
|
27
|
Wunder EA, Figueira CP, Benaroudj N, Hu B, Tong BA, Trajtenberg F, Liu J, Reis MG, Charon NW, Buschiazzo A, Picardeau M, Ko AI. A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete. Mol Microbiol 2016; 101:457-70. [PMID: 27113476 DOI: 10.1111/mmi.13403] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/28/2022]
Abstract
Leptospira are unique among bacteria based on their helical cell morphology with hook-shaped ends and the presence of periplasmic flagella (PF) with pronounced spontaneous supercoiling. The factors that provoke such supercoiling, as well as the role that PF coiling plays in generating the characteristic hook-end cell morphology and motility, have not been elucidated. We have now identified an abundant protein from the pathogen L. interrogans, exposed on the PF surface, and named it Flagellar-coiling protein A (FcpA). The gene encoding FcpA is highly conserved among Leptospira and was not found in other bacteria. fcpA(-) mutants, obtained from clinical isolates or by allelic exchange, had relatively straight, smaller-diameter PF, and were not able to produce translational motility. These mutants lost their ability to cause disease in the standard hamster model of leptospirosis. Complementation of fcpA restored the wild-type morphology, motility and virulence phenotypes. In summary, we identified a novel Leptospira 36-kDa protein, the main component of the spirochete's PF sheath, and a key determinant of the flagella's coiled structure. FcpA is essential for bacterial translational motility and to enable the spirochete to penetrate the host, traverse tissue barriers, disseminate to cause systemic infection and reach target organs.
Collapse
Affiliation(s)
- Elsio A Wunder
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, 06520, USA.,Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Bahia, 40296-710, Brazil
| | - Cláudio P Figueira
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Bahia, 40296-710, Brazil
| | - Nadia Benaroudj
- Institut Pasteur, Unit of Biology of Spirochetes, 75724 Paris cedex 15, France
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Brian A Tong
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Felipe Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Mitermayer G Reis
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Bahia, 40296-710, Brazil
| | - Nyles W Charon
- Department of Microbiology and Immunology, West Virginia University, Morgantown, WV, 26506, USA
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay.,Department of Structural Biology and Chemistry, Institute Pasteur, 75724 Paris cedex15, France
| | - Mathieu Picardeau
- Institut Pasteur, Unit of Biology of Spirochetes, 75724 Paris cedex 15, France
| | - Albert I Ko
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, 06520, USA.,Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
28
|
Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 2016; 113:E1917-26. [PMID: 26976588 DOI: 10.1073/pnas.1518952113] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.
Collapse
|
29
|
NAKAO H, SAITO K, TOMITA S, MAGARIYAMA Y, KAIZUKA Y, TAKEDA Y. Direct Imaging of Carboxymethyl Cellulose-mediated Aggregation of Lactic Acid Bacteria Using Dark-field Microscopy. ANAL SCI 2016; 32:1047-1051. [DOI: 10.2116/analsci.32.1047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Katsuichi SAITO
- Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Satoru TOMITA
- Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Yukio MAGARIYAMA
- Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | | | | |
Collapse
|
30
|
Gliding Direction of Mycoplasma mobile. J Bacteriol 2015; 198:283-90. [PMID: 26503848 DOI: 10.1128/jb.00499-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Mycoplasma mobile glides in the direction of its cell pole by a unique mechanism in which hundreds of legs, each protruding from its own gliding unit, catch, pull, and release sialylated oligosaccharides fixed on a solid surface. In this study, we found that 77% of cells glided to the left with a change in direction of 8.4° ± 17.6° μm(-1) displacement. The cell body did not roll around the cell axis, and elongated, thinner cells also glided while tracing a curved trajectory to the left. Under viscous conditions, the range of deviation of the gliding direction decreased. In the presence of 250 μM free sialyllactose, in which the binding of the legs (i.e., the catching of sialylated oligosaccharides) was reduced, 70% and 30% of cells glided to the left and the right, respectively, with changes in direction of ∼30° μm(-1). The gliding ghosts, in which a cell was permeabilized by Triton X-100 and reactivated by ATP, glided more straightly. These results can be explained by the following assumptions based on the suggested gliding machinery and mechanism: (i) the units of gliding machinery may be aligned helically around the cell, (ii) the legs extend via the process of thermal fluctuation and catch the sialylated oligosaccharides, and (iii) the legs generate a propulsion force that is tilted from the cell axis to the left in 70% and to the right in 30% of cells. IMPORTANCE Mycoplasmas are bacteria that are generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide. Although these species appear to consistently glide in the direction of the protrusion, their exact gliding direction has not been examined. This study analyzed the gliding direction in detail under various conditions and, based on the results, suggested features of the machinery and the mechanism of gliding.
Collapse
|
31
|
Wolgemuth CW. Flagellar motility of the pathogenic spirochetes. Semin Cell Dev Biol 2015; 46:104-12. [PMID: 26481969 DOI: 10.1016/j.semcdb.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023]
Abstract
Bacterial pathogens are often classified by their toxicity and invasiveness. The invasiveness of a given bacterium is determined by how capable the bacterium is at invading a broad range of tissues in its host. Of mammalian pathogens, some of the most invasive come from a group of bacteria known as the spirochetes, which cause diseases, such as syphilis, Lyme disease, relapsing fever and leptospirosis. Most of the spirochetes are characterized by their distinct shapes and unique motility. They are long, thin bacteria that can be shaped like flat-waves, helices, or have more irregular morphologies. Like many other bacteria, the spirochetes use long, helical appendages known as flagella to move; however, the spirochetes enclose their flagella in the periplasm, the narrow space between the inner and outer membranes. Rotation of the flagella in the periplasm causes the entire cell body to rotate and/or undulate. These deformations of the bacterium produce the force that drives the motility of these organisms, and it is this unique motility that likely allows these bacteria to be highly invasive in mammals. This review will describe the current state of knowledge on the motility and biophysics of these organisms and provide evidence on how this knowledge can inform our understanding of spirochetal diseases.
Collapse
Affiliation(s)
- Charles W Wolgemuth
- University of Connecticut Health Center, Department of Cell Biology and Center for Cell Analysis and Modeling, Farmington, CT 06030-3505, United States; University of Arizona, Department of Physics and Molecular and Cellular Biology, Tucson, AZ 85721, United States.
| |
Collapse
|
32
|
H(+) and Na(+) are involved in flagellar rotation of the spirochete Leptospira. Biochem Biophys Res Commun 2015; 466:196-200. [PMID: 26348776 DOI: 10.1016/j.bbrc.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022]
Abstract
Leptospira is a spirochete possessing intracellular flagella. Each Leptospira flagellar filament is linked with a flagellar motor composed of a rotor and a dozen stators. For many bacterial species, it is known that the stator functions as an ion channel and that the ion flux through the stator is coupled with flagellar rotation. The coupling ion varies depending on the species; for example, H(+) is used in Escherichia coli, and Na(+) is used in Vibrio spp. to drive a polar flagellum. Although genetic and structural studies illustrated that the Leptospira flagellar motor also contains a stator, the coupling ion for flagellar rotation remains unknown. In the present study, we analyzed the motility of Leptospira under various pH values and salt concentrations. Leptospira cells displayed motility in acidic to alkaline pH. In the presence of a protonophore, the cells completely lost motility in acidic to neutral pH but displayed extremely slow movement under alkaline conditions. This result suggests that H(+) is a major coupling ion for flagellar rotation over a wide pH range; however, we also observed that the motility of Leptospira was significantly enhanced by the addition of Na(+), though it vigorously moved even under Na(+)-free conditions. These results suggest that H(+) is preferentially used and that Na(+) is secondarily involved in flagellar rotation in Leptospira. The flexible ion selectivity in the flagellar system could be advantageous for Leptospira to survive in a wide range of environment.
Collapse
|
33
|
Nakamura S. [Morphology and motility of the spirochetes]. Nihon Saikingaku Zasshi 2015; 69:527-38. [PMID: 25186643 DOI: 10.3412/jsb.69.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spirochetes have flagella within the cell body and swim by wriggling the spiral cell body. Besides they have been known to be critical agents causing various infectious diseases, their eccentric appearances and motilities have been attracting many scientists in a wide variety of fields other than bacteriologists. Unlike externally flagellated bacteria that swim by using flagella as a screw propeller, spirochetes progress in a liquid by changing their cell shapes. To understand the unique motion mechanism of spirochetes, many experiments and theoretical studies are being carried out. In this review, I will summarize morphological and motile properties of various species of spirochete, such as Borrelia, Treponema and Brachyspira. I will also expound on the motion mechanism of Leptospira with our latest results obtained by high-resolution optical photometry.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University
| |
Collapse
|
34
|
Xu J, Guo Y, Nakamura S, Islam MS, Tomioka R, Yoneyama H, Isogai E. Mannose-binding lectin impairs Leptospira activity through the inhibitory effect on the motility of cell. Microbiol Res 2015; 171:21-5. [PMID: 25644948 DOI: 10.1016/j.micres.2014.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/16/2014] [Accepted: 12/26/2014] [Indexed: 12/18/2022]
Abstract
Mannose-binding lectin (MBL) plays key role in lectin pathway of innate immunity, and shows the ability of triggering opsonization intermediately. Substantial increase in the serum level of MBL has been confirmed during leptospirosis, which caused by a pathogenic spirochete, Leptospira. Leptospira has a fascinating locomotion pattern, which simultaneously gyrating and swimming forward, such motility enables that Leptospira is difficult to be captured by immune cells if without any assistance. In this study, the effect of mannose-binding lectin to Leptospira was quantitatively investigated by measuring some kinematic parameters, to discover the mechanism behind MBL-mediated immune responses during leptospiral infection. The results showed that mannose-binding lectin is capable of inhibiting the motility of Leptospira by transforming free swimming cells to tumbled rotating cells, resulted in the increase number of rotating cells. Otherwise, decrease in rotation rate of rotating cell has been observed. However, the swimming speed of swimming Leptospira cells showed no observable change under the effect of MBL. The inhibitory effect were only valid in a relatively short period, Leptospira cells regained their original motility after 2 h. This raises an interesting topic that Leptospira is somehow able to escape from the inhibitory effect of MBL by dragging such unfavorable molecules toward to the cell end and eventually throwing it out. The inhibitory effect of MBL on the motility of Leptospira is expected to provide a new insight into lectin pathway.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Yijie Guo
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Department of Immunobiology and Pathogenic Biology, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Md Shafiqul Islam
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Rintaro Tomioka
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroshi Yoneyama
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
35
|
Abstract
Motivated by recent experimental measurements, the passive diffusion of the bacterium Leptospira interrogans is investigated theoretically. By approximating the cell shape as a straight helix and using the slender-body-theory approximation of Stokesian hydrodynamics, the resistance matrix of Leptospira is first determined numerically. The passive diffusion of the helical cell is then obtained computationally using a Langevin formulation which is sampled in time in a manner consistent with the experimental procedure. Our results are in excellent quantitative agreement with the experimental results with no adjustable parameters.
Collapse
Affiliation(s)
- Lyndon Koens
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | | |
Collapse
|